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Abstract Incorporating rate and state friction laws, sta-

bility of linearly stable (i.e., with stiffness greater than the

critical value) spring-slider systems subjected to triggering

perturbations was analyzed under variable normal stress

condition, and comparison was made between our results and

that of fixed normal stress cases revealed in previous studies.

For systems associated with the slip law, the critical mag-

nitude of rate steps for triggering unstable slips are found to

have a similar pattern to the fixed normal stress case, and the

critical velocity steps scale with a/(b - a) when k = kcr for

both cases. The rate-step boundaries for the variable normal

stress cases are revealed to be lower than the fixed normal

stress case by 7 %–16 % for a relatively large a = 0.56 with

(b - a)/a ranging from 0.25 to 1, indicating easier triggering

under the variable normal stress condition with rate steps.

The difference between fixed and variable normal stress

cases decreases when the a value is smaller. In the same slip-

law-type systems, critical displacements to trigger instability

are revealed to be little affected by the variable normal stress

condition. When k C kcr(V*), a spring-slider system with the

slowness law is much more stable than with the slip law,

suggesting that the slowness law fits experimental data

better when a single state variable is adopted. In stick-slip

motions, the variable normal stress case has larger stress

drops than the constant normal stress case. The variable

normal stress has little effect on the range of slip velocity

in systems associated with the slowness law, whereas

systems associated with the slip law have a slowest slip

velocity immensely smaller than the fixed normal stress

case, by *10 orders of magnitude.

Keywords Rate and state friction � Stability � Variable

normal stress � Stick-slip motion

1 Introduction

Laboratory-derived rate and state friction laws and related

analyses have provided important discovery in the mech-

anism of sliding stability (Ruina 1983; Rice and Ruina

1983; Gu et al. 1984; Dieterich and Kilgore 1992; Gu and

Wong 1994) and that of seismic slip nucleation on fault

surfaces (Tse and Rice 1986; Dieterich 1992). While fric-

tion coefficient is found to depend mainly on sliding rate

and ‘state’ (the latter describes the evolution effect between

steady-state values of friction) by early experiments (Di-

eterich 1978, 1979; Ruina 1983), subsequent experiments

also reveal dependencies on changes in normal stress

(Linker and Dieterich 1992), temperature (Chester 1994),

and even in shear stress (Nagata et al. 2012; Fan et al.

2014).

Occurrence of seismic slips on a fault plane depends on

the fault constitutive relation and interaction with the

elastic surrounding under steady tectonic loading or a

loading rate pulse as driven by an earthquake in the
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vicinity, and each of the above-mentioned effects in the

constitutive relation has an influence in the whole process.

There is no doubt that exploring these effects is important

in gaining insight into the mechanism of earthquake pro-

cesses, but large-scale numerical modeling incorporating

all these effects is quite time-consuming, and it is probably

not easy to summarize the results. On the other hand, these

effects can be isolated in numerical models for purposes of

understanding their influences separately, and such analy-

ses can be readily done in a single spring-slider system

which reflects the friction constitutive relation and inter-

action with the elastic surrounding. As tectonic loading to

active faults is generally inclined to orientation of fault

planes, normal stress acting on fault surfaces is varying

during the loading and slip processes.

In a single spring-slider system, the temperature effect

has been found to have an indirect influence on the stability

through shear heating (Blanpied et al. 1998), whereas

normal stress influences the stability directly through the

geometric relation between fault and the driving force

orientations (Dieterich and Linker 1992; He et al. 1998). In

researches of earthquake nucleation based on rate and state

friction, it is found that variable normal stress on a planar

fault surface imposed by remote stressing increases the

nucleation time of a seismic fault slip (He 2000; Fang et al.

2011). Limit cycles of stick-slip motions of a spring-slider

system have been found to have larger static stress drops

under variable normal stress originated from a principal

stress inclined to the fault plane, as compared to the fixed

normal stress case (He 1999).

With the background mentioned above, this work

focuses on the influence of varying normal stress to both

sliding stability and dynamic motion of a spring-slider

system with the driving force inclined to the fault surface,

compared with results for the fixed normal stress case. Our

analyses are based on a numerical procedure developed in

previous works, which compares the dynamic motions

associated respectively with the slip law and the slowness

law (He and Ma 1997; He 1999). In the succeeding sec-

tions, we begin with review and discussion on the result of

linear stability analyses in previous studies (Dieterich and

Linker 1992; He et al. 1998) and then focus on the fol-

lowing problems that have not been touched yet: (a) non-

linear stability in a single degree of freedom system under

varying normal stress in response to rate step and dis-

placement step perturbations as compared to the fixed

normal stress case and (b) difference between the two laws

in non-linear stability and dynamic motions. In this way,

we hope to see a more complete picture of the dynamics of

a spring-slider system when the normal stress is varying,

thereby better understanding the behavior of constitutive

laws in an analogous seismogenic system under variable

normal stress condition.

2 Constitutive laws with variable normal stress

2.1 Constitutive laws

There are two types of rate and state friction law that have

been most commonly used in previous analyses. When

normal stress is constant, one of the friction laws uses a

state variable that evolves only with slip, whereas the state

variable in the other also evolves with time of truly sta-

tionary contact. Following Beeler et al. (1994), here the

former is referred to as ‘‘slip law’’ and the latter as

‘‘slowness law’’. The laws have different features in two

major aspects: a previous study has revealed that the

slowness law fits better to observations on strength change

during hold-slide tests than the slip law does (Beeler et al.

1994). Direct observation of frictional contact (Dieterich

and Kilgore 1994, 1996) also found that contact area

increases with time of stationary contact, which the slip

law fails to describe. In another study (Perrin et al. 1995)

on existence of self-healing pulse during earthquake fault

slip as proposed by Heaton (1990), it was found that steady

pulse solution exists with the slowness law but does not

exist when the slip law is adopted. On the other hand, the

responses of the slip law to upward and downward steps are

symmetric, whereas that of the slowness law is not. The

symmetric feature of the slip law is believed to fit better the

transient sliding behavior after a step change of slip rate

(Kato and Tullis 2001; Bayart et al. 2006; Ampuero and

Rubin 2008); thus the slip law reproduces well the

responses to changes from a steady state. The advantages

of each of the evolution laws can be combined in a com-

posite rate and state friction law as Kato and Tullis (2001,

2003) proposed and demonstrated in their studies, though

the formulation is more complicated than the commonly

used ones. Despite the difference between the two evolu-

tion laws and other differences especially in evolution

patterns of the state variable during stick-slip motions (He

et al. 2003), the two evolution laws have many features in

common. At a steady state under a given sliding rate, the

friction coefficient is the same for both the slip and slow-

ness laws. In a single spring-slider system, the two laws

also have common criteria of stability under small pertur-

bations for both constant normal stress (Ruina 1983) and

varying normal stress cases (Dieterich and Linker 1992).

In the slip law, shear stress s is related to normal stress

r, slip velocity V, and state variable H as follows (Linker

and Dieterich 1992):

s ¼ l�r þ ar ln
V

V�
þ rH; ð1aÞ

where l* is steady-state value of friction coefficient at a

reference velocity V*, and a is a parameter to describe the

amplitude of direct rate effect.
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The evolution of the state variable is governed by the

following differential equation:

dH
dt

¼ � 1

Dc
H þ b ln

V

V�

� �
dd
dt

� a
r

dr
dt

; ð1bÞ

where b is a parameter representing the amplitude of

evolution effect on shear stress, and d is slip distance with

V = dd/dt. The first term on the right side of (1b) is a

description of state evolution under constant normal stress,

and it is evident that the evolution is a exponential decay

from a previous state if V is held constant, and Dc is the

characteristic slip distance in the evolution. The second

term of the above equation describes the effect of normal

stress on state variable, and increase of normal stress

reduces the state value, with parameter a representing the

degree of the normal stress effect on the state variable. For

the constant normal stress case, this term equals to 0. It is

evident that H does not evolve during stationary contact,

i.e., V = dd/dt = 0, this is why it has been referred to as

slip law (evolves only when slip occurs). The effect of

normal stress can be illustrated by imposing a step change

of normal stress and then observing the response.

According to (1a) and (1b), it is evident that a jump from

r* to r* ?Dr causes an instantaneous changes in H and

friction stress as follows (He and Ma 1997):

DH ¼ �a ln 1 þ Dr=r�ð Þ; ð2Þ
Ds ¼ lssDr � a ln 1 þ Dr=r�ð Þ; ð3Þ

with lss = l* - (b - a)ln(V/V*). During the subsequent

evolution, dr/dt = 0, and it is evident from (1a) and (1b)

that H and s evolve exponentially to –b ln(V/V*) and

lss(r* ? Dr), respectively.

The slowness law with variable normal stress is

described by the following equations (Linker and Dieterich

1992):

s ¼ l�rþar ln(V=V�Þ þ br lnðh=h�Þ; ð4aÞ
dh
dt

¼ 1 � hV

Dc

� �
� ah

br
dr
dt

: ð4bÞ

The second equation characterizes the evolution of the

state variable h, and it is clear that the state variable can

increase with time even when the slip velocity is 0. At a

steady state under slip rate V, h = Dc/V, i.e., the state

variable increases with the inverse of velocity, a measure

of slowness. Again, the second term describes the effect of

normal stress on state variable, and increase of normal

stress reduces the state value.

It should be noted that H in (1a) can be replaced by ln(h/

h*) and (1b) can be described equivalently by the state

variable h in a different form.

2.2 Spring-slider system driven by inclined principal

stress and its linear stability

Consider a single degree of freedom spring-slider system

shown in Fig. 1. It is seen that shear stress and normal

stress on the slipping surface are related by

r ¼ r3 þ s cotu: ð5Þ
We discuss the case when the minimum principal stress

r3 is constant. Under this condition, shear stress and nor-

mal stress are linearly coupled.

The equation of motion is

m
d2d
dt2

¼ kðd0 � dÞ � s; ð6Þ

where m is mass of the slider per unit area and k the

equivalent stiffness in the slipping direction. d0 is the load

point displacement induced by shear stress in the slipping

direction. To simplify the parameters in (6), m/k can be

replaced with (T/2p)2, where T is the period of free

oscillation (Rice and Tse 1986). For quasi-static motion,

the left side of the equation can be put to 0. Similar to the

constant normal stress case, this system is unstable around

a certain steady state with any amount of perturbation when

the stiffness k is lower than a critical value kcr (Dieterich

and Linker 1992):

kcr ¼
b � að Þrss

Dc 1 � cot u lss � að Þ½ � ; ð7Þ

where lss and rss are the steady-state coefficients of friction

and normal stress, respectively, with lss = l* - (b - a)

ln(V/V*).

With further derivation, kcr can be expressed by an

explicit function of slip velocity V (He et al. 1998) as

follows:

Fig. 1 A single degree of freedom spring-slider system. V0 and V are

velocities of load point and the slider in the slipping direction,

respectively. The system is driven by a horizontal principal stress,

with the minimum principal stress r3 held constant. In this case,

normal stress r and shear stress s on the slipping surface are linearly

coupled
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kcrðVÞ ¼ ðb � aÞr�ð1 � l� cot uÞ
Dcð1 � lss cot uÞ½1 � ðlss � aÞ cot u� ; ð8Þ

with lss = l* - (b - a) ln(V/V*). For velocity weakening

(i.e., b - a [ 0), kcr is a decreasing function of V, as

plotted in Fig. 2 with different values of fault angle u.

Every single curve divides the k-V plane into two regions.

For stiffness and velocity values in the upper region, the

system is linearly stable, i.e., stable under small perturba-

tion around the steady state. In the region below the curve,

the system is always unstable. For a given spring stiffness,

the system can either be stable or unstable depending on

the value of load point velocity. It is obvious that

increasing velocity may stabilize the system, and vice

versa.

There is another stability boundary: the system is

unstable (Dieterich and Linker 1992) whenever

u\tan�1lss: ð9Þ

When this condition is satisfied, the system will be

unstable when stress decreases but the slider will lock up

during loading. Also from this boundary, it is true that high

load point velocity can improve the stability of the system.

By numerical simulation with the slip law, He et al.

(1998) have shown that transition between stable sliding

and stick slip occurs due to a jump in load point velocity

that is sufficient to cross the stability boundary shown in

Fig. 2. In the previous study, u = 60� was used in the

model. The transition is not sensitive to velocity change in

this case, because the curve is very flat. The boundaries

become steeper with smaller values of u, as shown in

Fig. 2. This means that for fault angle that is less favorable

for slip (as the case of San Andreas fault in central Cali-

fornia), such transitions are more sensitive to the variation

of load point velocity.

2.3 Responses to rate steps of a rigid body driven

by inclined principal stress

To understand the effect of varying normal stress on the

sliding behavior of an inclined fault, here we compare the

responses to rate steps of an inclined rigid slider with that

of a slider under constant normal stress. For the slip law,

the responses in the constant and variable normal stress

cases are basically similar (Fig. 3a, b), but the variable

normal stress (Fig. 3a) tends to slow down the evolution to

the new steady state as compared to the constant normal

stress case (Fig. 3b). This trend is more prominent in the

downward rate steps. Moreover, the direct effect of the rate

steps also makes asymmetric responses in the upward and

downward steps, leading to higher direct stress changes

with the downward steps. Similarly, the effect of variable

normal stress on the evolution of shear stress associated

with the slowness law does not change much the evolution

style except for some minor differences (Fig. 4a, b). Sim-

ilar to the slip law, the effect of variable normal stress leads

to slowing down evolution to the new steady state

(Fig. 4a). The effect of variable normal stress also makes

the indistinguishable response curves (Fig. 4b) for down-

ward steps of 2–4 orders of magnitude seen in the constant

normal stress case become separate (Fig. 4a).

3 Non-linear stability analyses

In this section, we analyze the stability when the system is

linearly stable, i.e., k [ kcr(V). We first analyze the stability

of the system associated with the slip law, and make

comparison with analytical results for constant normal

stress case (Gu et al. 1984). Two types of perturbation are

considered below: velocity steps and displacement steps

imposed at the load point.

3.1 Stability under velocity step perturbations

with the slip law

This analysis is to determine the amplitudes of velocity

perturbation that is critical for triggering instability for

given stiffness values. The step rate perturbations were

made at the load point from the steady state at the reference

Fig. 2 Linear stability boundaries under condition of variable normal

stress when a = 0.56, a = 0.0145, b/a = 2, and l* = 0.76. Numbers

are the angles between driving direction and the normal of slipping

surface
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velocity V0 = V* with a sudden step change to V0 = cV*,

where c is the ratio between the current and previous rates.

A procedure with numerical integration was used to find

the critical values of load point velocity steps (for details

see He and Ma 1997). Instability was determined by

observing the slip velocity to see if the velocity accelerates

to dynamical inertial motion by checking if VT/(2pDc) is

high enough to reach a predetermined norm, where T is the

period of free oscillation of the system (He et al. 1997).

Reducing to constant normal stress case, the procedure was

checked using an analytical result by Gu et al. (1984).

Though the numerical procedure tends to underestimate the

critical velocity by 1 %–2 % when k [ kcr (the k = kcr

case has an error level less than 0.4 %), the results sys-

tematically agree with the analytic result.

First stability boundary is calculated for k = kcr(V*)

with different b/a values, as shown in Fig. 5. The broken

line corresponds a function

V0=V� ¼ 1 þ 1=k; k ¼ ðb � aÞ=a; ð10Þ

which is analytically derived for fixed normal stress case

by Gu et al. (1984). The numerical calculation was

conducted for a = 0.56 and a = 0.25, with other

parameters shown in Table 1. Similar to the fixed normal

stress case, the critical rate steps in the variable normal

stress case scale with a/(b - a) when k = kcr with a form

of V0/V* = 1 ? fa/(b - a), where f is a coefficient

smaller than unity. The boundaries for varying normal

stress cases are below the boundary for fixed normal stress,

and a smaller value of a corresponds to a higher boundary.

For a relatively large a = 0.56, the rate-step boundary in

the variable normal stress case is lower than the fixed

normal stress case by 7 %–16 % when (b - a)/a ranges

from 0.25 to 1. Another result is given for b/a =

e & 2.71828 with different stiffness values, shown in

Fig. 6. Analytical result is also available for this case when

r = const (Gu et al. 1984):

V0=V� ¼ 1=kð Þexpðj=kÞ; k ¼ e � 1; ð11Þ

where j = kDc/ar. While the numerical result for

a = 0.56 is below the boundary for the fixed normal

stress case, but the result for a = 0.25 is very close to the

fixed normal stress case. For a = 0.56, the critical values

of velocity is smaller than the values for the fixed normal

stress case by *12 %. These results indicate that systems

with varying normal stress is systematically less stable than

the fixed normal stress case when the system is imposed to

step-like velocity perturbations.

Fig. 3 Plots of normalized stress as a function of normalized slip representing responses to upward rate steps (solid lines) and downward rate

steps (dashed lines) of rigid sliders associated with the slip law. The variable normal stress cases (a) have slower evolution to the new steady state

than in the constant normal stress cases (b), and the effect of normal stress makes the upward and downward rate steps asymmetric. Calculations

were performed with a = 0.0145, b/a = 2, l* = 0.76, and a = 0.56. Numbers are new rate to reference rate ratio, and sss is the future steady-

state value
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3.2 Stability of systems with the slip law

under displacement step perturbation

We consider the system stability under step-like displace-

ment perturbation imposed at the load point. The system is

assumed sliding in steady state, then imposed to a step of

load point displacement with stationary load point velocity,

as has been analyzed for fixed normal stress case by Gu

et al. (1984).

This problem is a little different from the analyses above

because imposing a step change in load point displacement

causes instantaneous changes in shear stress and state

variable. For a time marching integration procedure, such

instantaneous changes should be dealt as initial conditions.

When a step increment in load point displacement Dd0 is

imposed, shear stress will change instantaneously by

Fig. 4 Plots of normalized stress as a function of normalized slip representing responses to upward rate steps (solid lines) and downward rate

steps (dashed lines) of rigid sliders associated with the slowness law. Similar to the slip law, the variable normal stress cases a have slower

evolution to the new steady state than in the constant normal stress cases (b). The indistinguishable response curves for downward steps of 2–4

orders of magnitude seen in the constant normal stress case b become separate in the variable normal stress cases (a). Calculations were

performed with a = 0.0145, b/a = 2, l* = 0.76, and a = 0.56. Numbers are new rate to reference rate ratio, and sss is the future steady-state

value

Fig. 5 Critical values of load point velocity for triggering instabil-

ities with the slip law when k = kcr(V*). Broken line is an analytical

result for r = const. by Gu et al. (1984). Values for the variable

normal stress cases are smaller in comparison with the constant

normal stress one. The slopes are coefficients to be multiplied with a/

(b - a) in the linear relation between V0/V* and a/(b - a). The

constant normal stress case has a slope of unity. Parameters are set as

in Table 1

Table 1 Parameters used in the calculations for non-linear stability

analysis

T (s) a l* A u V*/Dc (s-1)

5 0.25, 0.56 0.76 0.0145 60� 1.1710-8
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ds = kDd0. According to (5), normal stress changes

simultaneously by Dr = kDd0 cotu.

By integrating (1b) at t = 0 during the instantaneous change

in normal stress, we obtain the instantaneous change in state:

DH ¼ � a lnðr=r�Þ
¼ � a lnð1 þ Dr=r�Þ:

To determine the slip velocity immediately after the

instantaneous change, we need a general relation between

shear stress, state and slip velocity. It is evident from (1a)

and (5) that any state away from the reference state at

V = V* has a general relation as follows:

s � s�
ar�

¼ ln V=V�ð Þ þ H= a

1 � cot u l� þ a ln V=V�ð Þ þ H½ � : ð12Þ

At the moment immediately after the instantaneous

change, s - s* = Ds = kDd0 and H = DH =

-aln(1 ? Dr/r*). By rearranging the above equation, the

ultimate slip velocity after the instantaneous change can be

calculated explicitly by

V ¼ V� exp
1 � cot uðl� þ DHÞDs=ðar�Þ � DH=a½ �

1 þ Ds cot u=r�

� �
:

ð13Þ

With these instantaneous changes derived, the initial

values for further numerical procedure are straightforward.

For comparison, we also show the analytical result for the

case with r = const., which has been derived by Gu et al.

(1984) for any stiffness k C kcr, as follows:

Dd0 ¼ Dc=k: ð14Þ

Figure 7 shows the numerical result when k/kcr(V*) = 1,

with parameters shown in Table 1. Numerical analysis for

r = const. is also conducted for checking the numerical

procedure. As seen in Fig. 7, the results for different situ-

ations are very close to one another. Results with other

stiffness values show maximum difference of a few per-

cents as compared with (14), the boundary for fixed normal

stress case.

It should be noticed that the stability is poor around the

steady state when imposed to a displacement step because

the displacement step increase for triggering an instability

is Dc/k, a very small value. The reason for this is that a

small amount of displacement causes a considerable

instantaneous change in slip velocity. With parameters

given in Table 1 and according to (13), when a = 0.56 and

k = kcr(V*), the ultimate slip velocity V after the instanta-

neous change in responding to load point displacement

change of Dc/k is 2.697 V*.

3.3 Non-linear stability of systems associated

with the slowness law

Ranjith and Rice (1999) have conducted analyses on the

fixed normal stress case. The result says that when k [ kcr,

slip is always stable. In this sub-section, we conduct

numerical integration to examine the problem for variable

normal stress case. Concretely, we examine the quasi-static

motion under various amounts of load point velocity jump,

and see whether slip velocity is always bounded when

k [ kcr(V*). In quasi-static motion, equation of motion

reduces to

Fig. 6 Stability boundary for perturbations in load point velocity

with b/a = e & 2.71828 and other parameters shown in Table 1.

When a = 0.56, the result for variable normal stress is smaller than

the constant normal stress case by *12 %, while another result for

a = 0.25 is very close to the constant normal stress result (solid line)

by Gu et al. (1984)

Fig. 7 Stability boundary for perturbations in load point displace-

ment with the slip law, with b/a = 2, k = kcr(V*), and other

parameters set as in Table 1. Broken line is the result for constant

normal stress by Gu et al. (1984). All cases show no significant

difference from one another
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s ¼ kðd0 � dÞ: ð15Þ

Solving (4a), (4b), (5), and (15) by numerical integration

with a time marching procedure (He and Ma1997), quasi-

static solutions can be obtained so far as the slip velocity is

bounded.

Existence of such quasi-static solutions was confirmed

by our numerical procedure for a broad range of load point

velocity steps. Figure 8 shows two examples with jump of

V0 from V* to 2 V* and to 200 V*, respectively. The former

shows a slowly decaying oscillation, whereas the other (for

V0 = 200 V*) shows a remarkable difference in amplitude

between the first and the subsequent oscillations.

These results mean that the slip velocity can be bounded

under considerable amplitude of perturbations. Theoreti-

cally, a numerical procedure cannot prove vigorously that

this is always true for any amount of velocity perturbation,

but these results can be regarded as evidences if we assume

hypothetically that velocity is always bounded in quasi-

static motion when k [ kcr(V*).

As displacement disturbances imposed at the load point

lead to instantaneous changes in sliding velocity (similar to

the slip law case), such disturbances do not destabilize the

system as well because any change in sliding velocity does

not destabilize the system when k [ kcr(V*).

3.4 Features of Stick-slip Motions

The first analysis on complete stick-slip motions that incor-

porate inertia was conducted by Rice and Tse (1986) with the

slip law and under constant normal stress condition. The

same analysis with the slip law under variable normal stress

condition was documented by He and Ma (1997) and sub-

sequent works (He et al. 1998; He 1999). With k =

0.8kcr(V*) \ kcr(V*), here we show an example in stress-

velocity phase plane plots (Fig. 9) for comparison with the

fixed normal stress case (with b/a = 2, a = 0.0145,

a = 0.56, l* = 0.76, T = 5 s, u = 60�, and V*/Dc =

1.1710-8/s). Unstable slips are initiated by a step change in

V0 from V* to 2 V*, and the subsequent motions are limit

cycles (periodic stick-slips). It is evident that the variable

normal stress case has larger stress drop than the constant

normal stress case, and the stress-velocity phase plot exhibits

a long tail in the deceleration phase. The slowest velocity for

the variable normal stress case is lower than the constant

normal stress case by 10 orders of magnitude. While the

trajectory of the fixed normal stress case during the decel-

eration phase mostly follows a constant state line, that of the

variable normal stress intersects with the constant state lines

(numbered dot lines), indicating that the state variable

increases with decreasing normal stress in the deceleration

phase, governed by the evolution law (1b).

Similar complete stick-slip motions with the slowness

law under variable normal stress have preliminarily been

documented by He (1999). By replacing (1a) and (1b),

respectively, with (4a) and (4b), the same procedure

employed in analyses with the slip law can be used for

analyses with the slowness law. Also, constant normal

stress case can be easily reduced from the variable normal

stress case. The calculation starts from steady-state sliding

at the reference velocity V*, so the initial value of h is

Fig. 8 Two examples of quasi-static solution for a system associated

with the slowness law after perturbations are imposed to the load

point velocity, with k = kcr(V*), b/a = 2, a = 0.56, and other

parameters set as in Table 1. The existence of such solutions is

confirmed for a broad range of large perturbations when k C kcr(V*).

Broken line is the steady-state line

Fig. 9 Phase plane plots of stick-slip motion with the slip law when

k = 0.8kcr(V*), b/a = 2, V0 = 2 V*, a = 0.56, and other parameters

set as in Table 1. Numbers are values of state variable at the constant

state lines (dot lines). In the deceleration phase, the variable normal

stress case has a long tail and greater stress drop in comparison with

the constant normal stress case. See text for details
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h* = Dc/V*. With the same parameters as set in the slip law

cases shown in Fig. 9, results for the slowness law are

shown in Fig. 10, making comparison between fixed and

varying normal stress cases. Unlike the stick-slip motions

with the slip law, the range of velocity variation for both

cases are similar. Moreover, there is a segment where the

stress is roughly constant, corresponding to an important

recovery process after the instability where the major

proportion of state value reduced during the acceleration

phase regains. From (4a), it is evident that logarithms of

velocity and state are linearly related in this segment, and

the state variable is approximately proportional to V-a/b.

When b/a = 2, as in the two cases here, h increases with

V-1/2 as V decreases. Compared to results with the slip law,

stress drops in these results are smaller, and the effect of

varying normal stress is much less pronounced.

Figure 11 shows the stress-slip trajectory of the stick-

slip motions corresponding to Fig. 10. Different to the slip

law (Rice and Tse 1986; He and Ma 1997), an evident

feature of these curves is that the stress drops in the

acceleration and deceleration phases are strongly asym-

metrical. This is easily understood when the effect of a

velocity jump is considered in a rigid system for a

r = Const case. It is evident from (4b) that the evolution of

state variable h is an exponential decay as follows:

h ¼ Dc=V þ Dc=V� � Dc=Vð Þe�d=Dc ; ð16Þ

with h = Dc/V* at t = 0, and d = 0.

However, the stress variation corresponding to the

evolution of h is more complicated than a simple expo-

nential function as follows:

s ¼ �br lnðV=V�Þ þ br ln½1 þ ðV=V� � 1Þe�d=Dc �:
ð17aÞ

When the velocity step is small, this relation can be

approximated by an exponential function through

employing an approximation ln(1 ? x) & x (|x| � 1)

twice as follows:

s � �br lnðV=V�Þ
þ br lnðV=V�Þe�d=Dc ; ðV � V�Þ=V�j j � 1:

ð17bÞ

This approximate relation is identical to the result with

the slip law (Gu et al. 1984).

For large steps of velocity, (17b) is no longer valid. The

full function (17a) is a decay that is much slower than the

exponential function (17b), see evolution patterns of shear

stress in Fig. 4. For example, if V jumps from V* to 200 V*,

drop of stress to 1/e of the total stress reduction requires a

slip of *3.5Dc, a much longer distance than otherwise in

the exponential decay (where slip distance of Dc is

required). Due to this sluggish property, stress in the

acceleration phase decreases slowly, hence the excess

energy is relatively smaller than what would be if the slip

law applies. In the deceleration phase, stress drop has to be

smaller than the dynamic drop to balance with the small

excess energy.

3.5 Loading rate dependence of stress drops

For the slip law, it has been found that dynamic stress drop

scales with ln(V0) and (a - b)r when r = Const. (Cao and

Aki 1986; Gu and Wong 1991). The full stress drops (static

Fig. 10 Phase plane plots of stick-slip motions with the slowness law

when k = 0.8kcr(V*), b/a = 2, V0 = 2 V*, a = 0.56, and other

parameters set as in Table 1. In the deceleration phase, both cases

have a segment where shear stress is roughly constant. See text for

details

Fig. 11 Plots of stress versus slip of the examples shown in Fig. 10.

Stress drops in acceleration and deceleration are strongly unsymmet-

rical. The ‘‘shear fracture’’ energy is larger in comparison with the

slip law
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stress drop) have a similar scaling law with a steeper slope

2(a - b)r instead of (a - b)r. For the variable normal

stress case shown in Fig. 1, these relations can be corrected

by replacing a - b with (a - b)/(1 - l*cotu) for velocity

step changes from V* to V0 (He and Ma 1997).

We also conducted some calculations with the slowness

law and found that the stress drops similarly scale with

ln(V0) and (a - b)r*. Analysis on the fixed normal stress

case indicates that the stress drop also depends on stiffness,

thus the static stress drop scales with (a - b)r
ln(V0)f(k) (He et al. 2003), where f(k) is a function of

stiffness. Though the relation between stress drop and

ln(V0) for the variable normal stress case is more compli-

cated as seen in our results, it is evident from Figs. 9 and

10 that the stress drop has a higher sensitivity to ln(V0) than

in the fixed normal stress case, thus it should scale with

ln(V0) by a slope steeper than (a - b)r f(k).

4 Discussion and conclusion

For systems associated with slip law and when

k [ kcr(V) under variable normal stress (i.e., stable under

small perturbations), boundaries for triggered instability in

such systems are quite similar to the constant normal stress

case. While smaller critical velocity step perturbations are

revealed for the variable normal stress case as compared to

the fixed normal stress case, the boundaries of stability in

response to displacement perturbations are approximately

identical for fixed and variable normal stress cases. On the

other hand, for systems associated with the slowness law

and under fixed normal stress, slip is always stable when

k C kcr as shown by Ranjith and Rice (1999). By mathe-

matical analysis, this ‘stable’ situation only means the

existence of quasi-static solution for any amounts of per-

turbations, and the absence of high-velocity inertial slip is

not guaranteed here. As shown in Fig. 8, a quasi-static

solution for variable normal stress case after a very large

perturbation (V0 stepped from V* to 200 V*) shows a much

higher slip velocity than expected for real quasi-static

motion, and this implies the necessity of incorporating

inertia. Figure 12 shows the corresponding full solution

(inertia included) compared with the quasi-static one

shown in Fig. 8. The full solution and the quasi-static

counterpart deviate from each other at a certain point in the

acceleration phase and merge again in the deceleration

phase on the constant stress segment. The maximum slip

velocity in full solution is lower than the quasi-static

solution by one order of magnitude. The significant inertia-

controlled motion indicates the occurrence of triggered

instability. In other words, when k C kcr(V*), the slip can

also be unstable if the system is imposed to a perturbation

of sufficient amplitude, despite the fact that the slip

velocity is mathematically bounded and thus mathemati-

cally defined as ‘stable’.

Nevertheless, the existence of quasi-static solution with

the slowness law for large perturbations implies that, when

k C kcr(V*), a system associated with the slowness law is

much more stable than systems associated with the slip

law. As an example of a system with the slowness law,

when k = kcr(V*), b/a = e & 2.71828, a = 0.56 and other

parameters shown in Fig. 6, numerically obtained critical

perturbation in V0 is *11.8 V*, which is a much higher

value than the result with the slip law (Fig. 6). Likewise,

when k = 1.5 kcr(V*), the critical perturbation amount of

V0 is *2361 V*, suggesting that the system is very stable.

Though the slip law is commonly considered to be more

suitable to fit stable sliding data than the slowness law, it

seems not to be suitable to fit oscillatory slips when the

system stiffness is around the critical value. From oscilla-

tory slips observed in experiments on plagioclase gouge

under hydrothermal conditions (He et al. 2013), the per-

sisting oscillations when the load point velocity was step-

ped by tenfold changes back and forth were fitted to the

slowness law but failed to be fitted to the slip law when a

single state variable was adopted, because a system asso-

ciated with the slip law is prone to inertial slips under such

large perturbations(Fig. 5).

As for the effect of variable normal stress on stick-slip

motions, two points are worth mentioning here: (1) The

static stress drop of spring-slider systems increases sig-

nificantly due to the effect of variable normal stress. The

effect is more pronounced for systems associated with the

slip law, and the static stress drop scales with *2ln(V0)

(a - b)r*/[1 - l*cot(u)] instead of *2ln(V0) (a - b)r
for the fixed normal stress case. (2) While the variable

Fig. 12 Comparison between the full and quasi-static solutions with

the slowness law when k = kcr(V*), a = 0.56, b/a = 2, V0 = 200 V*,

and other parameters set as in Table 1
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normal stress has little effect on the range of slip velocity

in systems associated with the slowness law, systems

associated with the slip law have a slowest slip velocity

immensely smaller than the fixed normal stress case,

roughly by 10 orders of magnitude.

Finally, it should be noted that the mechanical behavior

exhibited by the spring-slider system cannot be regarded as

an example of more realistic systems such as a planar fault

in the earth crust, though some of the properties are similar

in the two categories, as seen in similar slip-weakening

behavior in both the spring-slider system and in coseismic

slip simulation on a planar fault (Bizzarri and Cocco 2003).

Thus, the mechanical behavior shown in this study through

analyses on a simple system serves to help understand the

intrinsic property of the rate and state friction laws rather

than to know mechanical processes of more realistic

systems.
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