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Abstract We apply the spectral-element method (SEM),

a high-order finite-element method (FEM) to simulate

seismic wave propagation in complex media for explora-

tion and geotechnical problems. The SEM accurately treats

geometrical complexities through its flexible FEM mesh

and accurately interpolates wavefields through high-order

Lagrange polynomials. It has been a numerical solver used

extensively in earthquake seismology. We demonstrate

the applicability of SEM for selected 2D exploration

and geotechnical velocity models with an open-source

SEM software package SPECFEM2D. The first scenario

involves a marine survey for a salt dome with the presence

of major internal discontinuities, and the second example

simulates seismic wave propagation for an open-pit mine

with complex surface topography. Wavefield snapshots,

synthetic seismograms, and peak particle velocity maps are

presented to illustrate the promising use of SEM for

industrial problems.

Keywords Seismic wave propagation � Spectral-element

method � Exploration seismology

1 Introduction

Mapping the elastic and anelastic structures of the subsur-

face, for both global and industrial seismic applications,

relies on the ability to solve the seismic wave equations

accurately (e.g., Dahlen and Tromp 1998; Aki and Richards

2002). In particular, with the advancing of numerical meth-

ods and increasing computational power, full numerical

calculations of synthetic seismograms have contributed

significantly to the seismic inverse problem in seismological

research since the early 80 (e.g., Tarantola 1984a, b; Chaljub

et al. 2007; Virieux and Operto 2009; Liu and Gu 2012).

The finite-difference (FD) methods are the most widely

used among all numerical approaches that model the prop-

agation of seismic waves due to their relatively simple for-

mulation. They employ the strong form of the differential

equations of motion and essentially replace derivatives of

velocity vectors and stress tensors by their finite difference

equivalents between adjacent grid points (e.g., Madariaga

1976; Virieux 1988; Levander 1988; Komatitsch et al.

2005). Other classical gridding methods, such as spectral and

pseudo-spectral methods, have also been applied to accu-

rately solve seismic wave propagation in relatively smooth

media (e.g., Tessmer et al. 1992; Carcione 1994; Komatitsch

et al. 2005). However, these classical methods have inherent

limitations for models that exhibit complex geometries,

including undulated surface topography and major internal

discontinuities, which although could be overcome, are

numerically costly (e.g., Robertsson 1996; Ohminato and

Chouet 1997; Komatitsch et al. 2005).

In comparison, the finite-element method (FEM),

another category of numerical techniques in the space-time

domain, honors the geometrical model complexity by

sophisticated mesh design (Bathe 2008), and has been

exploited to predict ground motions for complex media
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(e.g., Lysmer and Drake 1972; Bao et al. 1998; Bielak

et al. 1999; Aagaard et al. 2001). The use of the unstruc-

tured meshing technique, which is based upon various

types of elements (e.g., triangles, tetrahedra, and hexahe-

dra), provides the FEM with the flexibility to honor strong

surface topography and major internal discontinuities, as

element boundaries coincide with these interfaces and

discontinuities (Komatitsch et al. 2005; Tromp et al. 2008;

Casarotti et al. 2008; Peter et al. 2011). Traditionally, low-

degree polynomials are used in the FEM to represent

shapes of elements as well as to express functions and

integrals on the elements, which may be inadequate to

capture large oscillations of wavefield across an element in

seismic wave propagation problems. The use of higher-

order elements in FEM can increase the accuracy of sim-

ulations although at the expense of significantly arising

computation cost (Komatitsch et al. 2005).

The spectral-element method (SEM) is essential a higher-

degree FEM, which combines the boundary composition

flexibility of the FEM with the spectral accuracy of the

pseudo-spectral method (Komatitsch and Tromp 1999; Ko-

matitsch et al. 2004). Unlike the classic FEM, the use of

high-degree polynomials defined over Gauss–Lobatto–

Legendre (GLL) points to discretize functions on elements

and as quadrature points for numerical integration, leads to a

diagonal mass matrix, which can be easily inverted. It can be

also efficiently implemented in parallel (e.g., Komatitsch

and Tromp 1999; Komatitsch et al. 2005; Tromp et al. 2008)

and makes it possible to solve problems of increasing scales.

These favorable features have made SEM an important tool

for seismic wave simulations in regional (e.g., Komatitsch

and Tromp 1999; Komatitsch et al. 2004; Liu et al. 2004), as

well as global (e.g., Komatitsch and Tromp 2002a, b;

Chaljub and Valette 2004) earth models.

Recently, some efforts have also been made to employ

SEM in industrial-scale problems (e.g., Zhu et al. 2009;

Luo 2012; Gharti et al. 2012a, b). In this paper, we take

advantage of an existing SEM software package SPEC-

FEM2D (http://www.geodynamics.org) to study two cases

of exploration and geotechnical problems, including a

marine survey for a salt dome, and wave simulations for an

open-pit mine scenario. We analyze wavefield snapshots,

synthetic seismograms, and peak particle velocity (PPV)

maps from these simulations to demonstrate the applica-

bility of SEM in the forward modeling of wave propagation

in complex media for industrial problems.

2 Brief introduction to the SEM

As the main focus of this paper is on the potential appli-

cations of SEM to specific types of industrial scenarios, we

only briefly summarize the SEM technique below, with an

emphasis on mesh design. More detailed comparisons to

other numerical methods, such as FD and low-order FEM,

can be found in Komatitsch and Tromp (1999), Komatitsch

et al. (2004), Chaljub et al. (2007), and Peter et al. (2011).

2.1 Governing equations

Given an Earth model with volume X and a free surface

oX, the governing equations for elastodynamic problems

can be generally written in the differential form

qo2
t s ¼ r � T þ f ; ð1Þ

subject to the free-surface boundary condition

n̂ � T ¼ 0 on oX; ð2Þ

where s(x, t) denotes the displacement motion at position

x, q(x) the distribution of mass density, and f(x, t) the

external body force. The stress tensor T is related to the

displacement gradient rs through the constitutive relation

T ¼ c : rs; ð3Þ

where c is a fourth-order elastic tensor. In addition, the

displacement s and traction n̂ � T should be continuous

across solid-solid interfaces. If both solid and fluid regions

are present in the earth model, the SEM formulates the

elastodynamic problem in terms of velocity potential in the

fluid and displacement in solid regions, resulting in sepa-

rate governing equations that are coupled at fluid-solid

boundaries through continuity of traction and the normal

component of velocity (Komatitsch et al. 2000a;

Komatitsch and Tromp 2002a, b; Chaljub and Valette

2004; Tromp et al. 2008).

The integral or weak form of the elastodynamic equation,

frequently used in both FEM and SEM, is obtained by

dotting the differential equation (1)—the strong form for

elastostatic problems—with an arbitrary test vector function

w(x), and integrating over the entire model (Komatitsch and

Tromp 1999; Komatitsch et al. 2005; Tromp et al. 2008)
Z

X

qw � o2
t sðdÞ3x ¼ �

Z

X

rw : Td3x þ
Z

X

f � wd3x: ð4Þ

Since Eq. (4) is valid for any test vector w, the weak and

strong forms are mathematically equivalent. Note that the

free-traction surface boundary condition (2) is satisfied

naturally through integration by parts, so that the incor-

poration of surface topography is straightforward. There-

fore, surface waves can be simulated more accurately by

SEM than those methods based upon the strong formula-

tion (Komatitsch and Tromp 1999). For regional problems,

the differential equation (1) needs to be solved subject to

absorbing boundary condition in which seismic waves

travelling out of the volume X are absorbed on fictitious
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boundaries and do not re-enter the domain (Komatitsch and

Tromp 1999; Tromp et al. 2008). For the weak formula-

tion, the absorbing boundary condition can be naturally

imposed on Eq. (4) in terms of traction over the fictitious

boundaries.

2.2 The spectral-element discretization

Similar to FEM, the first step of discretizing the governing

equations is to subdivide the model volume X into a

number of non-overlapping elements (e.g., Komatitsch and

Tromp 1999; Komatitsch et al. 2005; Tromp et al. 2008;

Casarotti et al. 2008). Although a variety of elements such

as tetrahedra, hexahedra, and prisms may be used in the

FEM, the SEM is generally restricted to use meshes of

unstructured hexahedral elements (deformed cube) in 3D

case or quadrilateral elements (deformed square) in 2D

case. Each hexahedral element can be mapped to a refer-

ence cube which is defined in terms of natural coordinates

n ¼ n; g; fð Þ;�1� n; g; f� 1 using the invertible

transformation.

x nð Þ ¼
Xna

a¼1

xaNa nð Þ; ð5Þ

where xa na; ga; fað Þ; a ¼ 1; . . .; na denote na control points

within a hexahedron and NaðnÞ corresponding shape

functions. The hexahedral shape functions Na are triple

products of one-dimensional Lagrange polynomials of

degree 1 or 2. Generally, the n ? 1 Lagrange polynomials

of degree n are defined in terms of n ? 1 control points

�1� na � 1; a ¼ 0; . . .; n, by

‘a ¼
ðn � n0Þ � � � ðn � na�1Þðn � naþ1Þ � � � ðn � nnÞ

ðna � n0Þ � � � ðna � na�1Þðna � naþ1Þ � � � ðna � nnÞ
:

ð6Þ

To ensure the mapping from the element to the reference

cube is unique and invertible, the transformation (5) should

have nonzero Jacobian. Similarly, in 2D, each quadrilateral

element is mapped to a reference square.

In the SEM, a function (or field) f is interpolated over a

hexahedral element using the Lagrange polynomials of

degree n defined over the Gauss-Lobatto-Legendre (GLL)

points as (Komatitsch and Tromp 1999; Komatitsch et al.

2005; Tromp et al. 2008)

f x n; g; fð Þð Þ ¼
Xn

a;b;c¼0

f abc‘a nð Þ‘b gð Þ‘c fð Þ; ð7Þ

where f abc ¼ f x na; gb; fc

� �� �
denotes the functional value

at the GLL point x na; gb; fc

� �
and ‘a,b,c the Lagrange

polynomials. The n ? 1 GLL points in each dimension are

determined by the roots of the equation 1 � n2
� �

P0
n nð Þ ¼ 0,

where P0
n denotes the first derivative of the Legendre

polynomial of degree n. SEM simulations typically use

polynomials of degree between 4 to 10 to represent func-

tions on the elements, and degree 4 or 5 provides the best

trade-off between accuracy and computational cost (Seriani

and Priolo 1994; Tromp et al. 2008; Casarotti et al. 2008).

In comparison, the classic FEM uses lower-degree poly-

nomials (1 or 2 in general) as basis functions for both the

representation of functions and the shape of elements.

To evaluate the integrals at the element level, the SEM

utilizes the Gauss–Labotto–Legendre integration rule in

conjunction with GLL interpolation points, instead of the

Gauss quadrature frequently used in the classical FEM

(Komatitsch and Tromp 1999; Komatitsch et al. 2005;

Tromp et al. 2008; Casarotti et al. 2008). Although slightly

less accurate, the use of the GLL quadrature significantly

reduces the complexity and cost of the algorithm, and the

mass matrix resulted from the evaluation of the left-hand

term in the weak form (4) becomes diagonal (Komatitsch

and Tromp 1999). Thus, the SEM can be efficiently run on

parallel computers (Komatitsch and Tromp 1999).

2.3 Mesh design for the SEM

Generating a high-quality unstructured mesh appropriate

for the model of interest, especially in 3D, is the first as

well as one of the critical steps of both the FEM and SEM

wave modeling processes (Casarotti et al. 2008). The fact

that efficient 3D SEM simulations generally require

unstructured all-hexahedral mesh significantly complicates

the meshing process (Casarotti et al. 2008). As mentioned

previously, an unstructured hexahedral mesh not only

provides flexibility for the incorporation of topographic

variations and major internal discontinuities (Komatitsch

et al. 2005), but also leads to a diagonal mass matrix in

conjunction with the use of the GLL integration points and

quadrature. The effort of 2D/3D hexahedral mesh design is

also justified by the fact that once a proper mesh is built for

a region, wave simulations can be run repeated without any

alteration to the mesh.

In order to ensure accuracy and computational stability,

the unstructured mesh should be constructed so that the

Jacobian of the transformation (5) varies smoothly

throughout the model, and the distortion of elements is

acceptable (Komatitsch et al. 2005; Casarotti et al. 2008).

Generally, the equiangle skewness of the deformed hexa-

hedral elements should be within 0.75 (0.8 is acceptable in

some cases) to provide acceptable simulation accuracy

(Komatitsch et al. 2005; Casarotti et al. 2008). To resolve a

shortest period T0 of interest, the choice of the element size

Dh needs to be subject to the constraint
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Dh\
n þ 1

f ðnÞ tminT0; ð8Þ

where tmin denotes the minimum seismic wave speed in the

model, and f(n) is an empirical function related to the degree

n of polynomials used to interpolate functions on the

elements (Casarotti et al. 2008). For example, if n is chosen

as 4, the empirical function f(n) is equal to 5, ensuring that

each wavelength k contains at least 5 GLL points (Casarotti

et al. 2008). The incremental time stepping duration is in

turn constrained by the element size and the maximum

seismic wave speed tmax in the element by

Dt\C
Dh

tmax

; ð9Þ

where C is the Courant constant and can be chosen between

0.3 and 0.4 in the case of a deformed and heterogeneous mesh

(Komatitsch et al. 2005; Casarotti et al. 2008). Moreover, the

major discontinuities in wave speeds within the model need to

be honored by the mesh to avoid numerical diffractions by a

staircase sampling of the interfaces (e.g., Zahradnı́k et al.

1993; Komatitsch et al. 2004; Casarotti et al. 2008).

3 SEM simulation examples

In this paper, a fully-developed 2D SEM community soft-

ware package SPECFEM2D (downloaded from http://www.

geodynamics.org) is applied to simulate seismic wave

propagation in complex models that include both solid and

fluid media, undulation of major discontinuities and strong

lateral heterogeneities. In SPECFEM2D, polynomials of

degree 4 associated with 5 GLL control points are used as

basis functions to interpolate functions on each element. The

SPECFEM2D package is an open-source MPI-based pack-

age that can be readily used in parallel. Another advantage of

the SPECFEM2D package is that it supports not only the

built-in mesher which is suitable for models with simple and

regular geometries, but also mesh built by external quadri-

lateral/hexahedral meshing softwares such as CUBIT (http://

cubit.sandia.gov), which provide more flexibility to the

creation of high-quality mesh for complex media. All the

quadrilateral meshes used in this paper are created with

CUBIT. The SEM simulation examples presented are

restricted to isotropic elastic and/or acoustic media. How-

ever, features such as full anisotropy, poroelasticity and

attenuation are also implemented in the SPECFEM2D

package and may be incorporated for future studies.

3.1 Simulation for exploration application

In this section, two simulations for a marine survey sce-

nario are presented and analyzed based upon wavefield

snapshots and seismograms, to illustrate the capability of

the SEM, along with the use of unstructured quadrilateral

mesh, in accommodating fluid layers (ocean), fluid–solid

interface topography (bathymetry), and abrupt changes in

the seismic velocity model. Both simulations utilize a

similar geologic models representing a high-velocity salt

dome beneath ocean sediments in a computation domain of

4,000 9 2,400 m (Fig. 1), and the only difference is that

one includes a flat sea floor and the other one is simulated

with an uneven sea floor (Fig. 1). In both models, The first

layer (shown in red in Fig. 1) is a water layer with a

thickness of approximately 600 m, and the sedimentary

(a)

(b)

Fig. 1 Snapshots of velocity vectors at time t = 0.75 s on top of the

unstructured quadrilateral meshes for the wave propagation simula-

tions in Sect. 1. The size of modeling domains is 4,000 9 2,400 m for

both models. The ocean layer with an average thickness of 600 m, the

surrounding sediments beneath the ocean floor, and the salt dome are

shown in red, blue, and yellow. The arrow indicates the position of

the pressure source placed at 2 m below the ocean surface, diamonds

indicate the position of the 101 receivers used to record seismograms

as presented in Fig. 2, and the white triangle in the sediments

indicates the position of the receiver used to record seismic wave

propagation in the elastic regions as shown in Fig. 3. One can clearly

observe the direct (a) and sea-floor reflected (b) P-waves in the ocean

layer; the transmitted P (c) and P-to-S (d) converted waves through

sea floor, as well as the reflected P (e) and S (f) waves off the top of

the salt dome in the sediments. Phase (g) is the refracted P waves

along the sea floor
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layer (shown in blue) extends to *2,400 m beneath the sea

floor. A salt dome (shown in yellow) is placed in the

sediments with significantly larger P- and S-velocity than

the surrounding. The elastic properties of the different

materials are listed in Table 1.

Taking into account the velocity variations, element

sizes need to vary for different blocks to maintain on

average a consistent number of grid (e.g., C5) points per

S-wavelength for the simulations. The average element

sizes for the fluid layer, sedimentary layer, and salt dome,

are 12, 18, and 20 m. The CUBIT software automatically

generates conforming unstructured quadrilateral meshes

that accommodate the transition in element size between

different materials (Fig. 1). Absorbing boundary conditions

(Stacey 1988) are applied to the fictitious side and bottom

boundaries of the model domains to prevent reflections. To

investigate the impact of sea floor topography on seismic

wave propagation, the same source mechanism and source-

receiver geometry are used in both simulations. A Rick-

er pressure source (indicated by vertical arrows at [2,000,

-2 m] in Fig. 1) with a dominant frequency of 20 Hz is

injected 2 m below the ocean surface, to mimic pulses

generated by airguns in marine surveys. A total number of

101 receivers are also evenly placed along a horizontal line

2 meters below the ocean surface with a source offset

varying between -1,500 and 1,500 m to synthesize the

seismic recordings of a string of hydrophones. Another

receiver (at [2200, -800 m]) located in the surrounding

sediment is used to record seismic waves motions in the

elastic regions. Time steps are estimated for each block

based on material wavespeed and mesh size according to

Eq. (9), and the final time step employed by the simulation,

Dt ¼ 1� 10�4 s; is chosen to be the smallest of all three

estimates. A total duration of 1.5 s is simulated.

Table 1 Elastic properties of models used in wave propagation

simulations in Sect. 1

Density,

q (kg/m3)

P-wave velocity,

Vp (m/s)

S-wave velocity,

Vs (m/s)

Ocean layer 1,000 1,450 0

Surrounding

sediment

2,200 2,500 1,600

Salt dome 2,300 5,200 3,000

(a) (b)

Fig. 2 Synthetic seismograms of the horizontal (top) and vertical (bottom) component velocity field recorded by the 101 receives denoted by the

diamonds in Fig. 1 for the model with a flat ocean floor (a) and varying sea floor topography (b). Data traces are scaled by the maximum vertical

velocity values in each scenario. The amplitudes of horizontal records are blown-up by a factor of 10 to better show the much weaker phases. The

strong velocity contrast between the water and sedimentary layers results in the large amplitude of the reflected P wave (phase b). Phase (e0) and

(f0) are the transmitted P waves in the ocean layer of phase (e) and (f), which are the P and S reflected waves off the top of salt dome
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The source–receiver geometry as well as snapshots of

the velocity vector field at time t = 0.75 s for both models

are shown in Fig. 1. The corresponding horizontal- and

vertical-component velocity seismogram profiles recorded

by the horizontal receiver line are illustrated in Fig. 2.

The two-component velocity seismograms recorded by the

specific receiver located in the sediment for the models

with flat and varying sea-floor topography are shown as the

solid and dashed lines in Fig. 3. Several phases can be

identified in all three figures, including (a) direct P waves,

(b) reflected P waves from seabed, (c) transmitted P waves

through seabed, (d) P-to-S converted waves across seabed,

(e) reflected P waves of (c) off the top of salt dome, (e0)
transmitted waves of (e) through seabed, (f) reflected S

waves of (c) off the top of salt dome, (f0) transmitted waves

of (f) converted to P waves in the ocean layer, and

(g) refracted P waves along seabed. The presence of sea

floor topography clearly affects the traveltime and ampli-

tude of various phases, and is nicely captured by the SEM

simulations. Both the snapshots and synthetic seismograms

illustrate the ability of SEM method in simulating wave

propagation in models with both fluid and solid regions as

well as sharp velocity contrasts.

3.2 Simulation for geotechnical application

In this section, we simulate wave propagation in three

homogeneous 2D models with increasing free-surface

complexity for an open-pit mine scenario (Fig. 4). Snap-

shots and synthetic seismograms, as well as the PPV maps

for first breaks, are produced to illustrate the ability of the

SEM in simulating seismic wave propagation in models

that include interfaces with large topographic variations.

The first model consists of a flat free-surface and is

referred to as the flat-surface model; the second model is

referred to as bowl-shape model because of the bowl-

shaped surface depression; and the last one is inspired by

section views of realistic open-pit mine models with

staircase free-surface and referred to as the staircase model.

In the staircase model, the bench width and height are 15

and 19.79 m, respectively, and the face angle is 56�. The

geotechnical ramp width is 40 m and the depth of the pit is

426.78 m. The simulation domains for all models are

approximately equal to 2,216 9 1,226.98 m, and the width

of both the bowl-shape and the staircase topographical

regions are 1,616 m.

To compare the effect of surface topography, the same

seismic source mechanism and source-receiver layout,

(a)

(b)

Fig. 3 Synthetic seismograms of velocity field recorded by the

receiver in the sediment as denoted by the white triangle in Fig. 1.

The dashed and solid lines correspond to the synthetics for model

with and without sea floor topography. Both traces are scaled by a

constant to allow for their proper display. The impact of the sea floor

topography on seismic wave propagation is clearly demonstrated by

the difference in arrival times of various phases, such as the

transmitted P waves (phase c), the P-to-S converted wave at sea floor

(phase d), the reflected P (phase e), and S (phase f) waves off the top

of salt dome

(a) (b) (c)

Fig. 4 (a) Geometry of the models described in Sect. 2. The size of all models is approximately equal to 2,216 9 1,226.98 m. The maximum

widths and depths of both the bowl-shaped and staircase topographical regions are 1,616 and 426.78 m, respectively. A Ricker point force

(denoted by the black star) with a dominant frequency of 100 Hz is excited vertically at (1108, -676.78 m). The recordings of 82 ground

stations, located unevenly up to 1,010 m offset away from the source, are plotted in Fig. 6. (b) Bench geometry of the staircase model.

(c) Unstructured quadrilateral mesh for the portion of the staircase model shown in (b)
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as well as elastic properties are used for all three simula-

tions. The seismic source is given vertically at 676.98 m

depth (i.e., 250 m below the bottom of the pit) as a Ricker

point source with a dominant frequency of 100 Hz. In order

to capture effects of topography on seismic wave propa-

gation and energy radiation, 82 receivers are unevenly

located along each ground surface up to a horizontal offset

of 1,010 m to the left and right of the source. The homo-

geneous P- and S-wave velocities are 5,200 and 3,200 m/s,

and mass density is 2,800 kg/m3. According to Eq. (8), to

resolve waves with a dominant frequency of 100 Hz, the

element size should be smaller than 32 m when 5 GLL

points are used. Nonetheless, an average element size of 10

m is used to discretize the models so that each bench of the

=0.05 s =0.15 s =0.25 s

(a) Flat-surface model

=0.05 s =0.15 s =0.25 s

(b) Bowl-shape model

=0.05 s =0.15 s =0.25 s

(c) Staircase model

Fig. 5 Snapshots of vertical displacement fields at t = 0.05, 0.15, and 0.25 s for simulations in Sect. 2. Grey color indicates the modeling

domains. Red and blue colors represent positive and negative wavefield values

(a) Flat-surface model (b) Bowl-shape model (c) Staircase model

Fig. 6 Synthetic seismograms of the vertical velocity fields (black) recorded by the 82 receivers located along the ground surface and derived

peak particle velocities (PPVs) for first breaks (red). The lateral variations of PPVs are due to the reflected and scattered waves caused by strong

surface topography. The reflected waves (indicated by r) from the left and right absorbing boundaries can be observed, but their amplitudes are

generally small compared with other phases

Earthq Sci (2014) 27(2):179–187 185

123



staircase model can be subdivided into two elements

(Fig. 4c). The same time stepping Dt ¼ 5:0 � 10�5 is used

for all the simulations, and a total duration of 0.5 s is

simulated. Stacey absorbing boundary condition are

applied to all the simulations to prevent reflections from the

artificial boundaries.

The displacement snapshot of seismic wave propagation

in the three models are shown in Fig. 5 at t = 0.05 s,

t = 0.15 s, and t = 0.25 s. For the homogeneous models,

as wavefronts expand from the source, P and S waves

clearly separate and show different radiation patterns

(t = 0.15 s in Fig. 5a). Both waves are later reflected by

the flat surface and travel downward (t = 0.25 s), including

P-to-P, P-to-S, S-to-S, and S-to-P reflected and converted

waves. In the model with bowl-shaped surface, P and S

surface reflections occur much earlier (t = 0.15 s) due to

the reduction of topography above the source. In compar-

ison, in the staircase model, strong scattering effects is

observed in addition due to abrupt variations of the ground

surface.

Figure 6 illustrates the vertical-component velocity

seismograms recorded by the ground stations (shown in

black), along with the derived PPVs for first breaks (in

red). The scattered waves off the abrupt changes in surface

topography in the staircase model are clearly shown in the

synthetic seismograms (Fig. 6c), thanks to the power of

SEM in accommodating strong free-surface topographic

variations. Some artificial boundary reflected waves can be

seen in the seismograms [denoted as (r) in Fig. 6], as

Stacey condition works less effectively in this case prob-

ably due to the proximity of left and right fictitious

boundaries to the surface regions with strong topography

(i.e., edge of the model is only 98 m away from the nearest

receiver), although amplitudes of these artificial reflections

are much smaller than those of the direct P and S waves.

The models used in these simulations are fully elastic with

no attenuation. Wave amplitudes generally decrease with

increasing distance from the source due to geometric

spreading effect, as shown by the PPV plots, where smaller

PPV value is generally observed for station further away

from the source. However, due to the impact of large

surface topographic undulation, lateral variations of PPVs

can be observed, especially in the staircase simulation

(Fig. 6c). These PPV values provide critical input to the

analysis of slope stability for mining operations (Dowding

1985).

4 Conclusions

In this paper, we presented two simulation examples for

exploration and geotechnical problems based upon the

SEM. In Sect. 1, complex models that include the fluid

layer (ocean), fluid–solid interface (sea floor) topography,

and the asymmetric salt dome are easily accommodated by

the SEM because of the use of the unstructured mesh

generated by CUBIT as shown in Fig. 1. The snapshots of

the velocity vector field and synthetic seismograms along

with the distinct phases of the subsalt reflections illustrate

that the SEM can accurately model seismic wave propa-

gation in media with both fluid and solid regions as well as

interface variations. The influence of the sea floor topog-

raphy is demonstrated by differences in arrival times and

amplitudes of various phases (see Fig. 3).

For geotechnical applications, Sect. 2 presents and

analyzes SEM simulation results for an open-pit mine

scenario, including highly irregular surfaces representing

benches. With the simulations in the flat-surface, bowl-

shape and staircase models, the capability of the SEM in

handling strong surface topography is again proven by the

displacement snapshots (Fig. 5) and synthetic seismograms

(Fig. 6) recorded by ground stations.

Therefore, the SEM can be naturally applied to explo-

ration and geotechnical applications as its weak formula-

tion and flexible mesh design make it possible to deal with

model complexities. It shows great potential in simulating

seismic wave propagation more accurately and effectively

for some industrial problems compared to other numerical

methods, such as the FD method, the pseudo-spectral ele-

ment method, and the traditional low-order FEM.
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