
RESEARCH PAPER

Accelerating the discontinuous Galerkin method for seismic wave
propagation simulations using multiple GPUs with CUDA
and MPI

Dawei Mu • Po Chen • Liqiang Wang

Received: 25 July 2013 / Accepted: 13 November 2013 / Published online: 31 December 2013

� The Seismological Society of China, Institute of Geophysics, China Earthquake Administration and Springer-Verlag Berlin Heidelberg 2013

Abstract We have successfully ported an arbitrary high-

order discontinuous Galerkin method for solving the three-

dimensional isotropic elastic wave equation on unstruc-

tured tetrahedral meshes to multiple Graphic Processing

Units (GPUs) using the Compute Unified Device Archi-

tecture (CUDA) of NVIDIA and Message Passing Interface

(MPI) and obtained a speedup factor of about 28.3 for the

single-precision version of our codes and a speedup factor

of about 14.9 for the double-precision version. The GPU

used in the comparisons is NVIDIA Tesla C2070 Fermi,

and the CPU used is Intel Xeon W5660. To effectively

overlap inter-process communication with computation, we

separate the elements on each subdomain into inner and

outer elements and complete the computation on outer

elements and fill the MPI buffer first. While the MPI

messages travel across the network, the GPU performs

computation on inner elements, and all other calculations

that do not use information of outer elements from neigh-

boring subdomains. A significant portion of the speedup

also comes from a customized matrix–matrix multiplica-

tion kernel, which is used extensively throughout our

program. Preliminary performance analysis on our parallel

GPU codes shows favorable strong and weak scalabilities.

Keywords Seismic wave propagation � Discontinuous

Galerkin method � GPU

1 Introduction

Computer simulations of seismic wavefields have been

playing an important role in seismology in the past few

decades. However, the accurate and computationally effi-

cient numerical solution of the three-dimensional elastic

seismic wave equation is still a very challenging task,

especially when the material properties are complex, and

the modeling geometry, such as surface topography and

subsurface fault structures, is irregular. In the past, several

numerical schemes have been developed to solve the

elastic seismic wave equation. The finite-difference (FD)

method was introduced to simulate SH and P-SV waves on

regular, staggered-grid, two-dimensional meshes in Ma-

dariaga (1976) and Virieux (1984, 1986). The FD method

was later extended to three spatial dimensions and to

account for anisotropic, visco-elastic material properties

(e.g., Mora 1989; Igel et al. 1995; Tessmer 1995; Graves

1996; Moczo et al. 2002). The spatial accuracy of the FD

method is mainly controlled by the number of grid points

required to accurately sample the wavelength. The pseudo-

spectral (PS) method with Chebychev or Legendre poly-

nomials (e.g., Carcione 1994; Tessmer and Kosloff 1994;

Igel 1999) partially overcomes some limitations of the FD

method and allows for highly accurate computations of

spatial derivatives. However, due to the global character of

its derivative operators, it is relatively cumbersome to

account for irregular modeling geometries, and efficient

and scalable parallelization on distributed-memory com-

puter clusters is not as straightforward as in the FD method.

Another possibility is to consider the weak (i.e., varia-

tional) form of the seismic wave equation. The finite-ele-

ment (FE) method (e.g., Lysmer and Drake 1972; Bao et al.

1998) and the spectral-element (SE) method (e.g., Ko-

matitsch and Vilotte 1998; Komatitsch and Tromp 1999,

D. Mu � P. Chen (&)

Department of Geology and Geophysics, University of

Wyoming, Laramie, WY, USA

e-mail: pochengeophysics@gmail.com

L. Wang

Computer Science Department, University of Wyoming,

Laramie, WY, USA

123

Earthq Sci (2013) 26(6):377–393

DOI 10.1007/s11589-013-0047-7

2002) are based on the weak form. An important advantage

of such methods is that the free-surface boundary condition

is naturally accounted for even when the surface topogra-

phy is highly irregular. And in the SE method, high-order

polynomials (e.g., Lagrange polynomials defined on

Gauss–Lobatto–Legendre points) are used for approxima-

tion, which provides a significant improvement in spatial

accuracy and computational efficiency.

The arbitrary high-order discontinuous Galerkin (ADER-

DG) method on unstructured meshes was introduced to solve

two-dimensional isotropic elastic seismic wave equation in

Käser and Dumbser (2006). It was later extended to three-

dimensional isotropic elastic case in Dumbser and Käser

(2006) and to account for viscoelastic attenuation (Käser et al.

2007), anisotropy (la Puente De et al. 2007) and poroelasticity

(la Puente et al. 2008). The p-adaptivity (i.e., the polynomial

degrees of the spatial basis functions can vary from element to

element) and locally varying time steps were addressed in

Dumbser et al. (2007). Unlike conventional numerical

schemes, which usually adopt a relatively low-order time-

stepping method such as the Newmark scheme (Hughes 1987)

and the 4th-order Runge–Kutta scheme (e.g., Igel 1999), the

ADER-DG method achieves high-order accuracy in both

space and time by using the arbitrary high-order derivatives

(ADER), which was originally introduced in Toro (1999) in

the finite-volume framework. The ADER scheme performs

high-order explicit time integration in a single step without

any intermediate stages. In three dimensions, the ADER-DG

scheme achieves high-order accuracy on unstructured tetra-

hedral meshes, which allows for automated mesh generation

even when the modeling geometry is highly complex. Fur-

thermore, a majority of the operators in the ADER-DG

method are applied in an element-local way, with weak ele-

ment-to-element coupling based on numerical flux functions,

which results in strong locality in memory access patterns.

And the high-order nature of this method lets it require fewer

data points, therefore, fewer memory fetches, in exchange for

higher arithmetic intensity. These characteristics of the

ADER-DG method make it well suited to run on massively

parallel graphic processing units (GPUs).

In the past four decades, the development in the com-

puting chip industry has been roughly following the Moore’s

law. Many of the performance improvements were due to

increased clock speeds and sophisticated instruction sched-

uling in a single core. As the transistor density keeps

increasing, the industry is now facing a number of engi-

neering difficulties with using a large number of transistors

efficiently in individual cores (e.g., power consumption,

power dissipation). The effect is that clock speeds are staying

relatively constant, and core architecture is expected to

become simpler, if changes much at all. As a consequence,

when we consider future platforms for high-performance

scientific computing, there are some inevitable trends, for

instance, the increase in the number of cores in general-

purpose CPUs and the adoption of many-core accelerators

(e.g., Field Programmable Gate Array, Graphic Processing

Unit, Cell Broadband Engine) due to their smaller footprints

and lower power consumptions than general-purpose CPUs.

The users who want to once again experience substantial

performance improvements as before need to learn how to

exploit multiple/many cores. The GPU is becoming an

attractive co-processor for general-purpose scientific com-

puting due to its high arithmetic computation power, large

memory bandwidth, and relatively lower costs and power

consumptions per floating-point operation (FLOP), when

compared with a typical CPU. A typical GPU (e.g., NVIDIA

GeForce 9800) can reach a peak processing rate of 700

GFLOPS (1 GFLOPS = 109 floating-point-operations per

second) and a peak memory bandwidth of 70 Gigabyte/s.

Unlike in a conventional CPU, in a GPU, many more tran-

sistors are dedicated for data processing rather than data

caching or flow control, which makes GPUs particularly well

suited to address problems that can be expressed as data-

parallel computations. Recent efforts by GPU vendors, in

particular, NVIDIA’s CUDA (Compute Unified Device

Architecture) programming model, the OpenCL (Open

Computing Language) framework, and the OpenACC

compiler directives and Application Programming Inter-

faces (APIs), have significantly increased the programma-

bility of commodity GPUs. Using these tools, a programmer

can directly issue and manage data-parallel computations on

GPUs using high-level instructions without the need to map

them into a set of graphic-processing instructions.

With the rapid development of the GPU programming

tools, various numerical algorithms have been successfully

ported to GPUs, and GPU-CPU hybrid computing plat-

forms and substantial speedups, compared with pure-CPU

implementations, have been achieved for applications in

different disciplines. The discontinuous Galerkin (DG)

method for solving the 3D Maxwell’s equations, which are

linear, hyperbolic systems of conservation laws similar to

the seismic wave equation, has been successfully mapped

to GPU using NVIDIA’s CUDA framework and achieved

more than an order of magnitude speed-up compared with

the same implementation on a single current-generation

CPU (Klöckner et al. 2009). The GPU implementation was

done on a single NVIDIA GTX 280, which costs around

$400. A significant portion of the speed-up came from the

high-order nature of the DG method. In the area of

acoustic/elastic seismic wave propagation simulations, the

finite-difference and the spectral-element methods have

been successfully implemented on CPU-GPU hybrid

clusters using the CUDA programming model (e.g., Abd-

elkhalek et al. 2009; Komatitsch et al. 2009; Komatitsch

et al. 2010; Michéa and Komatitsch 2010; Okamoto et al.

2010; Wang et al. 2010). The speedup obtained varies from

378 Earthq Sci (2013) 26(6):377–393

123

around 209 to around 609 depending on several factors,

e.g., whether a particular calculation is amenable to GPU

acceleration, how well the reference CPU code is opti-

mized, the particular CPU and GPU architectures used in

the comparisons, and the specific compilers, as well as the

compiler options, used for generating the binary codes.

In Mu et al. (2013), we successfully ported the ADER-DG

method for solving three-dimensional elastic seismic wave

equation to a single NVIDIA Tesla C2075 GPU using CUDA

and obtained a speedup factor of about 24 when compared

with the serial CPU code running on one Intel Xeon W5880

core. In this article, we explore the potential of accelerating the

ADER-DG method using multiple NVIDIA Fermi GPUs with

CUDA and the Message-Passing Interface (MPI). Our refer-

ence CPU code is a community code named ‘‘SeisSol.’’ The

‘‘SeisSol’’ code was written in Fortran 90 and parallelized

using the Message-Passing Interface (MPI). It implements the

ADER-DG method for solving the three-dimensional seismic

wave equation in different types of material properties (e.g.,

elastic, visco-elastic, anisotropic, poroelastic). It has been

optimized for different types of CPU architectures and applied

extensively in seismic wave propagation simulations related

to earthquake ground-motion prediction, volcano seismology,

seismic exploration, and dynamic earthquake rupture simu-

lations. For a complete list of the references of its applications,

please refer to the ‘‘SeisSol Working Group’’ website or la

Puente et al. (2009). The lessons learned in our implementa-

tion and optimization experiments may also shed some light

on how to port this type of algorithms to GPUs more effec-

tively using other types of GPU programming tools such as

OpenCL and OpenACC.

2 CUDA programming model

For readers who are not familiar with CUDA or GPU

programming, we give a very brief introduction about the

programming model in this section. The CUDA software

stack is composed of several layers, including a hardware

driver, an application programming interface (API), and its

runtime environment. There are also two high-level,

extensively optimized CUDA mathematical libraries, the

fast Fourier transform library (CUFFT) and the basic linear

algebra subprograms (CUBLAS), which are distributed

together with the software stack. The CUDA API com-

prises an extension to the C programming language for a

minimum learning curve. The complete CUDA program-

ming toolkit is distributed free of charge and is regularly

maintained and updated by NVIDIA.

A CUDA program is essentially a C program with mul-

tiple subroutines (i.e., functions). Some of the subroutines

may run on the ‘‘host’’ (i.e., the CPU), and others may run on

the ‘‘device’’ (the GPU). The subroutines that run on the

device are called CUDA ‘‘kernels.’’ A CUDA kernel is

typically executed on a very large number of threads to

exploit data parallelism, which is essentially a type of single-

instruction-multiple-data (SIMD) calculation. Unlike on

CPUs where thread generation and scheduling usually take

thousands of clock cycles, GPU threads are extremely ‘‘light-

weight’’ and cost very few cycles to generate and manage.

The very large amounts of threads are organized into many

‘‘thread blocks.’’ The threads within a block are executed in

groups of 16, called a ‘‘half-warp,’’ by the ‘‘multiprocessors’’

(a type of vector processor), each of which executes in par-

allel with the others. A multiprocessor can have a number of

‘‘stream processors,’’ which are sometimes called ‘‘cores.’’ A

high-end Fermi GPU has 16 multiprocessors, and each

multiprocessor has two groups of 16 stream processors,

which amounts to 512 processing cores.

The memory on a GPU is organized in a hierarchical

structure. Each thread has access to its own register, which

is very fast, but the amount is very limited. The threads

within the same block have access to a small pool of low-

latency ‘‘shared memory.’’ The total amount of registers

and shared memory available on a GPU restricts the

maximum number of active warps on a multiprocessor (i.e.,

the ‘‘occupancy’’), depending upon the amount of registers

and shared memory used by each warp. To maximize

occupancy, one should minimize the usage of registers and

shared memory in the kernel. The most abundant memory

type on a GPU is the ‘‘global memory’’; however, accesses

to the global memory have much higher latencies. To hide

the latency, one needs to launch a large number of thread

blocks so that the thread scheduler can effectively overlap

the global memory transactions for some blocks with the

arithmetic calculations on other blocks. To reduce the total

number of global memory transactions, each access needs

to be ‘‘coalesced’’ (i.e., consecutive threads accessing

consecutive memory addresses), otherwise the access will

be ‘‘serialized’’ (i.e., separated into multiple transactions),

which may heavily impact the performance of the code.

In addition to data-parallelism, GPUs are also capable of

task parallelism which is implemented as ‘‘streams’’ in

CUDA. Different tasks can be placed in different streams,

and the tasks will proceed in parallel despite the fact that they

may have nothing in common. Currently task parallelism on

GPUs is not yet as flexible as on CPUs. Current-generation

NVIDIA GPUs now support simultaneous kernel executions

and memory copies either to or from the device.

3 Overview of the ADER-DG method

The ADER-DG method for solving the seismic wave

equation is both flexible and robust. It allows unstructured

meshes and easy control of accuracy without compromising

Earthq Sci (2013) 26(6):377–393 379

123

simulation stability. Like the SE method, the solution inside

each element is approximated using a set of orthogonal basis

functions, which leads to diagonal mass matrices. These

types of basic functions exist for a wide range of element

types. Unlike the SE or typical FE schemes, the solution is

allowed to be discontinuous across element boundaries. The

discontinuities are treated using well-established ideas of

numerical flux functions from the high-order finite-volume

framework. The spatial approximation accuracy can be

easily adjusted by changing the order of the polynomial

basis functions within each element (i.e., p-adaptivity). The

ADER time-stepping scheme is composed of three major

ingredients, a Taylor expansion of the degree-of-freedoms

(DOFs, i.e., the coefficients of the polynomial basis func-

tions in each element) in time, the solution of the Derivative

Riemann Problem (DRP) (Toro and Titarev 2002) that

approximates the space derivatives at the element bound-

aries and the Cauchy-Kovalewski procedure for replacing

the temporal derivatives in the Taylor series with spatial

derivatives. We summarize major equations of the ADER-

DG method for solving the three-dimensional isotropic

elastic wave equation on unstructured tetrahedral meshes in

the following. Please refer to Dumbser and Käser (2006) for

details of the numerical scheme.

The three-dimensional elastic wave equation for an iso-

tropic medium can be expressed using a first-order velocity-

stress formulation and written in a compact form as

otQp þ ApqoxQq þ BpqoyQq þ CpqozQq ¼ 0; ð1Þ

where Q is a 9-vector consisting of the six independent

components of the symmetric stress tensor and the velocity

vector Q ¼ ðrxx; ryy;rzz; rxy; ryz; rxz; u; v;wÞT
, and Apq, Bpq

and Cpq are space-dependent 9 9 9 sparse matrices with the

nonzero elements given by the space-dependent Lamé

parameters and the buoyancy (i.e., the inverse of the density).

Summation for all repeated indices is implied in all equations.

The seismic source and the free-surface and absorbing

boundary conditions can be considered separately as shown in

Käser and Dumbser (2006) and Dumbser and Käser (2006).

Inside each tetrahedral element TðmÞ, the numerical

solution Qh can be expressed as a linear combination of

space-dependent and time-independent polynomial basis

functions Ul n; g; fð Þ of degree N with support on T ðmÞ,

Q
ðmÞ
h

h i
p
ðn; g; f; tÞ ¼ Q̂

ðmÞ
pl ðtÞUlðn; g; fÞ; ð2Þ

where Q̂
ðmÞ
pl ðtÞ are time-dependent DOFs, and n, g, f are

coordinates in the reference element TE. Explicit

expressions for the orthogonal basis functions Ulðn; g; fÞ
on a reference tetrahedral element are given in Cockburn

et al. (2000) and the appendix A of Käser et al. (2006).

Bring Eq. (2) into Eq. (1), multiplying both sides with a test

function Uk, integrate over an element TðmÞ, and then apply

integration by parts, we obtain,
Z

TðmÞ

dVðUkotQpÞ þ
Z

oTðmÞ

dSðUkFh
pÞ

�
Z

TðmÞ

dVðoxUkApqQp þ oyUkBpqQp þ ozUkCpqQpÞ ¼ 0:

ð3Þ

The numerical flux Fh
p between the element T ðmÞ and one

of its neighboring elements, TðmjÞ, j = 1, 2, 3, 4, can be

computed from an exact Riemann solver,

Fh
p ¼ 1

2
T j

pq AðmÞ
qr þ AðmÞ

qr

���
���

� �
ðT j

rsÞ
�1

Q̂
ðmÞ
sl UðmÞ

l

þ 1

2
T j

pq AðmÞ
qr � AðmÞ

qr

���
���

� �
ðT j

rsÞ
�1

Q̂
ðmjÞ
sl UðmjÞ

l ;

ð4Þ

where T j
pq is the rotation matrix that transforms the vector

Q from the global Cartesian coordinate to a local normal

coordinate that is aligned with the boundary face between

the element T ðmÞ and its neighbor element TðmjÞ. Bring Eq.

(4) into Eq. (3) and convert all the integrals from the global

xyz-system to the ngf-system in the reference element TE

through a coordinate transformation, we obtain the semi-

discrete discontinuous Galerkin formulation,

Jj jotQ̂
ðmÞ
pl Mkl � Jj j A�

pqQ̂
ðmÞ
ql Kn

kl þ B�
pqQ̂

ðmÞ
ql K

g
kl þ C�

pqQ̂
ðmÞ
ql Kf

kl

� �

þ 1

2
T j

pq AðmÞ
qr þ AðmÞ

qr

���
���

� �
ðT j

rsÞ
�1

Q̂
ðmÞ
sl F

�;j
kl

þ 1

2
T j

pq AðmÞ
qr � AðmÞ

qr

���
���

� �
ðT j

rsÞ
�1

Q̂
ðmjÞ
sl F

þ;j;i;h
kl ¼ 0; ð5Þ

where Jj j is the determinant of the Jacobian matrix of the

coordinate transformation being equal to 6 times the

volume of the tetrahedron, Sj

�� �� is the area of face j between

the element TðmÞ; and its neighbor element TðmjÞ, A�
pq, B�

pq ,

and C�
pq are linear combinations of Apq, Bpq , and Cpq with

the coefficients given by the Jacobian of the coordinate

transformation, Mkl, Kn
kl, K

g
kl; and Kf

kl are the mass, stiffness,

and flux matrices are given by

F
�;j
kl ¼

Z

oðTEÞj

½UkðnðjÞðv; sÞÞUlðnðjÞðv; sÞÞ�dvds;

81� j� 4;

ð6Þ

F
þ;j;i;h
kl ¼

Z

oðTEÞj

½UkðnðjÞðv; sÞÞUlðnðiÞð~vðhÞðv; sÞ; ~sðhÞðv; sÞÞÞ�dvds

81� i� 4; 81� h� 3:

ð7Þ

The mass, stiffness, and flux matrices are all computed

on the reference element which means that they can be

380 Earthq Sci (2013) 26(6):377–393

123

evaluated analytically beforehand using a computer algebra

system (e.g., Maple, Mathematica) and stored on disk.

If we project Eq. (1) onto the DG spatial basis functions,

the temporal derivative of the DOF can be expressed as

otQ̂pnðtÞ ¼ ð�M�1
nk Kn

lkA�
pq � M�1

nk K
g
lkB�

pq

� M�1
nk Kf

lkC�
pqÞQ̂qlðtÞ;

and the m-th temporal derivative can be determined

recursively as

om
t Q̂pnðtÞ ¼ ð�M�1

nk Kn
lkA�

pq � M�1
nk K

g
lkB�

pq

� M�1
nk Kf

lkC�
pqÞo

m�1
t Q̂qlðtÞ: ð8Þ

The Taylor expansion of the DOF at time tn is,

Q̂pnðtÞ ¼
XN

m¼0

ðt � tnÞm

m!
om

t Q̂pnðtnÞ;

which can be integrated from tn to tnþ1,

IpnqlðDtÞQ̂qlðtnÞ �
Ztnþ1

tn

Q̂pnðtÞdt ¼
XN

m¼0

Dtmþ1

ðm þ 1Þ! o
m
t Q̂pnðtnÞ;

ð9Þ

where Dt ¼ tnþ1 � tn, and om
t Q̂pnðtnÞ can be computed

recursively using Eq. (8).

Considering Eq. (9), the fully discretized system can

then be obtained by integrating the semi-discrete system,

Eq. (5), from tn to tnþ1;

Jj j½Q̂ðmÞnþ1
pl � Q̂

ðmÞn
pl �Mkl

¼ Jj jðA�
pqKn

kl þ B�
pqK

g
kl þ C�

pqKf
klÞIqlmnðDtÞðQ̂ðmÞ

mn Þ
n

� 1

2

X4

j¼1

Sj

�� ��T j
pq AðmÞ

qr þ AðmÞ
qr

���
���

� �
T j

rs

� ��1
F
�;j
kl IslmnðDtÞðQ̂ðmÞ

mn Þ
n

� 1

2

X4

j¼1

Sj

�� ��T j
pq AðmÞ

qr � AðmÞ
qr

���
���

� �
T j

rs

� ��1
F
þ;j;i;h
kl IslmnðDtÞðQ̂ðmjÞ

mn Þn:

ð10Þ

Equation (10), together with Eqs. (8) and (9), provides

the mathematical foundation for our GPU implementation

and optimization.

4 Implementation and optimization on multiple GPUs

Prior to running our wave-equation solver, a tetrahedral

mesh for the entire modeling domain was generated on a

CPU using the commercial mesh generation software

‘‘GAMBIT.’’ The mesh generation process is fully auto-

mated, and the generated tetrahedral mesh conforms to all

discontinuities built into the modeling geometry, including

irregular surface topography and subsurface fault struc-

tures. The entire mesh was then split into subdomains, one

per GPU, using the open-source software ‘‘METIS’’ which

is a serial CPU program for partitioning finite-element

meshes in a way that minimizes inter-processor commu-

nication cost while maintaining load balancing.

4.1 Pre-processing

In Fig. 1, we listed the major steps in the reference parallel

CPU code, ‘‘SeisSol’’ la Puente De et al. (2009), and those

in our parallel CPU-GPU hybrid implementation. In our

parallel CPU-GPU hybrid implementation, we assume that

each MPI process has access to only one device, and each

device is controlled by only one MPI process. At the start

of the calculation, a sequence of pre-processing steps is

executed on the CPUs. The pre-processing sequence

includes:

(1) reading and processing a control file;

(2) reading and processing geometric information, which

include the tetrahedral mesh, the boundary condi-

tions, the material properties (i.e., density and Lamé

parameters) for each element, and the mesh parti-

tioning information generated by METIS;

(3) for the elements in each subdomain, creating a list of

all the elements that are in contact with elements in

other subdomains, which we call the ‘‘outer’’ ele-

ments, and those that are not, which we call the

‘‘inner’’ elements;

(4) reading and processing the DG matrices, which

include the mass, stiffness, and flux matrices, which

were pre-computed and stored on the disk; and

(5) reading and processing the files describing the seismic

source and seismic receivers.

Our CUDA program adopts the typical CUDA pro-

gramming model. After the pre-processing sequence is

carried out on the host CPUs, the arrays needed by the

CUDA kernels are then copied to the global memory of the

devices using ‘‘cudaMemcpy.’’ The hosts then call a

sequence of CUDA kernels in every time step. The results

of the simulation (e.g., the synthetic seismograms) are

stored on the devices during the time loop and copied back

to the hosts after all time steps are completed.

In our implementation, the calculation for each tetra-

hedral element is carried out by one thread block. Within

each thread block, the number of threads depends upon the

dimension of the element’s DOFs. The DOFs, Q̂
ðmÞ
pl , are

allocated and initialized in the global memory of the device

using ‘‘cudaMalloc’’ and ‘‘cudaMemset.’’ For a 5th-order

scheme which is sufficiently accurate for most of our

applications, the number of DOFs per component per

Earthq Sci (2013) 26(6):377–393 381

123

cudaMemcpy(HostToDevice)

cudaStreamSynchronize

split DOF array on subdomain into
"inner" & "outer" elements

cudaStreamSynchronize

second term numerical flux update

GPU copy message from host and distribute

GPU assemble message and copy to host

add source contribution and update DOFsadd source contribution and update DOFs

numerical flux update

volume contribution

GPU Time-steppingCPU Time-stepping

CPU Post-processing

end

write result output file

CPU Post-processing

CPU Pre-processing

GPU implementation

CPU Pre-processing

CPU implementation

cudaMemcpy(DeviceToHost)

mark "inner" & "outer" elements

read and process source and receiver info

read and process DG matrices

read and process geometric info

read and process control file

start

read and process source and receiver info

read and process DG matrices

read and process geometric info

read and process control file

start

END

CONTINUE

Loop on iteration
from 1 to nCycleEND

CONTINUE

Loop on iteration
from 1 to nCycle

end

write result output file

calc time-integrated DOFs for inner elements

first term numerical flux update

volume contribution

CPU distribute message

CPU non-blocking MPI

CPU assemble message

calc time-integrated DOFs for all elements

calc time-integrated DOFs for outer elements

CPU non-blocking MPI

combine time-integrated DOFs
from inner & outer elements

Fig. 1 The flowcharts of the major steps in the reference parallel CPU codes (left) and those in our CPU-GPU hybrid implementation (right).

The whole calculation can be separated into three sections: pre-processing, time-stepping, and post-processing. The pre-processing section reads

and calculates all the data that the time-stepping section will use. The time-stepping section updates the DOFs of each tetrahedral element

according to Eqs. (8)–(10) and has been ported to the GPU. The post-processing section is in charge of writing out the DOFs and/or the

seismograms at the pre-specified locations

382 Earthq Sci (2013) 26(6):377–393

123

element is 35. Considering the nine components of the

governing PDE (i.e., six stress components and three

velocity components), the DOFs of each element consist

of a 9 9 35 matrix which is represented in memory as a

one-dimensional array of length 315 organized in the

column-major ordering. To obtain better memory align-

ment, we padded five zeros behind the DOFs of each

element so that the length of the one-dimensional DOF

array of each element is increased to 320, which is 10

times the number of threads in a warp. For a subdomain of

‘‘nElem’’ elements, the length of the one-dimensional

DOF array for the whole subdomain is, therefore, ‘‘nE-

lem 9 320.’’ The amount of memory that is wasted on

purpose is less than 1.6 %; however, the better memory

alignment improved the performance of some simple

operations such as summation operations and scalar-

product operations by around 6.3 %.

4.2 Matrix–matrix multiplications

The implementation and optimization details for steps (1)–(5)

are documented in Mu et al. (2013). In this section, we give a

very brief summary. In those steps, most of the total wall-time

is spent on matrix–matrix multiplications. We use step (2)

which computes the volume contribution, as an example. A

flowchart of the major calculations in step (2) is shown in

Fig. 2a. Considering the first term on the right-hand-side of

Eq. (10), the calculations in step (2) involve mathematical

operations in the form of A�
pqKn

kl½IqlmnðDtÞðQ̂ðmÞ
mn Þ

n�, where the

time-integrated DOF IqlmnðDtÞðQ̂ðmÞ
mn Þ

n
, denoted as ‘‘dgwork’’

in Fig. 2a, is computed in step (1) and has the same dimension

and memory layout as the DOF array. The multiplication

between Kn
kl, denoted as ‘‘Kxi’’ in Fig. 2a, and the time-

integrated DOF is different from the normal matrix–matrix

product in linear algebra. This multiplication involves three

steps: first, transpose the time-integrated DOF matrix, second,

multiply with the stiffness matrix following the usual matrix–

matrix product rule, third, transpose the matrix obtained in the

previous step. We call this multiplication the ‘‘left-multipli-

cation.’’ A code segment for the baseline CUDA implemen-

tation of the left-multiplication is shown in Fig. 2b. This left-

multiplication operation is used extensively through the cal-

culations in steps (1)–(4) and deserves more optimization

effort. First, we can reduce the number of floating-point

operations by exploiting the fact that some of the matrices in

this operation are sparse; second, the order of the floating-

point operations can be rearranged in a way such that the

accesses to ‘‘dgwork’’ in the global memory are as coalesced

as possible. The DOF, its temporal derivatives, and the time-

integrated DOF are generally dense. However, the stiffness

matrices and the Jacobians have fill-ratios ranging from 8.8 %

to 29.6 %. To take advantage of this sparsity, one possibility

is to adopt an existing sparse linear algebra library such as

‘‘CUSP’’ (Bell and Garland 2009) or cuSPARSE. However,

the result we obtained using ‘‘CUSP’’ was not very satisfac-

tory. The best performance gain, which was obtained using

the ‘‘HYB’’ matrix format, was about 36.2 % compared with

the baseline implementation shown in Fig. 2b. This is largely

due to the very irregular distribution of the non-zeros in our

matrices, which caused a large number of uncoalesced

accesses to the time-integrated DOF arrays, and the amount of

arithmetic calculations was not large enough to hide the

memory access latencies due to the low fill-ratio in the stiff-

ness matrix. Considering the fact that the locations of the non-

zero elements in the stiffness matrices can be determined

beforehand and are fixed throughout the program, the results

of the left-multiplications can be evaluated analytically

beforehand and expressed in terms of the non-zero elements

in those matrices using a computer algebra system. The

expressions of the left-multiplication results, which are linear

combinations of the time-integrated DOF with coefficients

given by the non-zero elements of the stiffness matrices, can

be hardwired into the CUDA kernels. This implementation

eliminates all redundant calculations involving zero elements

and by carefully arranging the order of the calculations in

accordance with the thread layout, we can also minimize the

number of uncoalesced memory accesses to the time-inte-

grated DOF array. A code segment of the optimized left-

multiplication is shown in Fig. 2c, which is about 4 times

faster than the baseline implementation shown in Fig. 2b.

This approach can also be applied to normal matrix–matrix

product and is used throughout steps (1)–(4) in our optimized

CUDA codes. A drawback of this approach is that the

resulting kernel source code is quite long, and some manual

editing is required to ensure coalesced memory accesses.

However, modern computer algebra systems (e.g., Mathem-

atica, Maple) usually have automated procedures for trans-

lating long mathematical expressions into the C language

which is usually error-proof and can be directly incorporated

into the CUDA kernels with minimal effort.

Our own matrix–matrix multiplication scheme greatly

contributes our CUDA codes. Before we settled for the

final version of our single-GPU code, we also complete two

other versions of CUDA implementations, one is the

baseline implementation, which adapts conventional

CUDA dense matrix–matrix multiplication, and the other is

the median implementation which uses sparse matrix–

matrix multiplication scheme. As a result, compared with

the CPU based ADER-DG code, the baseline implemen-

tation obtains a speedup factor of 9.79, and the median

implementation improved the speedup factor from 9.79 to

13.29. This improvement mainly gains from getting rid of

all zeros elements’ computation; however, due to the very

irregular distribution of non-zeros locality, this median

Earthq Sci (2013) 26(6):377–393 383

123

RETURN

dudt *= JacobianDet
Grid_size = nElem; Block_size = nDegFr * nVar

dudt -= temp_DOF * Cstar
Grid_size = nElem; Block_size = nDegFr

temp_DOF = Kzeta * dgwork
Grid_size = nElem; Block_size = nVar

dudt -= temp_DOF * Bstar
Grid_size = nElem; Block_size = nDegFr

temp_DOF = Keta * dgwork
Grid_size = nElem; Block_size = nVar

dudt -= temp_DOF * Astar
Grid_size = nElem; Block_size = nDegFr

temp_DOF = Kxi * dgwork
Grid_size = nElem; Block_size = nVar

cudaMemset dudt to 0

BEGIN

(a)

(b)

(c)

384 Earthq Sci (2013) 26(6):377–393

123

implementation still almost 2 times slower than our final

implementation, which enjoys a speedup factor of 24.39.

4.3 Overlapping communication with computation

Considering Eqs. (8)–(10), the calculations on the devices

within each time step can be organized into five major steps:

(1) calculating the time-integrated DOFs, i.e., the term

IqlmnðDtÞðQ̂ðmÞ
mn Þ

n
using the DOFs ðQ̂ðmÞ

mn Þ
n

at the

current time step through the Cauchy-Kovalewski

procedure, i.e., Eqs. (8) and (9),

(2) calculating the volume contributions, i.e., the first

term on the right-hand-side of Eq. (10), using the

time-integrated DOFs obtained in step (1),

(3) calculating the first numerical flux term, i.e., the

second term on the right-hand-side of Eq. (10), using

the time-integrated DOFs obtained in step (1),

(4) calculating the second numerical flux term, i.e., the

third term on the right-hand-side of Eq. (10), using

the time-integrated DOFs of the four neighboring

elements obtained in step (1),

(5) updating the DOFs to the next time step ðQ̂ðmÞ
pl Þnþ1

using the DOFs at the current time step ðQ̂ðmÞ
pl Þn

, the

volume contributions obtained in step (2) and the

numerical flux terms obtained in steps (3) and (4), as

well as any contributions from the seismic source, by

using Eq. (10) which also involves inverting the mass

matrix Mkl, which is diagonal.

All the calculations in steps (1), (2), (3), and (5) can be

performed in an element-local way and require no inter-

element information exchange, which is ideal for SIMD-

type processors such as GPUs. The calculations in step (4)

need to use the time-integrated DOFs from all neighboring

elements which in our distributed-memory, parallel

implementation requires passing time-integrated DOFs

of the outer elements of each subdomain across different

MPI processes. Most of this communication overhead

can be hidden through overlapping computation with

communication.

In our implementation, we calculate the time-integrated

DOFs for all the outer elements of a subdomain first. The

calculation of the time-integrated DOF requires access to

the DOF array in the global memory. The DOFs of the

outer elements are usually scattered throughout the entire

DOF array of the subdomain. To avoid non-coalesced

memory accesses, which could impact performance by up

to 54 %, the entire DOF array is split into two sub-arrays,

one for DOFs of all the outer elements and the other for the

DOFs of all inner elements. Once we complete the calcu-

lations of the time-integrated DOFs of the outer elements,

the device starts to compute the time-integrated DOFs of

the inner elements of the subdomain right away. At the

same time, the time-integrated DOFs of the outer elements

are assembled into a separate array which is then copied

into the host memory asynchronously to fill the MPI buffer

using a separate CUDA stream, and then the host initiates a

non-blocking MPI data transfer and returns. While the

messages are being transferred, the device completes the

calculations of the time-integrated DOFs of the inner ele-

ments, combines them with the time-integrated DOFs of

the outer elements into a single time-integrated DOF array

and proceeds to calculations of the volume contributions in

step (2) and the first numerical flux term in step (3). On the

host, synchronization over all the MPI processes is per-

formed; once the host receives the array containing the

time-integrated DOFs of the outer elements on the neigh-

boring subdomains, it is copied to the device asynchro-

nously using a separate CUDA stream. After completing

step (3), the device synchronizes all streams to make sure

that the required time-integrated DOFs from all neighbor-

ing subdomains have arrived and proceed to calculate the

second numerical flux term in step (4) and then update the

DOFs as in step (5). The overhead for splitting the entire

DOF array into two sub-arrays for inner and outer elements

and for combining the time-integrated DOFs of the outer

and inner elements into a single array amounts to less than

0.1 % of the total computing time on the device. The entire

process is illustrated in Fig. 1.

There are many factors can influent the speedup factor

contribution by overlapping communication with compu-

tation; the overlapping benefit almost differs from com-

puter to computer. Based on our completed experiments,

the best scenario which all the GPUs located on the same

node, the communication time takes 11.7 % of total com-

putation time, while when each GPU locate on the different

node, the ratio could rise up to 25.1 %. However, since we

apply the multiple streams and the overlapping techniques,

bFig. 2 a The flowchart of the calculations in step (2), the volume

contributions. ‘‘dudt’’ is the volume contribution, ‘‘Kxi,’’ ‘‘Keta,’’

‘‘Kzeta’’ correspond to the stiffness matrices, Kf
lk, K

g
lk, Kf

lk, in the text.

‘‘JacobianDet’’ is the determinant of the Jacobian Jj j. ‘‘nElem’’ is the

number of tetrahedral elements in the subdomain, ‘‘nDegFr’’ is the

number of DOFs per component per tetrahedral element, ‘‘nVar’’ is

the number of components in the governing equation. ‘‘AStar,’’

‘‘BStar,’’ ‘‘CStar’’ correspond to A*, B*, C* in the text. Code

segments for the calculations in the dark-gray box are listed in b and

c. b. Baseline implementation of the CUDA kernel for the ‘‘left-

multiplication’’ between the time-integrated DOF and the stiffness

matrix Kf
lk. ‘‘Kxi_dense’’ corresponds to the dense matrix represen-

tation of Kf
lk, ‘‘dgwork’’ corresponds to the time-integrated DOF, and

the result of the multiplication is stored in ‘‘temp_DOF.’’ c A segment

of the optimized CUDA kernel for the ‘‘left-multiplication’’ between

the time-integrated DOF and the stiffness matrix Kf
lk. ‘‘Kxi_sparse’’

corresponds to the sparse matrix representation of Kf
lk. Meanings of

other symbols are identical to those in Fig. b

Earthq Sci (2013) 26(6):377–393 385

123

the overhead caused by communication could be

eliminated.

To ensure effective communication-computation over-

lap, the ratio of the number of the outer to inner elements

must be sufficiently small. An upper bound of this ratio can

be estimated based on both the processing capability of the

devices and the speed of the host-device and host–host

inter-connections. On the NVIDIA Fermi M2070 GPUs

that we experimented with, we achieved nearly zero

communication overheads when this ratio is below 2 %.

We note that if the same approach is implemented using a

classic CPU cluster, this ratio can be much larger, since the

calculations for the inner elements and steps (2) and (3) are

over an order of magnitude slower on a CPU core.

5 Performance analysis

In this study, the speedup factor is defined as the ratio

between the wall-time spent on running a simulation on a

number of CPU cores with the wall-time spent on running

the same simulation on the same or less number of GPUs.

The CPU used as the reference is the Intel Xeon W5660

(2.80 GHz/12 MB L2 cache) processor, and the GPU is the

NVIDIA Tesla C2070 (1.15 GHz/6 GB 384bit GDDR5)

processor. Specifications of our CPU and GPU processors

can be found on Intel and NVIDIA’s websites.

The speedup factor depends strongly upon how well the

reference CPU code is optimized and sometimes also on

the specific CPU compiler and compiling flags. The fastest

executable on our CPU was obtained using the Intel

compiler ‘‘ifort’’ with the flag ‘‘–O3.’’ The wall-time for

running the CPU code in double-precision mode is only

slightly longer than running the CPU code in single-pre-

cision mode by around 5 %. Our GPU codes were com-

piled using the standard NVIDIA ‘‘nvcc’’ compiler of

CUDA version 4.0. Throughout this article, we use the

double-precision version of the fastest CPU code as the

reference for computing the speedup factors of our single-

and double-precision GPU codes.

The accuracy of our single-precision GPU codes is

sufficient for most seismological applications. The com-

puted seismograms have no distinguishable differences

from the seismograms computed using the double-preci-

sion version of the reference CPU code, and the energy of

the waveform differences is much less than 1 % of the total

energy of the seismogram.

5.1 Single-GPU performance

For our single-GPU performance analysis, we computed

the speedup factors for problems with seven different mesh

sizes (Fig. 3). The number of tetrahedral elements used in

our experiments is 3,799, 6,899, 12,547, 15,764, 21,121,

24,606, and 29,335. The material property is constant

throughout the mesh with density 3,000 kg/m3 and Lamé

parameters k 5.325 9 1010 and l 3.675 9 1010 Pascal. We

applied the traction-free boundary condition on the top of

the mesh and absorbing boundary condition on all other

boundaries. The seismic source is an isotropic explosive

source buried in the center of the mesh. The wall-time

measurements were obtained by running the simulations for

1,000 time steps. The speedup factors were computed for

our single-precision GPU code with respect to the CPU

code running on one, two, four, and eight cores. For the

multi-core runs on the CPUs, the parallel version of the

‘‘SeisSol’’ code is used as the reference. For the seven

different mesh sizes, the speedup factor ranges from 23.7 to

25.4 with respect to the serial CPU code running on one

core, from 12.2 to 14 with respect to the parallel CPU code

running on two cores, from 6.5 to 7.2 with respect to the

parallel CPU code running on four CPU cores, and from 3.5

to 3.8 with respect to the parallel CPU code running on eight

CPU cores. The speedup factor does not decrease linearly

with increasing number of CPU cores. For instance, the

speedup factor with respect to eight CPU cores is about

14 % better than what we would have expected considering

the speedup factor with respect to one CPU core if we had

assumed a linear scaling. For the parallel version of the

CPU code, there are overheads incurred by the MPI com-

munication among different cores, while for the single-GPU

simulations, such communication overheads do not exist.

Since most of the calculations in the ADER-DG method

are carried out in an element-local way, and there are no

inter-process communication overheads on a single GPU,

we expect the ‘‘strong scaling’’ on a single GPU, defined as

the total wall-time needed to run the application on one

GPU when the total number of elements (i.e., the amount

of workload) is increased (e.g., Michéa and Komatitsch

2010), to be nearly linear. In Fig. 4, we show the total wall-

time for 100 time steps as a function of the total number of

tetrahedral elements. As we can see, the strong scaling of

our codes on a single GPU is almost linear. The calcula-

tions in step (4) (i.e., the second term in the numerical flux)

involve time-integrated DOFs of direct neighbors; how-

ever, this inter-element dependence keeps its spatially local

character, while the number of elements increases and does

not affect the scaling.

5.2 Multiple-GPU performance

To analyze the performance of the parallel version of our

CUDA codes, we use a simplified version of the SEG/

EAGE salt model (Käser et al. 2010) as the benchmark.

This model is geometrically complex, as shown in Fig. 5a

386 Earthq Sci (2013) 26(6):377–393

123

and b. However, the generation of the tetrahedral mesh for

such a complex model is highly automatic, once the

geometries of the structural interfaces are imported into the

meshing software. The material properties of the different

zones in this model are summarized in Table 1. We note

that a thin layer of water lies on top of the three-dimen-

sional model. The ADER-DG method can accurately

handle seismic wave propagation in water simply by set-

ting the shear modulus of the elements in the water region

to zero (Käser and Dumbser 2008).

This salt model is discretized into tetrahedral meshes

with different number of elements. In Fig. 6, we show the

speedup factors obtained for two different mesh sizes, one

with 327,886 elements, and the other with 935,870 ele-

ments. The simulations were run on 8, 16, 32, and 48 CPU

cores using the parallel version of the ‘‘SeisSol’’ code. And

the speedup factors were obtained by running the same

simulations on the same number of GPUs. On average, the

speedup factor for our parallel GPU codes is around 28,

which is slightly higher than the speedup factor obtained in

the single-GPU-single-CPU comparison. This may due to

the fact that in the parallel CPU code, the outer elements of

a subdomain are not treated separately from the inner

elements, which do not allow the parallel CPU code to

overlap the computation on the inner elements with the

communication of the time-integrated DOFs of the outer

elements.

To investigate the strong scalability (i.e., the decrease in

wall-time with increasing GPU number, while holding the

0

5

10

15

20

25

30
GPU compared with 8 CPU cores

GPU compared with 4 CPU cores

GPU compared with 2 CPU cores

GPU compared with 1 CPU core

3799 29335246062112115764125476899

24.5

12.9

6.7

3.5

23.9

12.7

6.8

3.8

25.2
23.7 23.7

14.0

7.2

3.7

12.2

6.5

3.5

12.9

6.6

3.5

12.4

6.9

3.5

13.3

7.1

3.5

25.4

23.7

(mesh size)

(speedup)

Fig. 3 Single-GPU speedup factors obtained using 7 different meshes and 4 different CPU core numbers. The total number of tetrahedral

elements in the 7 meshes is 3,799, 6,899, 12,547, 15,764, 21,121, 24,606, and 29,335, respectively. The speedup factors were obtained by

running the same calculation using our CPU-GPU hybrid code with 1 GPU and using the serial/parallel ‘‘SeisSol’’ CPU code on 1/2/4/8 CPU

cores on the same compute node. The black columns represent the speedup of the CPU-GPU hybrid code relative to 1 CPU core, the dark-gray

columns represent the speedup relative to 2 CPU cores, the light gray column represents the speedup relative to 4 CPU cores and the lightest gray

columns represent the speedup relative to 8 CPU cores

10
3

10
4

10
3

10
4

single GPU strong scalability

mesh size

w
al

lti
m

e
pe

r
10

0
cy

cl
es

Fig. 4 Strong scalability of our single GPU code with different mesh

sizes. The black squares show the average wall-time per 100 time

steps, and the number of elements varies from 800 to 57,920

Earthq Sci (2013) 26(6):377–393 387

123

total workload that is the number of elements and time

steps, constant), we discretized the salt model using a mesh

with about 1.92 million elements and ran the simulation for

100 times steps. The number of GPUs used in the simu-

lations ranges from 32 to 64. As seen on Fig. 7, the strong

scaling of our parallel GPU codes is close to the ideal case

with some fluctuations. Our codes start to slightly under-

perform the ideal case when the number of GPUs used in

the simulation is larger than 48. As analyzed in Sect. 4.2, to

effectively overlap computation with communication, the

ratio between the number of outer elements and the number

of inner elements of a subdomain cannot exceed a certain

threshold, which is determined by the processing capability

of the GPU and the speed of the inter-connections. In our

case, when the number of GPUs used in the simulation

starts to exceed 48, this ratio becomes larger than 2 %,

which we believe is the threshold for our hardware con-

figuration. The performance of our parallel GPU codes

depends upon a number of factors, such as load balancing,

but we think the extra communication overhead that was

not effectively hidden by the computation was the domi-

nant factor for causing our codes to underperform the ideal

case. In Fig. 8, we show the results of our weak scaling test

(i.e., the workload per GPU is kept about constant while

increasing the number of GPUs). By definition, the total

number of elements in the weak scaling test increases

approximately linearly with the number of GPUs. If the

communication cost is effectively overlapped by compu-

tation, the weak scaling test should be approximately flat.

In our tests, the average number of elements per GPU was

kept around 53,000 with about 6 % fluctuation across dif-

ferent simulations. The ratio between the number of outer

and inner elements was kept around 1 %. The weak scaling

is approximately flat (Fig. 8), with some fluctuation mostly

caused by the variation in the number elements per GPU

used in each simulation.

(a)

(b)

Fig. 5 a A perspective view of the 3D geometry of the discretized salt body in the SEG/EAGE salt model. b A two-dimensional cross-section

view of the SEG/EAGE salt model along the A–A0 profile (Aminzadeh et al. 1997). The material properties for the different geological structures

are listed in Table 1

Table 1 Material property of the SEG 3D salt model example

q (kg/m3) k (109) M (Pa 109) Vp (m/s) Vs (m/s)

Water 1,020 2.2950 0 1,500 0

Zone 01 2,000 4.5067 4.5067 2,600 1,501

Zone 02 2,050 5.0000 5.0000 2,705 1,562

Zone 03 2,500 7.5000 7.5000 3,000 1,732

Zone 04 2,600 9.0000 9.0000 3,223 1,861

Salt 2,160 20.800 14.457 5,094 3,103

388 Earthq Sci (2013) 26(6):377–393

123

5.3 Application examples

We have applied our multiple-GPUs code on two well-

defined models, one is the SEG-EAGE Salt, and the other

is marmousi2. All the results with these two models have

been compared with CPU code SeisSol for validation.

For the marmousi2 model, we extrude its 2D original

profile and make it a 3D model with dimension of 3,500 m

in depth, 17,000 m in length, and 7,000 m in width

(Fig. 9a). There are 379,039 tetrahedral elements, and each

element has its own material property, also 337 receivers

locate at 5 m beneath the surface along the A–A0 (yellow)

line, and the horizontal interval is 50 m; the explosive

source located at 10.0 m(depth), 7,500.0 m(length),

3,500.0 m(width). In this case, we used 16 M2070 Fermi

GPUs located on eight different nodes, and each node has 2

GPUs. Our CUDA code uses 16 GPUs spend 4,812.64(s) to

calculate 5 s seismogram, (Fig. 9b), while the SeisSol runs

on 16 CPU cores need 135,278.50 s, the speedup factor of

28.119.

0

5

10

15

20

25

30

935870327886

28.327.727.2
28.228.228.5

(speedup)

(mesh size)

16
GPUs

vs
16

CPU cores

32
GPUs

vs
32

CPU cores

64
GPUs

vs
64

CPU cores

48
GPUs

vs
48

CPU cores

32
GPUs

vs
32

CPU cores

48
GPUs

vs
48

CPU cores

Fig. 6 Speedup factors of our parallel GPU codes obtained using two different mesh sizes. The number of tetrahedral elements used in our

experiments are 327,866, 935,870. The speed factors were computed for our single-precision multiple-GPUs code with respect to the CPU code

running on 16/32/48/64 cores runs on different nodes

30 36 42 48 56 62 68
16000

20000

24000

28000

32000

36000
miltiple GPUs strong scalability

number of GPUs

w
al

lti
m

e
(1

00
 c

yc
le

)

Fig. 7 Strong scalability of our multiple-GPUs codes with 1.92 mil-

lion elements, the black line shows the average wall-time per 100

time steps for this size-fixed problem performed by 32–64 GPUs

0 10 20 30 40 50 60 70 80
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
x 10

4 miltiple GPUs weak scalability

number of GPUs

w
al

lti
m

e
pe

r
10

0
cy

cl
es

Fig. 8 Weak scalability of our multiple-GPUs code performed by

2–80 GPUs, the black line shows the average wall-time per 100 time

steps for these size-varied problems. The average number of elements

per GPU is around 53,000 with about 6 % fluctuation

Earthq Sci (2013) 26(6):377–393 389

123

For the SEG/EAGE salt model, we remove the very

detailed original structure and only keep the main features,

such as the salt body and those main faults (Fig. 10a). This

simplified SEG/EAGE salt model with dimension of 4,200 m

in depth, 13,500 m in length, and 13,500 m in width. The total

tetrahedral elements number is 447,624; each element has its

own material property. There are 192 receivers locate at 5 m

beneath the surface along A–A0 (yellow) line, and the hori-

zontal interval is 50 m; the explosive source located at

10.0 m(depth), 7,060.0 m(length), 4,740.0 m(width). In this

case, we used the same hardware we used for the marmousi2

model. Our CUDA code uses 16 GPUs spend 7,938.56 s

calculate 7 s seismogram, (Fig. 10b) while the SeisSol runs

on 16 CPU cores need 224,589.80 s, it’s a speedup of 28.299.

6 Summary

In this study, we have successfully ported the ADER-DG

method for solving the three-dimensional isotropic elastic

seismic wave equation on unstructured tetrahedral meshes

to CPU-GPU hybrid clusters using NVIDIA’s CUDA pro-

graming model and the message-passing interface (MPI).

The serial version of our CUDA codes runs approximately

24.3 times faster than the reference serial CPU codes at

single precision and about 12.8 times at double precision.

The parallel version of our CUDA codes runs about 28.3

times faster than the reference parallel CPU codes at single

precision and about 14.9 times at double precision. The

increase in speed can be directly translated into an increase

in the size of the problems that can be solved using the

ADER-DG method. Some preliminary performance ana-

lysis shows that our parallel GPU codes have favorable

strong and weak scalability as long as the ratio between the

number of outer elements and inner elements of each sub-

domain is smaller than a certain threshold.

The ADER-DG method has a number of unique charac-

teristics that make it very suitable for acceleration using

GPU-type SIMD processors. The majority of the calcula-

tions can be carried out in an element-local way with weak

inter-element coupling implemented using the numerical

flux functions. In particular, as shown in Eq. (10), the only

term that involves inter-element information exchange is the

second term in the numerical flux, and we have shown that

on a distributed-memory parallel system, the communica-

tion cost can be effectively overlapped with computation.

This locality in the ADER-DG method makes it relatively

straightforward to partition the workload among different

thread blocks on each GPU and also among different GPUs

on the cluster and results in close-to-ideal scalability. The

ADER-DG method is also a high-order method, which

requires more work per DOF than low-order methods. The

increase in arithmetic intensity shifts the bottleneck from the

memory bandwidth to the compute bandwidth. The relative

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335

0

(a)

(b)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A A’

Fig. 9 a A perspective view of the 3D Marmousi2 model with dimension of 3,500 m in depth, 17,000 m in length, and 7,000 m in width. There

are 379,039 tetrahedral elements, and each element has its own material property. There are 337 receivers locate at 5 m beneath the surface along

the A–A0 (yellow) line, and the horizontal interval is 50 m; the explosive source located at 10.0 m(depth), 7,500.0 m(length), 3,500.0 m(width).

(b). The plot of the marmousi2 model shot gather, computed by our multiple-GPUs code. Our CUDA code uses 16 GPUs spend

4,812.64(s) calculate 5 s seismogram, while the SeisSol runs on 16 CPU cores need 135,278.50(s), it’s a speedup of 28.119. (Color figure online)

390 Earthq Sci (2013) 26(6):377–393

123

abundance of cheap computing power on a GPU makes it

favorable for implementing high-order methods.

7 Discussion

Debates still exist in the computer sciences community

about how the speedup factor should be defined in a more

general and objective way. Some definitions are more

favorable to the GPUs, and some definitions are more

favorable to the CPUs. But in spite of the debates about the

definitions of the speedup factor, a common consensus

among both the theoreticians and the practitioners is that

GPUs are relatively low-cost, low-power-consumption,

powerful co-processors that are suitable for SIMD-type

calculations and studies about efficient implementations of

numerical algorithms for scientific computing on the GPU

architectures are worthwhile. In this sense, the lessons

learned through the implementation and optimization pro-

cess are more important than the exact speedup numbers

that we have obtained.

Unlike implementations on a single GPU, to port the

codes to multiple GPUs effectively, we need to deal with

an extra layer of complexity introduced by inter-process

communications. For the ADER-DG method, in which a

majority of the calculations are local to each element, we

can hide the inter-process communication overhead by

overlapping communication with computation. We sepa-

rate the elements on a subdomain into inner and outer

elements. Once the computation on the outer elements is

completed, we can fill the MPI buffer using a separate

stream on the GPU and issue a non-blocking MPI call on

the CPU. While the MPI messages are traveling across

the network, the GPU proceeds to perform computations

on the inner elements, and all other computations that do

not need information from the outer elements. The tech-

nologies for multiple-GPU and CPU-GPU inter-connec-

tions are rapidly evolving, and GPU-Aware MPI

(GAMPI) libraries for CUDA-enabled devices are grad-

ually emerging. It is likely that the process for overlap-

ping communication with computation by taking

advantage of the multiple-stream capabilities of GPUs

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190

0

(a)

(b)

1

2

3

4

5

6

Fig. 10 a A perspective view of the simplified SEG/EAGE salt model with dimension of 4,200 m in depth, 13,500 m in length and 13,500 m in

width. There are 447,624 tetrahedral elements and each element has its own material property. There are 192 receivers locate at 5 m beneath the

surface along A–A0 line and the horizontal interval is 50 m, the explosive source located at 10.0 m (depth), 7,060.0 m (length), 4,740.0 m

(width). b The plot of the SEG/EAGE salt model shot gather, computed by our multiple-GPUs code. Our CUDA code uses 16 GPUs spend

7,938.56(s) calculate 7 s seismogram, while the SeisSol runs on 16 CPU cores need 224,589.80(s), it’s a speedup of 28.299

Earthq Sci (2013) 26(6):377–393 391

123

(i.e., task parallelism) will be much simplified and

become more efficient in the near future.

A sizeable portion of the speedup we obtained is owed

to the use of our customized matrix–matrix multiplication

kernels. In our implementation, the results of the multi-

plications are evaluated analytically in terms of the non-

zeros in the matrices whose locations can be determined

beforehand and are fixed throughout the program. This

approach allows us to condense the calculations by

exploiting the sparsity of the matrices and also gives us

enough freedom to manually adjust memory access pat-

terns to minimize uncoalesced global memory accesses.

This approach is applicable because the matrices involved

in the ADER-DG method are element-local and relatively

small (e.g., for a 5th-order scheme the size of the stiffness

matrices is only 35 by 35), and the structures of these

matrices are determined only by the specific forms of the

spatial basis functions used to approximate the solution in

the reference element. For more general matrix–matrix

multiplication problems, some off-the-shelf, pre-tuned

GPU linear algebra libraries, such as CUBLAS and cu-

SPARSE, might be more suitable.

The work described in this article is vender-specific. But

we believe that most of the algorithmic analysis and

implementation ideas presented here can be reused either

identically or with slight modifications to adapt the ADER-

DG method to other related architectures. To reinforce this

point, we note that the emerging OpenCL industry standard

for parallel programming of heterogeneous systems speci-

fies a programming model that is very similar to CUDA. As

GPUs are being widely adopted as powerful and energy-

efficient co-processors in modern-day computer clusters,

the work described here may help to accelerate the adop-

tion of the ADER-DG method for seismic wave propaga-

tion simulations on such heterogeneous clusters.

This work provides an accurate yet flexible forward

simulation solution other than conventional finite-differ-

ence method. With the capability of unstructured mesh and

topography, our ADER-DG CUDA code could handle

some complex scenario along with a relatively high effi-

ciency and accuracy. This work could be further applied to

earthquake related applications, such as full-wave seismic

tomography (e.g., Chen et al. 2007; Liu and Tromp 2006;

Tromp et al. 2008), accurate earthquake source inversion

(e.g., Chen et al. 2005, 2010; Lee et al. 2011), seismic

hazard analysis (e.g., Graves et al. 2010), and reliable

ground-motion predictions (e.g., Graves et al. 2008; Ko-

matitsch et al. 2004; Olsen 2000).

Acknowledgments We thank the ‘‘SeisSol’’ working group at the

Ludwig-Maximilians University in Germany and Yifeng Cui at the

San Diego Supercomputer Center for providing us the CPU code

‘‘SeisSol.’’ This study would not be possible without their help. The

first author of this article is supported by the School of Energy

Resources at the University of Wyoming. The GPU hardware used in

this study was purchased using the NSF Grant EAR-0930040.

References

Abdelkhalek R, Calandra H, Coulaud O, Roman J, Latu G (2009) Fast

seismic modeling and reverse time migration on a GPU cluster.

The 2009 International Conference on High Performance

Computing & Simulation, 2009. HPCS’09, pp 36–43

Aminzadeh F, Brac J, Kunz T (1997) 3-D salt and overthrust models.

SEG/EAGE 3-D modeling series No. 1, 1997. Society of

Exploration Geophysicists and European Association of Explo-

ration Geophysicists

Bao H, Bielak J, Ghattas O, Kallivokas LF, O’Hallaron DR,

Shewchuk JR, Xu J (1998) Large-scale simulation of elastic

wave propagation in heterogeneous media on parallel computers.

Comput Methods Appl Mech Eng 152:85–102

Bell N, Garland M (2009) Efficient sparse matrix-vector multiplica-

tion on CUDA. In: Proceedings of ACM/IEEE Conference

Supercomputing (SC), Portland, OR, USA

Carcione JM (1994) The wave equation in generalized coordinates.

Geophysics 59:1911–1919

Chen P, Jordan T, Zhao L (2005) Finite-moment tensor of the 3

September 2002 Yorba Linda earthquake. Bull Seismol Soc Am

95:1170–1180

Chen P, Jordan TH, Zhao L (2007) Full three-dimensional tomog-

raphy: a comparison between the scattering-integral and adjoint-

wavefield methods. Geophys J Int 170:175–181

Chen P, Jordan TH, Zhao L (2010) Resolving fault plane ambiguity

for small earthquakes. Geophys J Int 181:493–501

Cockburn B, Karniadakis GE, Shu CW (2000) Discontinuous

Galerkin methods, theory, computation and applications. LNC-

SE, 11. Springer

Dumbser M, Käser M (2006) An arbitrary high-order discontinuous

Galerkin method for elastic waves on unstructured meshes-II.

The three-dimensional isotropic case. Geophys J Int

167(1):319–336. doi:10.1111/j.1365-246X.2006.03120.x

Dumbser M, Käser M, Toro EF (2007) An arbitrary high-order

discontinuous Galerkin method for elastic waves on unstructured

meshes-V. Local time stepping and p-adaptivity. Geophys J Int

171(2):695–717. doi:10.1111/j.1365-246X.2007.03427.x

Graves RW (1996) Simulating seismic wave propagation in 3D elastic

media using staggered-grid finite differences. Bull Seismol Soc

Am 86(4):1091–1106

Graves RW, Aagaard BT, Hudnut KW, Star LM, Stewart JP, Jordan

TH (2008) Broadband simulations for Mw 7.8 southern San

Andreas earthquakes: ground motion sensitivity to rupture speed.

Geophys Res Lett 35:L22302. doi:10.1029/2008GL035750

Graves R, Jordan T, Callaghan S, Deelman E (2010) CyberShake: a

physics-based seismic hazard model for Southern California.

Pure Appl Geophys 168:367–381

Hughes TJR (1987) The finite element method—linear static and

dynamic finite element analysis. Prentice Hall, Englewood Cliffs

Igel H (1999) Wave propagation in three-dimensional spherical

sections by the Chebyshev spectral method. Geophys J Int

136:559–566

Igel H, Mora P, Riollet B (1995) Anisotropic wave propagation

through finite-difference grids. Geophysics 60:1203–1216

Käser M, Dumbser M (2006) An arbitrary high-order discontinuous

Galerkin method for elastic waves on unstructured meshes-I. The

two-dimensional isotropic case with external source terms.

Geophys J Int 166(2):855–877

Käser M, Dumbser M (2008) A highly accurate discontinuous

Galerkin method for complex interfaces between solids and

moving fluids. Geophysics 73(3):T23–T35

392 Earthq Sci (2013) 26(6):377–393

123

http://dx.doi.org/10.1111/j.1365-246X.2006.03120.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03427.x
http://dx.doi.org/10.1029/2008GL035750

Käser M, Dumbser M, la Puente de J, Igel H (2007) An arbitrary high-

order discontinuous Galerkin method for elastic waves on

unstructured meshes-III. Viscoelastic attenuation. Geophys J

Int 168(1):224–242. doi:10.1111/j.1365-246X.2006.03193.x

Käser M, Pelties C, Castro CE (2010) Wavefield modeling in

exploration seismology using the discontinuous Galerkin finite-

element method on HPC infrastructure. Lead Edge 29:76–84

Klöckner A, Warburton T, Bridge J, Hesthaven JS (2009) Nodal

discontinuous Galerkin methods on graphics processors. J Com-

put Phys 228(21):7863–7882. doi:10.1016/j.jcp.2009.06.041

Komatitsch D, Tromp J (1999) Introduction to the spectral-element

method for 3-D seismic wave propagation. Geophys J Int

139:806–822

Komatitsch D, Tromp J (2002) Spectral-element simulations of global

seismic wave propagation-II. Three-dimensional models, oceans,

rotation and self-gravitation. Geophys J Int 150(1):303–318

Komatitsch D, Vilotte JP (1998) The spectral-element method: an

efficient tool to simulate the seismic response of 2D and 3D

geological structures. Bull Seismol Soc Am 88:368–392

Komatitsch D, Liu Q, Tromp J, Suss P, Stidham C, Shaw J (2004)

Simulations of ground motion in the Los Angeles basin based

upon the spectral-element method. Bull Seismol Soc Am

94:187–206

Komatitsch D, Michéa D, Erlebacher G (2009) Porting a high-order

finite-element earthquake modeling application to NVIDIA

graphics cards using CUDA. J Parallel Distrib Comput 69(5):

451–460

Komatitsch D, Göddeke D, Erlebacher G, Michéa D (2010) Modeling

the propagation of elastic waves using spectral elements on a

cluster of 192 GPUs. Comput Sci Res Dev 25(1):75–82

la Puente De J, Käser M, Dumbser M, Igel H (2007) An arbitrary

high-order discontinuous Galerkin method for elastic waves on

unstructured meshes-IV. Anisotropy. Geophys J Int 169(3):

1210–1228

la Puente De J, Käser M, Cela JM (2009) SeisSol optimization,

scaling and synchronization for local time stepping. Science and

Supercomputing in Europe, pp 300–302

Lee E, Chen P, Jordan T, Wang L (2011) Rapid full-wave centroid

moment tensor (CMT) inversion in a three-dimensional earth

structure model for earthquakes in Southern California. Geophys

J Int 186:311–330

Levander AR (1988) Fourth-order finite difference P-SV seismo-

grams. Geophysics 53:1425–1436

Liu Q, Tromp J (2006) Finite-frequency kernels based on adjoint

methods. Bull Seismol Soc Am 96:2383–2397

Lysmer J, Drake LA (1972) A finite element method for seismology.

In: Alder B, Fernbach S, Bolt BA (eds) Methods in

Computational Physics, vol 11. Academic Press, New York,

Ch. 6, pp 181–216

Madariaga R (1976) Dynamics of an expanding circular fault. Bull

Seismol Soc Am 65:163–182

Michéa D, Komatitsch D (2010) Accelerating a three-dimensional

finite-difference wave propagation code using GPU graphics

cards. Geophys J Int 182(1):389–402

Moczo P, Kristek J, Vavrycuk V, Archuleta RJ, Halada L (2002) 3D

heterogeneous staggered-grid finite-difference modeling of seis-

mic motion with volume harmonic and arithmetic averaging of

elastic moduli and densities. Bull Seismol Soc Am 92:3042–3066

Mora P (1989) Modeling anisotropic seismic waves in 3-D, 59th Ann.

Int. Mtg Exploration Geophysicists, expanded abstracts,

pp 1039–1043

Mu D, Chen P, Wang L (2013) Accelerating the discontinuous

Galerkin method for seismic wave propagation simulations using

the graphic processing unit (GPU)—single-GPU implementa-

tion. Comput Geosci 51:282–292

Okamoto T, Takenaka H, Nakamura T, Aoki T (2010) Accelerating

large-scale simulation of seismic wave propagation by multi-

GPUs and three-dimensional domain decomposition. Earth

Planet Space 62(12):939–942. doi:10.5047/eps.2010.11.009

Olsen K (2000) Site amplification in the Los Angeles basin from

three-dimensional modeling of ground motion. Bull Seismol Soc

Am 90:577–594

Tessmer E (1995) 3-D Seismic modelling of general material

anisotropy in the presence of the free surface by a Chebyshev

spectral method. Geophys J Int 121:557–575

Tessmer E, Kosloff D (1994) 3-D elastic modeling with surface

topography by a Chebyshev spectral method. Geophysics 59(3):

464–473

Toro EF (1999) Riemann Solvers and Numerical Methods for Fluid

Dynamics. Springer, Berlin

Toro EF, Titarev VA (2002) Solution of the generalized Riemann

problem for advection-reaction equations. Proc R Soc Lond

458:271–281

Tromp J, Komatitsch D, Liu Q (2008) Spectral-element and adjoint

methods in seismology. Commun Comput Phys 3:1–32

Virieux J (1984) SH-wave propagation in heterogeneous media:

velocity-stress finite-difference method. Geophysics 49:1933–1942

Virieux J (1986) P-SV wave propagation in heterogeneous media:

velocity-stress finite-difference method. Geophysics 51:889–901

Wang Z, Peng S, Liu T (2010) Modeling seismic wave propagation

using graphics processor units (GPU). The Second International

Symposium on Networking and Network Security (ISNNS

2010), pp 129–132

Earthq Sci (2013) 26(6):377–393 393

123

http://dx.doi.org/10.1111/j.1365-246X.2006.03193.x
http://dx.doi.org/10.1016/j.jcp.2009.06.041
http://dx.doi.org/10.5047/eps.2010.11.009

	Abstract
	1 Introduction
	2 CUDA programming model
	3 Overview of the ADER-DG method
	4 Implementation and optimization on multiple GPUs
	4.1 Pre-processing
	4.2 Matrix--matrix multiplications
	4.3 Overlapping communication with computation

	5 Performance analysis
	5.1 Single-GPU performance
	5.2 Multiple-GPU performance
	5.3 Application examples

	6 Summary
	7 Discussion
	Acknowledgments
	References

