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Abstract This paper studies three-dimensional diffraction

of obliquely incident plane SH waves by twin infinitely long

cylindrical cavities in layered poroelastic half-space using

indirect boundary element method. The approach is vali-

dated by comparison with the literature, and the effects of

cavity interval, incident frequency, and boundary drainage

condition on the diffraction are studied through numerical

examples. It is shown that, the interaction between two

cavities is significant and surface displacement peaks

become large when two cavities are close, and the surface

displacement may be significantly amplified by twin cavi-

ties, and the influence range with large amplification can be

as wide as 40 times of the cavity radius. Surface displace-

ments in dry poroelastic case and saturated poroelastic cases

with drained and undrained boundaries are evidently dif-

ferent under certain circumstances, and the differences may

be much larger than those in the free-field response.

Keywords Diffraction � Infinitely long cylindrical

cavities � Obliquely incidence � Layered poroelastic

half-space � Indirect boundary element method

(IBEM) � Amplification � Plane SH waves

1 Introduction

Diffraction of elastic waves around underground cavities is

an important topic in engineering seismology, however, up

to now, most studies are limited to either elastic homoge-

neous half-space or plane strain model. In general, half-

space is layered, and dynamic characteristics of soil layers

have significant effect on the wave diffraction (Liang and

Ba 2012); there is necessarily an angle between wave

propagation direction and cylindrical cavity axis (De Barros

and Luco 1993; Stamos and Beskos 1996; Liang et al. 2012,

2013), or say, the problem is three-dimensional and cannot

be simply decomposed into in-plane problem and out-of-

plane problem (Liang et al. 2012). Also, in coastal plain or

alluvial plain, soil layers below water level are often satu-

rated poroelastic, and pore liquid has significant effects on

wave diffraction. However, there are few studies for dif-

fraction of obliquely incident plane waves around infinitely

long cylindrical cavities in layered poroelastic half-space.

The purpose of this study is to investigate 3D diffraction

of obliquely incident plane SH waves by twin infinitely

long cylindrical cavities in layered poroelastic half-space

using indirect boundary element method (IBEM), extend-

ing the study of single cylindrical cavity in layered elastic

half-space (Liang et al. 2012, 2013) to the case of twin

cavities and to the case of poroelasticity.

2 Method

Figure 1 shows the model of twin infinitely long cylindri-

cal cavities in poroelastic soil layers over elastic half-space

(bedrock) for incident plane SH waves, with (a) the view in

x–y plane, (b) the view in y0–z plane, and (c) the cross-

section of the cavities in x–z plane. The angle with y in

x–y plane is hh, and the angle with y0 in y0–z plane is hv.

The thickness of the soil layers is H, the radius and buried

depth of the cavity is a and h, and the distance between two

cavities is S. The boundary of two cavities is described by C.
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The cylindrical cavities are infinitely long, and the wave

fields at two different cross-sections perpendicular to the

cavity axis are identical but shifted in time, therefore, the

wave field can be represented by the dynamic response of

moving loads. This allows only one cross-section of the

cavities to be used for calculation. The IBEM is used to

determine the wave diffraction around cavities in poro-

elastic soil layers over elastic half-space. The free-field

response is calculated to determine the dynamic response at

the surface of the fictitious cavities. Moving distributed

loads and pore pressure is applied on the surface of the

fictitious cavities to calculate the Green’s functions for the

dynamic responses at the surface of the fictitious cavities.

The moving distributed load and pore pressure are deter-

mined by boundary conditions. Finally, the solution is

obtained by adding the dynamic responses of the free field

and the response due to the moving distributed loads.

2.1 Biot’s theory

The displacement of the solid frame and the fluid dis-

placement relative to the solid frame are denoted by ui and

wi (i = x, y), respectively, then the constitutive relation-

ship (Biot 1941) of a homogeneous poroelastic medium

can be expressed as

rij ¼ 2leij þ kdije � adijp; i; j ¼ x; y ð1Þ

p ¼ �aMui;i � Mwi;i ð2Þ

where rij is the total stress component of the bulk material;

eij and e are strain components and dilatation of the solid

frame, respectively; k and l are Lame constants of the bulk

material; p is pore pressure; dij is Kronecker delta; and a
and M are Biot’s parameters describing compressibility of

the two-phased material and 0 B a B 1 and 0 B M \?.

The equations of motion (Biot 1962) of a homogeneous

poroelastic medium can be expressed in terms of dis-

placements ui and wi as

lui;jj þ ðk þ a2M þ lÞuj;ji þ aMwj;ji ¼ q€ui þ qf €wi ð3Þ

aMuj;ji þ Mwj;ji ¼ qf €ui þ m €wi þ b _wi ð4Þ

where q = (1 - n)qs ? nqf, qs and qf are mass density of

the solid grain and the pore fluid, respectively; n is porosity

of the solid frame; b is a parameter that accounts for the

internal friction due to the relative motion between the

solid frame and the pore fluid, and b = 0 if the internal

friction is neglected; and m is a density-like parameter

depending on qf and geometry of the pores.

2.2 Free-field response

The free-field response of layered poroelastic half-space

can be calculated by direct stiffness method, to determine

the 3D dynamic response on the boundary of the fictitious

twin cavities and on the surface of the half-space.

For a saturated poroelastic layer, the displacement

amplitudes and the external load amplitudes at the top and

bottom of the layer can be expressed by the amplitude

coefficients of the up-going waves and of the down-going

waves in wave-number domain, i.e.,

Ux1;Uy1; iUz1; iwz1;Ux2;Uy2; iUz2; iwz2

� �T

¼ S1 AP1;BP1;AP2;BP2;ASV;BSV;ASH;BSHf gT ð5Þ

Qx1;Qy1; iQz1; iQf 1;Qx2;Qy2; iQz2; iQf 2

� �T

¼ S2 AP1;BP1;AP2;BP2;ASV;BSV;ASH;BSHf gT ð6Þ

where, Ux1, Uy1, Uz1, and wz1 are the displacement ampli-

tudes at the top of the layer, Ux2, Uy2, Uz2, and wz2 are the

displacement amplitudes at the bottom of the layer, Qx1,

Qy1, Qz1, and Qf1 are the external loads at the top of the

layer, and Qx2, Qy2, Qz2, and Qf2 are the external loads at

the bottom of the layer, and AP1, BP1, AP2, BP2, ASV, BSV,

ASH, and BSH are the amplitude coefficients of the up-going

waves and of the down-going waves, and
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Fig. 1 The model of twin cylindrical cavities in poroelastic soil layers over elastic half-space (bedrock) for incident plane SH waves, with a the

view in x–y plane, b the view in y0–z plane and c the cross-section of the cavities in x–z plane. hh is the angle with y in x–y plane, and hv is the

angle with y0 in y0–z plane, H is the thickness of the soil layers, h is the buried depth of the cavity, and S is the distance between two cavities
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where,

S1 ¼

lx1 lx1 lx2 lx2 �mxmzb mxmzb �myb �myb
ly1 ly1 ly2 ly2 �mymzb mymzb mxb mxb

�ilz1 ilz1 �ilz2 ilz2 �i=b �i=b 0 0

�iD1lz1 iD1lz1 �iD2lz2 iD2lz2 �iD3=b �iD3=b 0 0

lx1b1 lx1b2 lx2b3 lx2b4 �mxmzbb5 mxmzbb6 �mybb5 �mybb6

ly1b1 ly1b2 ly2b3 ly2b4 �mymzbb5 mymzbb6 mxb mxb
�ilz1b1 ilz1b2 �ilz2b3 ilz2b4 �ib5=b �ib6=b 0 0

�iD1lz1b1 iD1lz1b2 �iD2lz2b3 iD2lz2b4 �iD3b5=b �iD3b6=b 0 0

2

66666666664

3

77777777775

S2 ¼

C11 C12 C13 C14 C15 C16 C17 C18

C21 C22 C23 C24 C25 C26 C27 C28

C31 C32 C33 C34 C35 C36 0 0

C41 C42 C43 C44 0 0 0 0

C11b1 C12b2 C13b3 C14b4 C15b5 C16b6 C17b5 C18b6

C21b1 C22b2 C23b3 C24b4 C25b5 C26b6 C27b5 C28b6

C31b1 C32b2 C33b3 C34b4 C35b5 C36b6 0 0

C41b1 C42b2 C43b3 C44b4 0 0 0 0

2

66666666664

3

77777777775

b1 ¼ expðikp1zzÞ; b2 ¼ expð�ikp1zzÞ; b3 ¼ expðikp2zzÞ; b4 ¼ expð�ikp2zzÞ;

b5 ¼ expðikszzÞ; b6 ¼ expð�ikszzÞ; b ¼ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
x þ m2

y

q
; C11 ¼ �2il�lz1kx; C12 ¼ 2il�lz1kx;

C13 ¼ �2il�lz2kx; C14 ¼ 2il�lz2kx; C15 ¼ il�bðmxmzksz � kxm2
x � kxm2

yÞ;
C16 ¼ il�bðmxmzksz � kxm2

x � kxm2
yÞ; C17 ¼ imykszl

�b; C18 ¼ �imykszl
�b;

C21 ¼ �2il�lz1ky; C22 ¼ 2il�lz1ky; C23 ¼ �2il�lz2ky; C24 ¼ 2il�lz2ky;

C25 ¼ il�bðmymzksz � kym2
x � kym2

yÞ; C26 ¼ il�bðmymzksz � kym2
x � kym2

yÞ;
C27 ¼ �imxkszl

�b; C28 ¼ imxkszl
�b; C31 ¼ �ðlx1kx þ ly1ky þ lz1kp1zÞðk� þ aMðD1 þ aÞÞ � 2l�lz1kp1z;

C32 ¼ �ðlx1kx þ ly1ky þ lz1kp1zÞðk� þ aMðD1 þ aÞÞ � 2l�lz1kp1z;

C33 ¼ �ðlx2kx þ ly2ky þ lz2kp2zÞðk� þ aMðD2 þ aÞÞ � 2l�lz2kp2z;

C34 ¼ �ðlx2kx þ ly2ky þ lz2kp2zÞðk� þ aMðD2 þ aÞÞ � 2l�lz2kp2z; C35 ¼ �2l�ksz=b; C36 ¼ 2l�ksz=b;

C41 ¼ �MðD1 þ aÞðlx1kx þ ly1ky þ lz1kp1zÞ; C42 ¼ �MðD1 þ aÞðlx1kx þ ly1ky þ lz1kp1zÞ;
C43 ¼ �MðD2 þ aÞðlx2kx þ ly2ky þ lz2kp2zÞ; C44 ¼ �MðD2 þ aÞðlx2kx þ ly2ky þ lz1kp2zÞ;

k� ¼ kð1 þ 2ifLÞ; l� ¼ lð1 þ 2ifLÞ; mx ¼ cL
s kx=w; my ¼ cL

s ky=w; mz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0 � m2

x � m2
y

q
;

lx1 ¼ cL
p1kx=w; lx2 ¼ cL

p2kx=w; ly1 ¼ cL
p1ky=w; ly2 ¼ cL

p2ky=w; lz1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0 � l2

x1 � l2
y1

q
;

lz2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0 � l2x2 � l2y2

q
; kpjz ¼ lzjx=cL

pj ðj ¼ 1; 2Þ; ksz ¼ mzx=cL
s ;

Di ¼ ðkc þ 2l � qcL2
pi Þ=ðqf c

L2
pi � aMÞði ¼ 1; 2Þ; D3 ¼ qf x

2=ðibx � mx2Þ;
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where, z is thickness of the soil layer; x is circular fre-

quency of incident waves; kx and ky are two horizontal

wave numbers; ksz, kp1z, and kp2z are wave numbers in

vertical direction for S waves and two P waves, respec-

tively; cs
L, cp1

L , and cp2
L are velocities for S waves and two P

waves in the soil layer, respectively; mx, my, and mz are

parameters related to the propagation direction for S

waves; lx1, ly1, and lz1 and lx2, ly2, and lz2 are those for two P

waves, respectively; kc = k ? a2M; and fL is damping

ratio for the soil layer.

Eliminating the amplitudes of the up-going and down-

going waves can result in the dynamic stiffness matrix

SL
P1�P2�SV�SH of the saturated poroelastic soil layer,

SL
P1�P2�SV�SH ¼ S2S�1

1 ð7Þ

The dynamic stiffness matrix SR
P1�P2�SV�SH of saturated

poroelastic half-space can be obtained by applying loads at

the free surface of the saturated poroelastic half-space and

by considering only the down-going waves, which satisfies

the radiation condition that without energy propagating

from infinity toward the free surface. Letting

AP1 = AP2 = ASV = ASH = 0 in Eqs. (5) and (6) and

eliminating BP1, BP2, BSV, and BSH, the saturated

poroelastic half-space matrix SR
P1�P2�SV�SH is obtained.

Introducing the continuity of displacements and the

equilibrium of stresses and pore pressures at the interfaces

of the layers, the dynamic stiffness matrix SP1�P2�SV�SH of

a layered half-space can be assembled by using the soil

layer stiffness matrices SL
P1�P2�SV�SH and the half-space

stiffness matrix SR
P1�P2�SV�SH.

For a layered half-space, the displacements of each layer

can be solved by the following equation

SP1�P2�SV�SHU ¼ Q ð8Þ

U is the vector of solid frame displacement and of relative

displacement between pore liquid and solid frame, and Q is

the vector of stress and pore pressure. If we choose the

bedrock outcrop as the control point and let Ux0, Uy0, Uz0,

and wz0 be the bedrock input motion, the last four elements

in vector Q can be obtained through

Rx0

Ry0

iRz0

�iRf 0

8
>><

>>:

9
>>=

>>;
¼ SR

P1�P2�SV�SH

Ux0

Uy0

iUz0

iwz0

8
>><

>>:

9
>>=

>>;
ð9Þ

while the other elements of vector Q are zero. Once U is

obtained, the amplitude coefficients of the up-going waves

and down-going waves in each layer can be determined.

Finally we get the displacement fUf
x; Uf

y; Uf
z ; wf

ng
T

and

stress ftf
x; tf

y; tf
z; tf

f g
T

on the boundary of the fictitious twin

cavities and on the surface of the half-space for the drained

boundary condition, and fUf
ux; Uf

uy; Uf
uz; wf

ung
T

and

ftf
ux; tf

uy; tf
uz; tf

uf g
T

on the boundary of the fictitious twin

cavities and on the surface of the half-space for the

undrained boundary condition.

2.3 Dynamic Green’s function

The dynamic Green’s functions of moving distributed loads

and pore pressure acting on inclined line in layered satu-

rated poroelastic half-space can be obtained from the

extension of the Green’s functions of moving distributed

loads on inclined line in layered elastic half-space (Liang

et al. 2012), combining with Biot’s theory of poroelasticity

(Biot 1941; Biot 1962).

The Green’s functions of distributed loads and pore

pressure acting on inclined line in layered saturated poro-

elastic half-space are deduced, then the moving Green’s

functions can be obtained by Fourier integration along the

moving direction (the axis of the cavities)

�Fðx; y; zÞ ¼
Z1

�1

expðixðt � e=c0ÞÞ

Z1

�1

Z1

�1

Fðkx; ky; zÞ expð�ikxxÞ

� expð�ikyðy � eÞÞdkxdkyde

¼ 2p
Z1

�1

Z1

�1

Fðkx; ky; zÞdðk0y � kyÞexpð�ikxxÞ

� expð�ikyyÞdkxdky

¼ 2p expð�ik0yyÞ
Z1

�1

Fðkx; k0y; zÞ expð�ikxxÞdkx

ð10Þ

where �Fðx; y; zÞ is the moving Green’s functions in the space

domain, Fðkx; k0y; zÞ the dynamic Green’s functions in the

wave-number domain, k0y ¼ x=c0,x is the incident frequency,

c0 is the moving velocity of distributed loads and pore pressure

along the axis of the cavities, c0 ¼ cR
s

�
cos hh cos hvð Þ, with cs

R

the shear-wave velocity of the half-space.

To obtain the Green’s functions of distributed loads and

pore pressure acting on inclined line in layered saturated

half-space, the distributed loads and pore pressure are

transformed into wave-number domain by the Fourier

transform, and the Green’s functions in wave-number

domain are then obtained. Figure 2 shows the distributed

loads and pore pressure acting on an inclined line in a sat-

urated poroelastic layer, with the distributed loads acting on

soil frame in the x-, y-, and z-directions. Because only one

layer is loaded, two additional interfaces are introduced at

the top and bottom boundary of the layer. The loaded layer
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is fixed at the two interfaces, and the corresponding reaction

forces Rx1, Ry1, Rz1, Rf1 (forces at the top interface of the

fixed layer) and Rx2, Ry2, Rz2, Rf2 (forces at the bottom

interface of the fixed layer) are calculated. The directions of

these forces are then reversed, and they are applied as

external loads to the system to determine the global

response, and the dynamic responses of the system induced

by the external forces can be implemented using the direct

stiffness method. The whole responses are determined by

adding the result of the fixed layer analysis to the result of

the reaction forces (Fig. 2). Finally, the Green’s functions in

the space domain are obtained by inverse Fourier transform.

More details about the approach may be found in Liang and

You (2004, 2005) and Liang et al. (2006).

Let gu(C) and gt(C) be the moving Green’s functions of

displacements and stresses for the case of drained boundary

condition, and guu(C) and gut(C) be the moving Green’s

functions corresponding to the case of undrained boundary

condition, the solid frame displacement and the relative

displacement between pore liquid and solid frame, and the

solid frame stresses and the pore pressure at the cavities

boundary C can be expressed as

Up
x ;Up

y ;Up
z ;wp

n

n oT

¼ guðCÞ px; py; pz; pf

� �T ð11Þ

tp
x ; tp

y ; tp
z ; t

p
f

n oT

¼ gtðCÞ px; py; pz; pf

� �T ð12Þ

Up
x ;Up

y ;Up
z ;wp

n

n oT

¼ guuðCÞ px; py; py; pf

� �T ð13Þ

tp
x ; tp

y ; tp
z ; t

p
f

n oT

¼ gutðCÞ px; py; pz; pf

� �T ð14Þ

where Up
x ;Up

y ;Up
z ;wp

n

n oT

and tp
x ; tp

y ; t
p
z ; t

p
f

n oT

are the results

attributable to the moving fictitious distributed loads or pore

pressure, and the elements in the vector px; py; pz; pf

� �T
are

the fictitious distributed loads and pore pressure.

2.4 Boundary conditions

The moving distributed loads and pore pressure can be

solved by boundary conditions at the surface of two cavities.

The drained boundary condition can be written as

Z

C

WðCÞT
tp
x ; tp

y ; tp
z ; t

p
f

n oT

þ tf
x; tf

y; tf
z; tf

f

n oT
� �

dC ¼ 0 ð15Þ

for drained case, in which, WðCÞ is weighted function,

which may be taken as unit matrix.

Similarly, the undrained boundary condition can be

written as
Z

C

WðCÞT
tp
x ; tp

y ; tp
z ;wp

n

n oT

þ tf
x; tf

y; t
f
z;wf

n

n oT
� �

dC ¼ 0

ð16Þ

Then the displacement in layered half-space for drained

case can be obtained by

Uxðx; zÞ
Uyðx; zÞ
Uzðx; zÞ

8
<

:

9
=

;
¼

Uf
xðx; zÞ

Uf
yðx; zÞ

Uf
zðx; zÞ

8
<

:

9
=

;
þ guðx; zÞ½ �T�1

p Tf ð17Þ

where, Tp¼
R

C WðCÞT
gtðCÞdC and Tf¼

R
C WðCÞT

tfðCÞdC,

tfðCÞ ¼ tf
x; tf

y; tf
z; tf

f

n oT

.

Similarly, the displacement in layered half-space for

undrained boundary condition can be written as

Uxðx; zÞ
Uyðx; zÞ
Uzðx; zÞ

8
<

:

9
=

;
¼

Uf
xðx; zÞ

Uf
yðx; zÞ

Uf
zðx; zÞ

8
<

:

9
=

;
þ gutðx; zÞ½ �T�1

p Tf ð18Þ

where, Tp¼
R

C WðCÞT
gutðCÞdC and Tf¼

R
C WðCÞT

tfðCÞdC,

tfðCÞ¼ tf
x; tf

y; tf
z;wf

n

n o
.

3 Verification of accuracy

To verify accuracy of the method, Fig. 3 shows the com-

parison between the degenerated solutions of this study and

those by De Barros and Luco (1993) for surface displace-

ment around single infinitely long cylindrical cavity in

homogeneous elastic half-space subjected to incident plane

SH waves. The cavity is featured with buried depth d/

a = 2, where a is the radius of the cavity. A dimensionless

frequency g = 2a/k is defined, where k is the wavelength

Fig. 2 Distributed loads and pore pressure acting on an inclined line in soil layers
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of shear wave in the half-space, and g = 0.5. Other

parameters are as follows: Poisson’s ratio m = 1/3 and

damping ratio n = 0.01. It is shown that two solutions are

in excellent agreement.

Figure 4 shows the comparison between the degenerated

solutions of this study and those by Liang et al. (2013) for

surface displacement around single infinitely long cylin-

drical cavity in single elastic soil layer over elastic bedrock

half-space, subjected to incident plane SH waves. The ratio

of soil layer thickness to cavity radius h/a = 4, and other

parameters are described in the figure. It is shown that two

solutions are identical.

4 Numerical results and discussion

Figures 5, 6, 7, 8, and 9 illustrate surface displacements

versus x/a around twin infinitely long cylindrical cavities in

the case of dry poroelastic soil layer and in the cases of

saturated poroelastic soil layer with drained and undrained

boundaries, respectively, and in all three cases the bedrock

half-space is elastic. For the purpose of amplification

evaluation of incident waves of different frequencies,

Fig. 10 shows spectral amplification of the surface dis-

placements of the free field.

The parameters for the model are as follows: H/a = 4,

h/a = 2, hh = hv = 45 �, S/a = 2.5, 5, 10, and 20. The

dimensionless frequency is g = 2a/k = 0.125, 0.25, 0.5,

1.0, and 2.0, where k is the wavelength of shear wave in

poroelastic soil layer. The parameters for soil layer are as

follows: porosity of the solid frame nL = 0.3, shear mod-

ulus of the solid frame lL = 216 MPa, mass density of the

solid grain qs = 2400 kg/m3, Poisson’s ratio = 0.25, mass

density of the pore liquid qf = 1000 kg/m3, damping ratio

fL = 0.05, and other Biot’s parameters b = 0,

M = 2490 MPa, m = 7222 kg/m3, and a = 0.8287. The

parameters for elastic bedrock half-space are as follows:

shear modulus lR = 5400 MPa, mass density qR =

2400 kg/m3, Poisson’s ratio mR=0.25, and damping ratio

fR = 0.02.

It can be seen that, the surface displacement peaks appear

around twin cavities; when x/a becomes large, or the

observation points are far from twin cavities, the surface

displacement approach to the free-field response. When two

cavities are close, there is only one group of displacement

peaks, and the displacement peaks become larger, which is

due to the interaction between two cavities; while the cavity

interval increases, the displacement peaks gradually change

into two groups with each corresponding to one cavity, and

the displacement peaks then become smaller. It can be seen

Fig. 3 Comparison with de Barros and Luco (1993) for dynamic response of single cavity in homogeneous elastic half-space

Fig. 4 Comparison with Liang et al. (2013) for dynamic response of single cavity in layered elastic half-space
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that the interaction between two cavities depends on the

cavity interval and incident frequency.

It may be concluded from these figures that, there is

significant interaction between two cavities, and the inter-

action amplifies the surface dynamic response tremen-

dously, and the influence range with large amplification can

be as wide as 40 (±20) times of the cavity radius.

It can be found that, the surface displacements in both

two horizontal directions are extremely large for

g = 0.125, and the horizontal displacement peaks in x-

direction are up to 7.00 (for S/a = 2.5) and 7.05 (for S/

a = 5), because the incident frequency is equal to the first

resonant frequency of the free field, and the free-field

response is large (Fig. 10).

Fig. 5 Surface displacement around twin cavities in the case of dry poroelastic soil layer, the cases of saturated poroelastic soil layer with

drained and undrained boundaries for g = 0.125
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It should be noted that, the vertical (z-) surface dis-

placement of the free filed under incident plane SH waves is

zero (Fig. 10), and all the vertical (z-) surface displacements

around twin cavities are resulted from the diffraction of

incident waves by twin cavities. It is found that, in the case

of g = 0.125 the vertical displacement peaks are 3.43 (for

S/a = 2.5) and 1.42 (for S/a = 20), respectively, and the

former value is even larger than the amplification (relative

Fig. 6 Surface displacement around twin cavities in the case of dry poroelastic soil layer, the cases of saturated poroelastic soil layer with

drained and undrained boundaries for g = 0.25
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to the free-field response) at two horizontal directions, if the

free-field amplification is excluded, which shows that the

wave diffraction around twin cavities is significant.

It can also be found that, there are distinct differences for

surface displacement among the cases of dry poroelastic

soil layer, and saturated poroelastic layer with drained and

undrained boundaries, and sometimes the displacement

peaks in the dry case are larger, and sometimes those in the

drained case are larger, and sometime those in the undrained

case are larger. The free-field response peak at the first

Fig. 7 Surface displacement around twin cavities in the case of dry poroelastic soil layer, the cases of saturated poroelastic soil layer with

drained and undrained boundaries for g = 0.5
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resonant frequency in dry case is 4.51, and the peaks in both

the drained and undrained cases are 4.36. Therefore, for low

frequencies, the surface displacement peaks are larger in

dry case than in drained and undrained cases, since the free-

field responses dominate the surface displacements; but as

the incident frequency increases, the scattering, and dif-

fraction waves play more important role, which makes the

surface displacements very complicated. Under certain

Fig. 8 Surface displacement around twin cavities in the case of dry poroelastic soil layer, the cases of saturated poroelastic soil layer with

drained and undrained boundaries for g = 1.0
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circumstances, the differences in the case of wave diffrac-

tion among dry poroelasticity, saturated poroelasticity

with drained boundary and saturated poroelasticity with

undrained boundary are much larger than those in the case

of free-field response, which should be paid enough

attention.

Fig. 9 Surface displacement around twin cavities in the case of dry poroelastic soil layer, the cases of saturated poroelastic soil layer with

drained and undrained boundaries for g = 2.0
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5 Conclusions

3D Diffraction of obliquely incident plane SH waves by

twin infinitely long cylindrical cavities in layered poro-

elastic half-space is studied using indirect boundary ele-

ment method (IBEM), and it is shown that, the interaction

between two cavities is significant and surface displace-

ment peaks become large when two cavities are close. The

influence range with large amplification of incident waves

can be as wide as 40 times of the cavity radius. There exist

distinct differences among the cases of dry poroelastic soil

layer, and saturated poroelastic soil layer with drained and

undrained boundaries under certain circumstances, and the

differences may be much larger than those in the free-field

response.
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