
RESEARCH PAPER

A cloud-based synthetic seismogram generator implemented
using Windows Azure

Po Chen • En-Jui Lee • Liqiang Wang

Received: 25 July 2013 / Accepted: 30 October 2013 / Published online: 13 December 2013

� The Seismological Society of China, Institute of Geophysics, China Earthquake Administration and Springer-Verlag Berlin Heidelberg 2013

Abstract Synthetic seismograms generated by solving the

seismic wave equation using numerical methods are being

widely used in seismology. For fully three-dimensional seis-

mic structure models, the generation of these synthetic seis-

mograms may require large amount of computing resources.

Conventional high-performance computer clusters may not

provide a cost-effective solution to this type of applications.

The newly emerging cloud-computing platform provides an

alternative solution. In this paper, we describe our imple-

mentation of a synthetic seismogram generator based on the

reciprocity principle using the Windows Azure cloud appli-

cation framework. Our preliminary experiment shows that our

cloud-based synthetic seismogram generator provides a cost-

effective and numerically efficient approach for computing

synthetic seismograms based on the reciprocity principle.

Keywords Reciprocity � Synthetic seismogram �
Cloud computing � Windows Azure

1 Introduction

Seismic waves generated by natural and/or manmade seismic

sources propagate through the interior of the Earth and cause

motions of the ground. A seismogram is a record of the

ground shaking recorded by a seismometer. Proper interpre-

tation of seismograms allows seismologists to map the Earth’s

internal structures, and locate and measure the size of dif-

ferent seismic sources. Since the emergence of modern

instruments using electronic sensors, amplifiers and recording

devices in the early 1900s, seismograms have been system-

atically collected and archived at seismic data centers dis-

tributed around the world. An important example of seismic

data centers is the Incorporated Research Institutions for

Seismology (IRIS) in the United States. Founded in 1984 with

support from NSF, it now collects and archives seismograms

from a network of hundreds of seismometers around the world

and plays an essential role in scientific investigations of

seismic sources and Earth properties worldwide.

Recent advances in computational technology and

numerical methods have now opened up the possibility to

simulate the generation and propagation of seismic waves in

three-dimensional complex geological media by explicitly

solving the seismic wave equation using numerical tech-

niques such as finite difference, finite element, and spectral

element methods (Olsen 1994; Graves 1996; Akcelik et al.

2003; Olsen et al. 2003; Komatitsch et al. 2004), thereby

allowing seismologists to incorporate numerically simulated

seismograms (i.e., synthetic seismograms) into their research.

The capability of conducting simulation-based predictions

has initiated an inference cycle in which the simulation-based

predictions (i.e., synthetic seismograms) are validated against

actual observations (i.e., real observed seismograms collected

and archived at seismic data centers), and where the seis-

mologic models (i.e., the geological models of the Earth’s

interior and/or the rupture models of the seismic sources) are

deficient, data assimilation techniques are adopted to improve

the seismologic models and reinitiate the inference cycle at a

higher level (Chen 2011; Liu and Gu 2012).

The purpose of this study is to establish a cloud-based

computational platform for rapidly delivering synthetic

seismograms computed from well-calibrated three-

P. Chen (&) � E.-J. Lee

Department of Geology and Geophysics, University of

Wyoming, Laramie, WY 82071, USA

e-mail: pchen@uwyo.edu

L. Wang

Department of Computer Science, University of Wyoming,

Laramie, WY 82071, USA

123

Earthq Sci (2013) 26(5):321–329

DOI 10.1007/s11589-013-0038-8



dimensional seismic structure models to seismologists

worldwide to facilitate simulation-based seismologic

inferences. This platform allows seismologists to download

synthetic seismograms through their web browsers from

our cloud-based data collection for any types of seismic

source models in a manner similar to downloading

observed seismograms from various seismic data centers

such as IRIS. The underlying theoretic foundation for our

platform is the ‘‘reciprocity principle’’ in seismology,

which basically states that the seismogram generated by a

seismic source and recorded at a seismometer is the same if

we exchange the locations of the seismometer and the

source. By means of the seismometers as virtual sources

and conducting wave propagation simulations in realistic

three-dimensional Earth models, we have established a

database for Southern California, an earthquake-prone

region with high seismic risk. Synthetic seismograms for

any types of earthquakes in Southern California can now be

generated on the fly based on user queries and delivered in

real time. We expect this system will be useful for seis-

mologic research in general and seismic hazard assessment

in Southern California in particular.

2 Receiver green tensor (RGT) and reciprocity

Following Zhao et al. (2006), the displacement synthetic

seismogram from a point source located at r0 with moment

tensor Mij can be expressed as (e.g., Aki and Richards

2002, Eq. 3.23)

ukðr; t; r0Þ ¼ Mijo
0
jGkiðr; t; r0Þ; ð1Þ

where o0j denotes the source-coordinate gradient with respect

to r0; and the Green’s tensor Gkiðr; t; r0Þ relates a unit

impulsive force acting at location r0 in direction êi to the

displacement response at location r in direction êk. Taking into

account the symmetry of the moment tensor, we also have

ukðr; t; r0Þ ¼ 1

2
o0jGkiðr; t; r0Þ þ o0jGkjðr; t; r0Þ
h i

Mij: ð2Þ

Synthetic seismograms due to a finite seismic source can

be obtained by superposing synthetics seismograms of point

sources following a kinematic rupture propagation model.

Applying reciprocity of the Green’s tensor

Gkiðr; t; r0Þ ¼ Gikðr0; t; rÞ; ð3Þ

Eq. (1) can be written as

ukðr; t; r0Þ ¼ 1

2
o0jGikðr0; t; rÞ þ o0jGjkðr0; t; rÞ
h i

Mij: ð4Þ

For a given receiver location r ¼ rR, the receiver Green

tensor (RGT) is a third-order tensor defined as the spatial–

temporal strain field

Hjikðr0; t; rRÞ ¼
1

2
o0jGikðr0; t; rRÞ þ o0jGjkðr0; t; rRÞ
h i

: ð5Þ

Using this definition, the displacement recorded at

receiver location rR due to a source at rS with moment

tensor M can be expressed as

ukðrR; t; rSÞ ¼ MijHjikðrS; t; rRÞ or uðrR; t; rSÞ
¼ M : HðrS; t; rRÞ:

ð6Þ

Most of the numerical algorithms for solving the

seismic wave equation, such as finite difference, finite

element, and spectral element methods, explicitly use the

spatial gradients of the displacement (or velocity) and the

stress (or stress rate) in their calculations. For a given

receiver, the RGT can therefore be computed through

three wave propagation simulations with a unit impulsive

force acting at the receiver location rR and pointing in

the direction êk (k = 1, 2, 3) in each simulation and store

the strain fields at all spatial grid points r0 and all time

sample t. The synthetic seismogram at the receiver due

to any point source located within the modeling domain

can be obtained by retrieving the strain Green’s tensor at

the source location from the RGT volume and then

applying Eq. (6).

Examples of synthetic seismograms generated using

this approach for a magnitude-4.9 earthquake around the

Los Angeles basin area are shown in Fig. 1. The seismic

structure model used in this calculation was the three-

dimensional Southern California Earthquake Center

(SCEC) Community velocity model version 4.0 (CVM4)

(Magistrale et al. 2000). The RGTs were computed by

solving the 3D elastic wave equation using the 4th-order

staggered-grid finite difference method. We also com-

puted synthetic seismograms through the normal

approach by propagating the wave-field from the earth-

quake source to the seismic stations, and the synthetic

seismograms are identical to those obtained using

Eq. (6).

For a region with well-calibrated three-dimensional

seismic structure models, such as Southern California, we

can compute and archive the RGTs for all seismic stations

in that region in a cloud storage facility in advance. A

user, who is interested in the synthetic seismograms of a

particular earthquake, can enter and submit the earthquake

source parameters (e.g., the hypocenter location, the focal

mechanism) through a web page. The synthetic seismo-

grams of that earthquake at all stations are then computed

by combining those source parameters and the RGTs

using Eq. (6) and returned to the user through the web

browser. The details about the RGTs for 219 stations in

Southern California computed using our latest full-3D,

full-waveform tomography model can be found in Lee

et al. (2011).

322 Earthq Sci (2013) 26(5):321–329

123



Fig. 1 Three-component (vertical, radial, and transverse) synthetic seismograms of the July 29, 2008, magnitude 5.5, Chino Hills earthquake at

five different seismic stations. The synthetic seismograms were computed using both reciprocity (red) and the normal forward wave propagation

from source to station (blue). Only the red curves are visible, because they are exactly on top of the blue curves. The lengths of the seismograms

are 120 s. The amplitudes of the seismograms have been normalized. The focal mechanism of the earthquake is shown in the beach ball. The

yellow star shows the location of the epicenter. Locations of the seismic stations are indicated using blue triangles. The names of the stations are

marked above the station locations. Major faults in this area are shown as black solid lines. Background color shows regional topography with

green indicating lower elevations and yellow to brown indicating higher elevations

Earthq Sci (2013) 26(5):321–329 323

123



3 Cloud computing and Windows Azure

High-performance computing (HPC) is traditionally

implemented using computer clusters, which are set up

using nearly identical computers (i.e., compute nodes) and

special networking adapters for moving data among the

nodes at very high speeds. But, networks have become

faster, and a new clustering technology, known as the

cloud, that leverages virtualization tools is becoming more

appealing. Virtualization is a technology referring to the

creation of a virtual (rather than actual) version of some-

thing, such as an operating system, a server, a storage

device or network resources. A cloud is a virtual cluster

composed of identical virtual machines (VMs) running on

a collection of servers, which can be physically very dif-

ferent, connected by a virtual network, which can consist of

different physical LANs and/or the Internet.

According to the definition given by the National

Institute of Standards and Technology (NIST) (Mell and

Grance 2011), in comparison with conventional-distributed

computing based on traditional physical computer clusters,

cloud computing has the following essential characteris-

tics: (1) On-demand self-service: the computing resources

are requested on demand without interaction with the ser-

vice provider; (2) Broad network access: resources are

available over the Internet and can be accessed by any

platforms; (3) Resource pooling: the computing resources

are pooled by the provider through the multi-tenant model

to various consumers on demand; (4) Rapid elasticity: the

computing capability can be scaled in and out very quickly;

(5) Measured Service: Resource usage can be monitored

and transparently controlled.

On a conventional physical cluster shared by many

users, a user submits a job to the queue and waits for its

completion. Depending upon the number of jobs in the

queue and the computing capability of the cluster, the

amount of time spent on waiting in the queue can be

substantial. Compared with physical clusters, the cloud

platform provides a flexible, on-demand computing infra-

structure. Based on the aforementioned features, the cloud

is actually an ideal platform to deploy the system for

computing and delivering synthetic seismograms with

rapid response and scalable performance. It is a cost-

effective substitute for the traditional dedicated physical

computing cluster.

The Windows Azure is a Platform as a Service (PaaS)

running at Microsoft data centers. The platform consists of

a highly scalable (i.e., elastic) cloud operating system and a

data storage system. Users have control over their appli-

cations, as well as the environment configurations in which

their applications run, such as databases, third-party

libraries, the operating systems, etc., depending upon the

level of manageability and control that the users prefer.

The Windows Azure platform takes care of the manage-

ment of the underlying physical infrastructure such as the

networks, the servers, and the storage systems. For web

applications, such as our synthetic seismogram generator,

the users can choose among three pre-configured services:

Web Sites, Cloud Services, and VM. The Web Sites service

has a relatively simple architecture, which consists of a

web frontend and an optional database. In this case, Win-

dows Azure has the full control of the VMs hosting the web

application. For more complicated applications, Cloud

Services allow users to create highly scalable, multitier

architectures and give users more freedom to customize the

hosting VMs, such as installing third-party libraries. The

VMs service gives users the most control over the hosting

VMs including the operating systems, the configuration,

and the installed software and services. In this case, the

users can choose among a variety of pre-configured, pub-

lished VM images or create and manage their own VM

images. Considering the complexity of our synthetic seis-

mogram generator application and the trade-off between

manageability and control, we have chosen the Cloud

Services in our current implementation.

A Cloud Service is actually a container that can host

multiple Cloud Roles. A Cloud Role is a collection of

codes (or ‘‘service bits’’ in Azure jargon) for realizing a

particular purpose. A Cloud Role can have multiple Role

Instances. A Role Instance is a single deployment of a

Cloud Role to a dedicated VM. All the Role Instances of

the same Cloud Role share the same service bits. Windows

Azure has a set of pre-configured Cloud Roles that users

can choose from and customize. Currently available Cloud

Roles include the Web Role, which provides codes for

generating a dynamic web frontend that handles the inter-

actions with the customers of our application through

browsers, and the Worker Role, which handles background

data processing and computation and interacts with the

Web Role. For instance, if we consider a Cloud Service

with one Web Role with two Role Instances, and two

different Worker Roles with one Role Instance for the first

Worker Role and two Role Instances for the second

Worker Role, Windows Azure will start five VMs when

this Cloud Service is deployed. To serve more customers of

our application, we can simply increase the number of Role

Instances of each Cloud Role.

To balance the load on multiple Role Instances, Win-

dows Azure provides an automatic Load Balancer. For

multiple Role Instances of the same Web Role, each Role

Instance will have a different IP address since each Role

Instance runs on a different VM. The Load Balancer will

provide all customers of our application with the same web

address and will evenly distribute the requests from all

customers among all the active Role Instances with dif-

ferent IP addresses automatically. If some of the Role

324 Earthq Sci (2013) 26(5):321–329

123



Instances become offline, the Load Balancer will auto-

matically remove those Role Instances from its pool and

evenly distribute requests among remaining active Role

Instances.

Windows Azure provides a highly scalable cloud stor-

age system, which can be accessed and managed through 3

types of data structures: Blobs, Tables, and Queues. The

Blob is used for storing unstructured binary and text data.

Blobs are grouped into Containers. A Container can store

an unlimited number of Blobs, and every Blob must be

inside a Container. The Table is used to store non-rela-

tional structured data. A Table is a collection of Entities,

and an Entity is a set of Properties, which are simply name-

value pairs. The Queue is used for storing messages that

can be accessed by a client and providing reliable mes-

saging between Role Instances. A user of the storage sys-

tem will need to apply for a storage account, and each

storage account has access to 100 TB storage space. A

storage account can host any number of Containers, Tables,

and Queues. Every data structure under a storage account

can be addressed through a unique URL and accessed in a

browser through that URL anytime, anywhere through an

optional authentication process provided by Azure.

4 Implementation

An architectural overview of our synthetic seismogram

generator application for Southern California is shown in

Fig. 2. It starts with a web site, which acts as a user

interface where users can request the generation of syn-

thetic seismograms of a particular earthquake in Southern

California by entering the longitude, latitude, and depth of

the hypocenter location and the strike, dip, and rake of the

focal mechanism. Users can also choose to enter the names

of the seismic stations if they are interested in synthetic

seismograms only at those stations, otherwise synthetic

seismograms at all stations in Southern California will be

computed and returned. The web site runs as one or more

Role Instances of our Web Role at VMs in the Azure cloud.

User requests along with the earthquake source parameters

are then passed to the Role Instances of our Work Role

running on other different VMs. Based on the user inputs,

the instances of the Work Role request the files from the

datasets maintained on the Azure storage. The RGTs of all

seismic stations in Southern California have been com-

puted using the finite difference code on our local 14-node

computer cluster and then uploaded to the Azure cloud

storage system in advance. We have implemented an effi-

cient data localization algorithm to efficiently fetch files

from Azure cloud storage according to the given hypo-

center location and the user’s station selection. Once the

Worker Roles get the requested files, they calculate syn-

thetic seismograms using Eq. (6). The generated synthetic

seismograms are then sent to the instances of the Web Role

and provided to the users through the web interface.

4.1 System overview

As shown in Fig. 2, our system consists of four compo-

nents: (1) the Web Role, which acts as a browser interface

to users; (2) the Job manager, which coordinates the work

among the instances of the computation Worker Role and

monitors the execution status of the system; (3) computa-

tion Worker Role, which carries out the actual computa-

tion; (4) three Azure Queues, namely the request queue, the

computation-input queue, and the computation-output

queue. The request queue acts as a communication inter-

face between the web role and the job manager. The

computation-input and computation-output queues act as

the interfaces between the job manager and the computa-

tion worker role. The web role and job manager utilize

Fig. 2 A schematic overview of our synthetic seismogram generator cloud service application’s architecture as implemented using Windows

Azure

Earthq Sci (2013) 26(5):321–329 325

123



medium-sized VMs, each of which has 2 CPU cores, 3 GB

memory, and 500 GB disk storage, and the computation

worker role utilizes extra-large-sized VMs, each of which

has 8 CPU cores, 15 GB memory, and 2 TB disk storage.

4.2 Job manager

An important advantage of using cloud computing for our

application is its capability to increase or decrease the

number of VMs used for computation very quickly and

dynamically based on the number of user requests. This

capability is realized through using our job manager, which

is implemented using multi-threading. Our job manager has

two threads; thread 1 is responsible for scheduling and

coordinating computational tasks, and thread 2 is respon-

sible for monitoring the response of our system and

dynamically adjusting the number of VMs used for com-

putation. Some segments of the codes used for imple-

menting these two threads are shown in Fig. 3.

An instance of the web role places user requests as

messages into the request queue. When a message is

retrieved by thread 1 of the job manager, all the jobs cor-

responding to that message are retrieved and then sched-

uled. All the jobs scheduled on the same CPU are sent to

the same instance of the computation worker role as a

message in the computation-input queue. For a CPU with 8

cores, an instance of the computation worker role will

process 8 jobs in parallel at a time using the .NET 4.0 Task

Parallel Library (TPL), which is a collection of APIs for

realizing multi-thread parallelism on multi-core CPUs. On

those extra-large-sized VMs, TPL allows us to obtain a

speedup factor of about 8 times the number of instances of

the computation work role. The results of the calculations

are stored into the cloud storage as blobs, and the URL

addresses of those blobs are placed as messages into the

computation-output queue.

Thread 2 of the job manager constantly monitors the

message response time for messages waiting in the com-

putation-input queue. If the response time exceeds a pre-set

threshold value, a new instance of the computation work

role is initiated on a new VM. A linked list is used to store

the create time of the VMs hosting the work role instances.

For a newly created computation work role instance, if

there is no message in the computation-input and the life of

the VM is greater than another pre-set threshold, the VM

will be removed from the pool and deallocated. However,

the job manager itself does not have control over the de-

allocation process, which is managed only by Azure. In

order to prevent Azure from deallocating a VM that is still

processing a job, we use a mutual exclusion lock between

the job assignment and the deallocation of a computation

VM. Once thread 1 of the job manager obtains the lock

during job scheduling, the deallocation call from thread 2

cannot take place. On the other hand, when the deallocation

process is initiated by thread 2, thread 1 of the job manager

cannot assign jobs to the VM.

Fig. 3 Code segments of the job manager as implemented using the

Windows .NET framework. The code segment for thread 1 is shown

in the upper panel, and the code segment for thread 2 is shown in the

lower panel

326 Earthq Sci (2013) 26(5):321–329

123



4.3 Data management

As shown in Eq. (5), the RGT for a station is a spatial–

temporal 4D volume. This 4D volume is sampled using the

same 3D uniform spatial mesh that is used in the finite

difference simulations. We divide the spatial mesh evenly

into 4,096 blocks, and each block corresponds to one Azure

container in our storage account. The RGT on one spatial

grid point, which is a 6-component time series, corresponds

to one Azure blob. All the RGTs within one block are

placed inside the container corresponding to that block.

Each container is indexed using the longitudes and lati-

tudes of the bounding box of its corresponding spatial

block. For instance, for a spatial block whose range of

latitude is from 35�250N to 34�510N and range of longitude

is from 119�30W to 116�470W, its corresponding Azure

container is given an index of 3525-3451-11903-11647.

Inside of each container, the blobs are also indexed using

the longitudes and latitudes of its corresponding spatial

grid points.

In Azure, every data object, such as a blob, a table

entity, and a queue message, has a partition key. Azure

automatically maintains load balance across different data

servers based upon partitions. All the data objects with the

same partition key are grouped into the same partition

server. Grouping objects into partitions allows them to

easily perform atomic operations across all data objects in

the same partition. In addition, data objects in the same

partition are also cached automatically to improve band-

width. In our application, the container index combined

with the blob index forms the unique partition key for

every blob. A direct consequence of this choice of the

partition key is that the RGTs of different seismic stations

at the same spatial grid point are all grouped into the same

partition server. Considering Eq. (6), for a given earth-

quake hypocenter location, the mathematical operation

applied on the RGTs of different seismic stations is actu-

ally identical. And, it is often the case that a user who is

interested in a particular earthquake usually wants all the

synthetic seismograms of that earthquake at multiple seis-

mic stations. For different earthquakes, which usually have

different hypocenter locations, data accesses are then

directed to different partitions. This choice of the partition

key actually allows us to maximize the benefit of the

caching capability of the automatic Azure data partition

system while helping Azure to balance the workload

among its partition servers.

To improve the bandwidth of data movement, Azure

uses a content delivery network (CDN), which currently

has 20 locations (i.e., endpoints) globally and is rapidly

expanding. Azure CDN can cache blobs at strategically

placed locations to provide maximum bandwidth. When

CDN access is enabled for a storage account, the Azure

portal provides two URLs, i.e., the Azure blob URL and

the Azure CDN URL, for accessing the same blob. Users

can use either of them to access the data object. If the user

requests data through the blob URL, the blob is then read

directly from the Azure blob service. If a request is made

through the CDN URL, the request is redirected to the

CDN endpoint closest to the location from which the

request is made. If the blob is not found on the endpoint, it

is retrieved from the Azure blob service and cached at the

endpoint, where a time-to-live (TTL) setting determines

how long the blob will be cached. In our implementation,

we enabled Azure CDN, and the TTL is set to 1 h. The

reason for doing this in our implementation is that there

might be situations in which multiple users may request for

the synthetic seismograms of the same earthquake in a

relatively short period of time, for instance, shortly after

the actual earthquake occurred. Under such circumstances,

caching the blobs of that earthquake will significantly

reduce the data delivery time for the second and subsequent

requests.

Given the longitude, latitude, and depth of a hypocenter

location, we need an efficient query algorithm that can

quickly locate the blob whose spatial location is closest to

the hypocenter. In our current implementation, we have

adopted a hierarchical quad-tree searching algorithm.

Using the whole state of California as an example, Fig. 4

shows the search process for an arbitrary epicenter location

at (40�590N, 122�70W). First, the whole region is divided

into four level-1 bounding boxes, and by comparing the

given epicenter location with the longitude and latitude

ranges of each level-1 boxes, we find that this epicenter lies

in the upper-left level-1 box. The upper-left quadrant is

then divided into four level-2 boxes, and by comparing the

location of the epicenter with the longitude and latitude

ranges of the level-2 boxes, we find that the epicenter is

inside the lower-right level-2 box. This process is iterated

until the correct container is identified. Within the selected

container, the correct blob is then identified through a

linear search. Since the containers and the blobs are all

indexed by their longitudes and latitudes, the search algo-

rithm does not have to inspect the content of the data

objects and can be carried out highly efficiently.

5 Performance analysis

We have carried out extensive experiments to evaluate the

performance of our application. Figure 5 shows the aver-

age total execution time for generating different number of

synthetic seismograms of a random selection of earth-

quakes. All experiments were carried out using the same

set of RGTs that had already been computed and uploaded

to Azure cloud storage.

Earthq Sci (2013) 26(5):321–329 327

123



Figure 5 shows that the .NET 4.0 TPL can help reduce

the total execution time significantly. The total execution

time for 1,000 seismograms performed by a single worker

role instance without using TPL (i.e., using one CPU core

and one thread) is about 985.06 s, while the execution time

for one worker role instance with TPL (i.e., using four CPU

cores and four threads) is about 365.91 s. If we repeat the

same experiment using 4 worker role instances but without

TPL (i.e., using 4 CPUs but only 1 core on each CPU), the

total execution time is 484.04 s. If we turn on the TPL (i.e.,

using all 4 cores on each of the 4 CPUs), the total execution

time is reduced to 125.42 s.

If we use 2 worker role instances with TPL on two

8-core CPU VMs (i.e., using all 16 cores on 2 CPUs, 8

Fig. 4 An example of our quad-tree searching algorithm for locating the blob corresponding to a given geographic point. Black solid lines

indicate the boundaries of the 4 level-1 bounding boxes. The two black dash lines indicate the inner boundaries of 4 level-2 bounding boxes

Fig. 5 The total execution time in seconds for our performance evaluation experiments. The unit on the vertical axis is seconds. The different

line styles correspond to different number of worker role instances and thread numbers. Solid line single worker (4 core), long dash line 4

workers (4 core), short dash line 4 workers (4 core) with TPL, dotted line single work (4 core) with TPL, dash double-dot 2 workers (8 core) with

TPL

328 Earthq Sci (2013) 26(5):321–329

123



threads on each CPU), the total execution time for gener-

ating 1,000 seismograms is about 95.97 s. If we use a

single worker role instance with TPL on one 8-core VM

(i.e., 8 threads on the same CPU), the execution time for

generating 1,000 seismograms is about 134.47 s, which is

similar to the performance of 4 worker role instances with

each using a 4-core CPU. This comparison exposes the

effects of the number of messages on the performance of

our application. In the former case, the job manager sends

only one message into the queue, while in the second case

the job manager sends 4 messages. The total number of

messages in the queue has a significant impact on the

performance of our application. To improve the perfor-

mance of our application, for a given number of worker

role instances, it is preferable to utilize all cores on the

same CPU and for a given number of total core counts, it is

preferable to reduce the number of worker role instances.

6 Discussion and conclusions

In this study, we have implemented a cloud-based synthetic

seismogram generator using Windows Azure. The theoretic

foundation of our system is built on the receiver RGTs and

the reciprocity principle. The RGTs for all seismic stations

in Southern California were computed on a conventional

computer cluster using a well-calibrated three-dimensional

seismic structure model and then transferred to the Win-

dows Azure cloud storage. We have built a highly efficient

and highly scalable Windows Azure cloud service appli-

cation that can quickly query the RGT dataset, compute the

synthetic seismograms for all stations based on the earth-

quake source parameters entered by the user through our

web interface, and deliver the results to the user. Pre-

liminary performance analysis has shown that the cloud

platform is a suitable, highly efficient, and cost-effective

platform for implementing this type of applications.

One important advantage of the cloud platform is its

capability to quickly and dynamically scale-out and scale-

in the computational resources used for the application

based on user requests. In our application, this capability is

realized using our multi-thread job manager. The Azure

cloud storage provides abundant storage capacity. How-

ever, to effectively take advantage of this storage capacity,

we need to minimize data query and data transfer over-

heads. To maximize the bandwidth, data objects need to be

carefully arranged, grouped, and placed in the cloud. One

bottleneck of our application is the communication

between different role instances, in our case the commu-

nication between web role instances and worker role

instances. Our experiments have shown that the efficiency

of our system can be significantly improved by minimizing

the total number of such communications. Our result also

suggests that at the current stage for tightly coupled

applications that require a large number of communica-

tions, the conventional cluster with dedicated high-speed

interconnect is still preferred over the cloud platform.

References

Akcelik V, Bielak J, Biros G, Epanomeritakis I, Fernandez A, Ghattas

O, Kim EJ, Lopez J, O’Hallaron D, Tu T, Urbanic J (2003) High

resolution forward and inverse earthquake modeling on terascale

computers. Proceedings of the 2003 ACM/IEEE conference on

supercomputing, pp 52–73

Aki K, Richards PG (2002) Quantitative seismology, 2nd edn.

University Science Books, Sausalito, California, USA

Chen P (2011) Full-wave seismic data assimilation: theoretical

background and recent advances. Pure Appl Geophys 168(10):

1527–1552

Graves R (1996) Simulating seismic wave propagation in 3D elastic

media using staggered-grid finite differences. Bull Seismol Soc

Am 86:1091–1106

Komatitsch D, Liu Q, Tromp J, Süss P, Stidham C, Shaw JH (2004)

Simulations of ground motion in the Los Angeles basin based

upon spectral element method. Bull Seismol Soc Am 94:

187–206

Lee E-J, Chen P, Jordan TH, Wang L (2011) Rapid full-wave centroid

moment tensor (CMT) inversion in a three-dimensional earth

structure model for earthquakes in Southern California. Geophys

J Int. doi:10.1111/j.1365-246X.2011.05031.x

Liu Q, Gu YJ (2012) Seismic imaging: from classical to adjoint

tomography. Tectonophysics 566–567:31–66

Magistrale H, Day S, Clayton RW, Graves R (2000) The SCEC

Southern California reference three-dimensional seismic velocity

model Version 2. Bull Seismol Soc Am 90:S65–S76

Mell P, Grance T (2011) The NIST definition of cloud computing:

recommendations of the National Institute of Standards and

Technology. US Department of Commerce, Special Publication

800-145. Computer Security Division, Information Technology

Laboratory, National Institute of Standards and Technology,

Gaithersburg, pp 20899-8930

Olsen KB (1994) Simulation of three-dimensional wave propagation

in the Salt Lake Basin. Ph.D. Thesis, University of Utah, Salt

Lake, pp 157

Olsen KB, Day SM, Bradley CR (2003) Estimation of Q for long-

period ([2 s) waves in the Los Angeles Basin. Bull Seismol Soc

Am 93:627–638

Zhao L, Chen P, Jordan TH (2006) Strain Green’s tensors, reciprocity

and their applications to seismic source and structure studies.

Bull Seismol Soc Am 96(5):1753–1763

Earthq Sci (2013) 26(5):321–329 329

123

http://dx.doi.org/10.1111/j.1365-246X.2011.05031.x

	Abstract
	Keywords
	1 Introduction
	2 Receiver green tensor (RGT) and reciprocity
	3 Cloud computing and Windows Azure
	4 Implementation
	5 Performance analysis
	6 Discussion and conclusions
	References

