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Abstract In seismic exploration, it is common practice to

separate the P-wavefield from the S-wavefield by the

elastic wavefield decomposition technique, for imaging

purposes. However, it is sometimes difficult to achieve this,

especially when the velocity field is complex. A useful

approach in multi-component analysis and modeling is to

directly solve the elastic wave equations for the pure P- or

S-wavefields, referred as the separate elastic wave equa-

tions. In this study, we compare two kinds of such wave

equations: the first-order (velocity–stress) and the second-

order (displacement–stress) separate elastic wave equa-

tions, with the first-order (velocity–stress) and the second-

order (displacement–stress) full (or mixed) elastic wave

equations using a high-order staggered grid finite-differ-

ence method. Comparisons are given of wavefield snap-

shots, common-source gather seismic sections, and

individual synthetic seismogram. The simulation tests

show that equivalent results can be obtained, regardless of

whether the first-order or second-order separate elastic

wave equations are used for obtaining the pure P- or

S-wavefield. The stacked pure P- and S-wavefields are

equal to the mixed wave fields calculated using the corre-

sponding first-order or second-order full elastic wave

equations. These mixed equations are computationally

slightly less expensive than solving the separate equations.

The attraction of the separate equations is that they achieve

separated P- and S-wavefields which can be used to test the

efficacy of wave decomposition procedures in multi-com-

ponent processing. The second-order separate elastic wave

equations are a good choice because they offer information on

the pure P-wave or S-wave displacements.

Keywords Finite-difference method � Staggered

grid � First-order separate elastic wave equation �
Second-order separate elastic wave equation �
Multiple arrival tracking

1 Introduction

The separation of the P- and S-wavefields in an isotropic

medium is very important for characterizing the kinematic

and dynamic features of seismic wave propagation and in

applications to real problems, such as rock property deter-

minations, seismic imaging (i.e., Sun et al. 2004; Yan and

Xie 2012), receiver function analysis (Shang et al. 2012),

and fracture characterization (Fang et al. 2012; Fang et al.

2013). Traditionally, P- and S-wavefield separation has been

achieved using triaxial sensing and full vector-processing

techniques, such as multi-component tau-p filtering (i.e.,

Greenhalgh et al. 1990) and f-k filtering (i.e., Donati and

Stewart 1996); through the frequency-domain parametric

equations (i.e., Leaney 1990; Cho 1991; Hendrick and Hearn

2003); and by taking the divergence and curl of the multi-

component seismograms (i.e., Sun et al. 2004). The above

algorithms are often referred to as elastic wavefield

decomposition (see Sun et al. 2001, 2004).

From a numerical modeling perspective approach, the

pure P- and S-wavefields can be separated from full
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wavefield simulated by solving the first-order (velocity–

stress, i.e., Li et al. 2007) or second-order (displacement–

stress, i.e., Ma and Zhu 2003; Tang et al. 2012) elastody-

namic equations of motion. At present, there is lacking a

systematic comparison between the first- and second-order

separated elastic wave equations in terms of computer

memory requirements, computational efficiency and accu-

racy. For these reasons, we have undertaken such a com-

parative study of the numerical solutions and show the

results here through the use of wavefield snapshots, com-

mon-source gather seismic sections, and synthetic seis-

mograms. Four different approaches have been

investigated, viz., the first-order separated elastic wave

equation, the second-order separated elastic wave equation,

the first-order full elastic wave equation, and the second-

order full elastic wave equation; a high-order staggered

grid finite-difference method is used in all cases. Modeling

results demonstrate the validity and effectiveness of two

separated wave equations for simulating the pure P- and

S-wave fields directly.

2 Overview of methodology

In order to make a fair comparison, four different elastic wave

equations were used in this paper; the first two equations are

the first-order (velocity–stress) and the second-order (dis-

placement–stress) full elastic wave equations, referred to as

the mixed elastic wave equations (i.e., Alterman and Karal

1968). The latter two equations are the first-order (velocity–

stress) and second-order (displacement–stress) separated

elastic wave equations, referred to as the separated elastic

wave equations. In the following section we will briefly

introduce the two separated elastic wave equations.

2.1 The full (or mixed) elastic wave equations

The first-order (velocity–stress) elastic equations of motion

in a 2D isotropic medium can be expressed as (Virieux 1986),

q
oVx

ot
¼ osxx

ox
þ osxz

oz
;

q
oVz

ot
¼ oszz

oz
þ osxz

ox
;

ð1Þ
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oVz
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ð2Þ

The corresponding second-order (displacement–stress)

equations of motion in a 2D isotropic medium can be

written as (Virieux 1986),

q
o2Ux

ot2
¼ osxx

ox
þ osxz

oz
;

q
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ot2
¼ oszz

oz
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ox
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ð3Þ
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ð4Þ

In the above equations, Viði ¼ x; zÞ, Uiði ¼ x; zÞ and

sijði; j ¼ x; zÞ are particle velocity, displacement and stress

components, respectively. q is the medium density and cij

is the stiffness tensor. In an isotropic medium, there are

only two independent elastic parameters and c11 ¼ c33 ¼
k þ 2l ¼ qa2, c13 ¼ k, c44¼l ¼ qb2, where k and l are

the bulk and shear modulus, respectively, and a and b are

the P- and S-wave velocities, respectively.

2.2 The separated elastic wave equations

In 2D isotropic media, we can express the x-component

velocity (Vx) and the z-component velocity (Vz) of the

mixed wavefield by different combinations of the com-

pressional (VP) and shear (VS) waves of the separated

wavefields as follows,

Vx ¼ VPx
þ VSx

;
Vz ¼ VPz

þ VSz
:

�
ð5Þ

Here VPx
and VSx

are the x-components of the separated P-

and S-waves, respectively, and VPz
and VSz

are the z-

components of the separated P- and S-waves. We can then

obtain the following first-order (velocity–stress) separated

elastic wave equations for simulating pure P- and S-waves

(i.e., Li et al. 2007),

q
oVPx

ot
¼ orPxx

ox
;

q
oVPz

ot
¼ orPzz

oz
;

orPxx

ot
¼ qa2 oVx

ox
þ oVz

oz

� �
;

orPzz

ot
¼ qa2 oVx

ox
þ oVz

oz

� �
;

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ
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q
oVSx
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¼ orSxx

ox
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oz
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q
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8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð7Þ

where rPxx
, rPzz

, rSxx
, rSzz

, and rSxz
are the stress components

of the separated P- and S-waves, respectively. It is easy to

prove that for Eqs. (6) and (7) we have r� VP ¼ 0, r �
VS ¼ 0 , and V ¼ VP þ VS (e.g., Li et al. 2007).

In similar fashion to the above first-order separated

elastic wave equations, we can express x-component of the

displacement (Ux) and the z-component of the displace-

ment (Uz) of the full (or mixed) wavefield by different

displacement component combinations of the compres-

sional (UP) and shear (US) waves of the separated dis-

placement wavefields as follows (i.e., Tang et al. 2012),

Ux ¼ UPx
þ USx

;
Uz ¼ UPz

þ USz
:

�
ð8Þ

where UPx
and USx

are the x-component displacements of

the separated P- and S-waves, respectively, and UPz
and

USz
are the z-component displacements of the separated P-

and S-waves. Therefore, we can also obtain the second-

order (displacement–stress) separated elastic wave

equations as follows

q
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ot2
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ox
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q
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ot2
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oz
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� �
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q
o2USz

ot2
¼ orSxz

ox
þ orSzz

oz
;

rSxx
¼ �2qb2 oUz

oz
;

rSzz
¼ �2qb2 oUx

ox
;

rSxz
¼ qb2 oUx

oz
þ oUz

ox

� �
:
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ð10Þ

As for Eqs. (6) and (7), we can also prove that

r� UP ¼ 0, r � Us ¼ 0 and U ¼ UP þ US (e.g., Tang

et al. 2012).

3 Source and boundary conditions

3.1 Source loading

In our simulation tests, we use vector force source. The

force direction is in the x direction. The source is a Ricker

wavelet. Note that for easy comparison, in the first-order

(velocity–stress) equations, we added velocity Ricker

wavelet as the source, and while in the second-order (dis-

placement–stress) equations, we added displacement Ricker

wavelet as source. In the following specification, the source

is centered at the position (x0, z0) but distributed over an

area given by the Gaussian function, with attenuation j0

f ðx; z; tÞ ¼ 1 � 2 pf0 t � 1:5

f0

� �� �2
( )

e
� pf0 t�1:5

f0

� �h i2

� e �j0 ðx�x0Þ2þðz�z0Þ2½ �f g; ð11Þ

where f0 is the center frequency of the wavelet. In the

numerical simulations we set j0 = 0.1.

3.2 Boundary conditions

An absorbing boundary condition is added to all model

boundaries. Based on the non-reflecting and absorbing

boundary formulation of Cerjan et al. (1985), we designed a

revised attenuating boundary condition (Tang et al. 2012),

Gb ¼ e� c N�ið Þ½ �2 ; ð12Þ

Gc ¼ e�c½ði�i0Þ2þðj�j0Þ2�; ð13Þ

where c is the attenuation factor, N is the grid number of

the absorbing boundary, (i, j) represents the grid point in

the x and z directions and (i0, j0) is the grid point of the

corner node in x and z directions, respectively. Note that

the above absorbing boundary condition (12 and 13) is

applied to all four different modeling approaches.

3.3 Computational stability

In 2D transversely isotropic media the computational sta-

bility condition for temporal order 2 M and spatial order

2 N in staggered grid finite-difference modeling is given by

(e.g., Dong et al. 2000),

0�
XM

m¼1

ð�1Þm�1

ð2m � 1Þ! L2m
x d2m � 1;

0�
XM

m¼1

ð�1Þm�1

ð2m � 1Þ! L2m
z d2m � 1;

ð14Þ

where Lx, Lz, and d take the following forms
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Lx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2

Dx2

ðk þ 2lÞ
q

þ Dt2

Dz2

l
q

s
;

Lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2

Dx2

l
q
þ Dt2

Dz2

ðk þ 2lÞ
q

;

s

d ¼
XN

n�1

CðNÞ
n ð�1Þn�1;

ð15Þ

where q is density, Dx and Dz are the grid intervals along

the x and z directions, respectively, Dt is the time step

interval and C
ðNÞ
n is the differential coefficient. In our case,

with the second-order accuracy in time (M = 1), and the

18th-order accuracy in space (N = 9), the stability

condition is,

0� L2
xd2 � 1;

0� L2
z d2 � 1;

ð16Þ

Lx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2

Dx2

ðk þ 2lÞ
q

þ Dt2

Dz2

l
q

s
;

Lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2

Dx2

l
q
þ Dt2

Dz2

ðk þ 2lÞ
q

;

s

d ¼
X9

n�1

Cð9Þ
n ð�1Þn�1:

ð17Þ

4 Computational efficiency and accuracy

To evaluate the computational accuracy and efficiency, we

select a 2D uniform model of size of 490 m 9 490 m. For

comparison purposes, we use three different cell sizes

(2.5 m 9 2.5 m, 5.0 m 9 5.0 m, and 10 m 9 10 m) to

parameterize the velocity model. In general, the memory

requirements for separate equations are slightly larger than

that of full-wave equations for a specific cell-sized model,

due to more variables in the separate equations. The

computer we used here is a Laptop (AMD Phenom-II

N850-2.2 GHz). The CPU time consumption for the two

(first-order and second-order) separate equations are nearly

the same for both (see Table 1), as is the CPU time con-

sumption for the two (first-order and second-order) mixed

equations. However, the separate equations take almost

50 % longer to run than do the mixed equations. To assess

computational accuracy, we calculated travel times at

every node within the model and compared them with the

corresponding analytic solutions. The average travel time

errors are listed in Table 1 for the four different approa-

ches for the direct P- and S-waves. In general, the com-

putational accuracy of the numerical solutions for all four

approaches is at the same level, but drops with an increase

in the cell size used in the model parameterization (see

Table 1).

5 Numerical tests of wavefield simulations

For comparison purposes, two different velocity models are

selected, the first is a two-layered model and the second is a

three-layered fault model. For each model four different

kinds of wave equations are used to simulate the seismic

wavefields with a high-order (second-order temporal and

18th-order spatial accuracy) staggered grid finite-difference

method. The corresponding results are shown through the

wavefield snapshots, common-source gather seismic sec-

tions, and synthetic seismograms.

5.1 Two-layered model

The model dimension is 1,990 m 9 1,990 m, and the cell

size used in the parameterization is 10 m 9 10 m. This

model incorporates a horizontal boundary at z = 1,190 m,

which separates the upper layer of model parameters

a = 3,000 m/s, b = 1,800 m/s, and q = 2,000 kg/m3,

Table 1 CPU time consumption and computational accuracy tests for four different

Cell size CPU time (s) Computational accuracy (ms)

Separated Mixed Mixed after separated Mixed Separated

V U V U V U V U VP UP VS US

2.5 m 9 2.5 m 48.88 48.56 38.45 37.20 1.25 1.25 1.25 1.25 1.25 1.25 1.00 1.00

5 m 9 5 m 7.70 7.65 6.06 5.85 3.25 3.25 3.25 3.25 3.25 3.25 3.00 3.00

10 m 9 10 m 1.13 1.09 0.78 0.72 7.00 7.00 7.00 7.00 7.75 7.75 5.75 5.75

Modeling approaches with varying cell size in the model parameterization. In the table, the ‘‘separated’’ indicates the results obtained by the

separate elastic wave equations, the ‘‘mixed’’ indicates the results obtained by full elastic wave equations, and the ‘‘stacked after separated’’

represents the results obtained by stacking the pure P and S results
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from the lower layer having a = 3,500 m/s,

b = 2,060 m/s, and q = 2,200 kg/m3. The time sampling

interval is set at 1 ms and the source, of dominant fre-

quency 25 Hz, is located at x = 990 m and z = 890 m.

For simplicity, in our phase convention: P or S represents

a P- or S-wave, respectively, and the number in the

subscript or superscript indicates a downward or upward

propagating seismic wave in the different layers, given by

the number, respectively (for more details, see Bai et al.

2009).

Fig. 1 a The wavefield snapshot (t = 300 ms) of x-component for two-layered velocity model. In the figure VP and VS, UP and US represent the

results obtained by the first-order (Eqs. 6–7) and second-order (Eqs. 9–10) separate elastic wave equations, respectively. These captions are

applied for all following diagrams and figures. b Similar to (a), but obtained by the two full elastic wave equation approaches and plus stacked

results of VP ? VS and UP ? US. In the figure, the number from 1 to 10 indicates different seismic phases: 1 direct P, 2 direct S, 3 pure reflected

P1P1, 4 reflected and converted P1S1, 5 reflected and converted S1P1, 6 pure reflected S1S1, 7 pure transmitted S1S2, 8 transmitted and converted

S1P2; 9 transmitted and converted P1S1, and 10 pure transmitted P1P2 phase

Earthq Sci (2013) 26(2):83–98 87
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Figure 1a shows the x-component wavefield snapshot

obtained by the first-order separate (upper panels, referred

as VP and VS) and the second-order separate (lower

panels, referred as UP and US) equations, whereas Fig. 1b

displays the snapshots obtained by the first-order mixed

(upper right panel, referred as V) and the second-order

mixed (lower right panel, referred as U) equations, plus

the stacked VP ? VS (upper left panel) and UP ? US

(lower left panel) results. It is clearly visible from Fig. 1

that (1) both snapshots for pure P-waves on the last

segment of the path (including direct P, P1P1, P1P2, S1P1,

and S1P2) and pure S-waves on the last segment of the

path (including direct S, S1S1, S1S2, P1S1, and P1S2) are

equal for both the first-order and second-order separate

Fig. 1 continued
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Fig. 2 a The common-source gather seismic section of x-component (receiver line at z = 890 m with receiver spacing of 10 m) for the two-

layered velocity model obtained by the two different (first-order and second-order) separated elastic wave equation approaches. b Similar to (a),

but obtained by the two different separate elastic wave equation approaches and plus the stacked results of VP ? VS and UP ? US. In the figure

the number 1 for direct P, 2 for direct S, 3 for reflected P1P1, 4 for reflected and converted P1S1/S1P1, and 5 for reflected S1S1 phases
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equations. Also, the stacked wavefield snapshots

(VP ? VS or UP ? US) are similar to the mixed wavefield

snapshots (V or U) in each case. Figure 2a displays the

common-source gather seismic sections for the x-compo-

nent (receiver line at the X = 890 m at 10 m interval)

calculated by the first-order separate (VP and VS) and

Fig. 2 continued
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second-order separate (UP and US) equations. Figure 2b

shows the shot gathers obtained by the first-order mixed

(V) and second-order mixed (U) equations, and plus the

stacked VP ? VS and UP ? US gathers. Similar conclu-

sions about the seismic sections in Fig. 2 can be drawn

as was done for the snapshots in Fig. 1, regarding

equivalence of working with stacked separate P and S

results or mixed results with the first-order or second-

order wave equations used for obtaining the seismic

sections.

Figure 3a shows in greater detail the z-component

synthetic seismograms (particle displacements and parti-

cle velocities) at location (x = 1,390 m and z = 790 m)

obtained by the first-order separate (VP and VS) and sec-

ond-order (UP and US) separate equations, with compar-

ison results from the first- and second-order mixed

equations given in Fig. 3b. For further comparison, the

travel times of each phase are computed using our

recently developed ray-tracing algorithm (multistage-

modified shortest path method, referred as the multistage

MSPM, Bai et al. 2009) and the corresponding results are

indicated by a short red vertical bar in the figure. It is

clearly seen from Fig. 3 that the seismograms for pure P

(including direct P, primary reflected P1P1, and primary

reflected and converted P1S1) and pure S (including direct

S, primary reflected S1S1, and primary reflected and

converted S1P1) waves are the same using either the first-

order (velocity) or second-order (displacement) separate

equations. Furthermore, the mixed field equations give the

same results as adding the separate field equation results.
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Fig. 3 a The z-component synthetic seismogram at location (x = 1390 m and z = 790 m) obtained by the two different separate elastic wave

equation approaches for the two-layered velocity model. In the figure and the following synthetic seismograms, the red vertical bar indicates the

travel times of the corresponding seismic phases calculated by a multistage MSPM algorithm. b Similar to (a), but obtained by the two full elastic

wave equation approaches and plus the stacked results of VP ? VS and UP ? US
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The onset times of the various P- and S-wave phases

coincide with the indicated travel times (a short red ver-

tical bar) predicted by the multistage MSPM ray-tracing

algorithm.

5.2 Three-layered fault model

The model scale, cell size, time sampling interval, and

source frequency are the same as in the Sect. 5.1. The

model is a three-layered model, but with two fault-like

interfaces embedded (see Fig. 4) and further the model is

divided into five regions with different model parameters

(see Table 2 for details). The source and receiver lines are

indicated in Fig. 4.

Figure 5a shows x-component wavefield snapshot

obtained by the first-order separate (VP and VS) and sec-

ond-order separate (UP and US) equations, and Fig. 5b is

the corresponding results obtained by the first-order

mixed (V) and second-order mixed (U) equations, and

plus the stacked VP ? VS and UP ? US results. Despite

the presence of more complicated wavefields due to the

fault-like interfaces, same conclusions can also be drawn

from Fig. 5 as in Fig. 1. The separated P-wave fields

(include direct P, primary reflected P1P1, primary reflec-

ted and converted P1S2P2 and P1S2P2P1, pure transmitted

P1P2 and P1P2P3, etc.) and S-wave fields (include direct S,

primary reflected S1S1 and S1S2S2, primary reflected and

converted P1S1 and P1P2S2, pure transmitted S1S2, trans-

mitted and converted P1S2, P1P2S3 and P1P2S3, etc.) are

the same regardless of the first-order or second-order

separate equations applied for simulation. Furthermore,

the stacked wavefields (VP ? VS or UP ? US) from the

pure P (VP or UP) and S (VS or US) wavefields are the

same as the mixed (V or U) wavefield, no matter whether

the first-order or second-order mixed equations are used

for simulation.

Figure 6a displays a common-source point gather

seismic section for x-component (receiver line at

z = 990 m with 10-m interval) obtained by the first-order

separate (VP and VS) and second-order separate (UP and

US), and while Fig. 6b is the corresponding results

obtained by the first-order mixed (V) and second-order

mixed (U) equations, and plus the stacked VP ? VS and

UP ? US results. Besides the presence of more compli-

cated seismic sections, same conclusions can also be

drawn from Fig. 6 as in Fig. 2. Figure 7a shows a z-

component synthetic seismogram at location (x = 690 m,

z = 890 m) simulated by the first-order and second-order

separate equations, and Fig. 7b is the corresponding

results obtained by the first-order and second-order mixed

equations, and plus the stacked VP ? VS and UP ? US

results. In Fig. 7 the separate P-wave phases include

direct P, reflected P1P1 and P1P2P2P1, and reflected and

converted S1P1, S1P2P2P1, S1P2S2P1, and S1S2S2P1; and

the separate S-wave phases include direct S, reflected

S1S1 and S1S2S2S1, and reflected and converted P1S1,

P1S2P2S1, and P1S2S2S1, which are the same regardless of

the first-order or second-order separate equations used for

obtaining synthetic seismograms. For these clearly sepa-

rate P and S synthetic seismograms, the predicted travel

times for each phase are coincided with the corresponding

onset times of the synthetic seismograms. The stacked

synthetic seismograms (VP ? VS or UP ? US) are similar

to the mixed synthetic seismograms (V or U), but the

onset time for each phase is no longer visible, due to the

stacked energy content between the two or more nearby

phases; for example, the onset of the direct S arrival is

clearly visible in the separate S synthetic seismograms

(VS or US), but not on the stacked (VP ? VS or UP ? US)

or mixed (V or U) synthetic seismograms. With the sep-

arate P- or S-wavefield it is easy to recognize the different

Fig. 4 Diagram showing a three-layered fault model, in which the

model is divided into five regions by two fault-like interfaces. In

figure, the red cross indicates the source location and 100 receivers

located along the receiver line with 10-m spacing interval

Table 2 The model parameters for the three-layered fault model

VP (m/s) VS (m/s) q (kg/m3)

Region 1 3,500 2,059 2.6

Region 2 3,600 2,118 2.4

Region 3 3,800 2,235 2.2

Region 4 4,000 2,353 2.0

Region 5 3,400 2,000 2.8
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seismic phases, which can be further confidentially sup-

ported by the ray-tracing algorithm, such as we did by the

multistage MSPM method.

6 Conclusions

To obtain pure P- or S-wavefields, we examine and

compare two kinds of separate elastic wave equations

(that is the first-order separate velocity–stress equations

and the second-order separate displacement–stress equa-

tions) for seismic wavefield simulation. The comparisons

of wavefield snapshots, common-source gathers, and

individual seismograms are given. Furthermore, the

stacked seismic wavefields for both the pure P- and

S-wavefields are compared with the mixed wavefields

obtained by the first-order and second-order full elastic

wave equations. The simulation results for the three

different models indicate that (1) comparable pure P-

Fig. 5 a Similar to Fig. 1a, but for a three-layered fault model at z-component (t = 320 ms) obtained by the two different separate elastic wave

equation approaches. b Similar to (a), but obtained by the two different separate elastic wave equation approaches and plus the stacked results of

VP ? VS and UP ? US. In the figure, the number 1 is for P, 2 is for S, 3 is for P1P1, 4 is for P1S1, 5 is for S1S1, 6 is for P1P2, 7 is for P1S2, 8 is for

S1S2, 9 is for P1S2P2, 10 is for P1P2S3, 11 is for P1P2P3, 12 is for S1S2S2, 13 is for P1P2S2, and 14 is for P1S2P2P1
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and S-wavefields can be obtained by solving the first-

order and second-order separate elastic equations; (2)

the stacked wavefields for both the pure P- and

S-wavefields are similar to those mixed wavefields

obtained by the corresponding (first-order or second-

order) full elastic wave equations; (3) the computational

accuracies are at a similar levels for the four different

approaches, but the separate elastic wave equations

consume more CPU time, nearly one and a half times

as much as full elastic wave equations; (4) the separate

elastic wave equation simulation has the advantage over

the full elastic wave equation simulation in terms of

phase identification and onset time picking; and (5) it is

easy to fully separate the seismic wavefield directly by

using the first-order or second-order separate elastic

wave equations.

Fig. 5 continued
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Fig. 6 a Similar to Fig. 2a, but for a three-layered fault model at location of z = 990 m obtained by the two different separate elastic wave

equation approaches. b Similar to (a), but obtained by the two different separate elastic wave equation approaches and plus the stacked results of

VP ? VS and UP ? US. In the figure, the numbers from 1 to 10 indicate different seismic phases. 1 for P, 2 for S, 3 for P1P1, 4 for P1S1/S1P1, 5 for

S1S1, 6 for P1P2P2P1, 7 for S1P2P2P1/P1P2P2S1, 8 for S1P2S2P1/P1S2P2S1, 9 for S1S2S2P1/P1S2S2S1, 10 for S1S2S2S1
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Fig. 6 continued
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Fig. 7 a Similar to Fig. 3a, but for a three-layered fault model at location (x = 690 m, z = 890 m) of z-component synthetic seismogram
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