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Abstract Recovering accurate data is important for both earthquake and exploration seismology studies,

when data are sparsely sampled or partially missing. We present a method that allows for precise and accurate

recovery of seismic data using a localized fractal recovery method. This method requires that the data are self-

similar on local and global spatial scales. We present examples that show that the intrinsic structure associated

with seismic data can be easily and accurately recovered by using this approach. This result, in turn, indicates

that seismic data are indeed self-similar on local and global scales. This method is applicable not only for seismic

studies, but also for any field studies that require accurate recovery of data from sparsely sampled datasets with

partially missing data. Our ability to recover the missing data with high fidelity and accuracy will qualitatively

improve the images of seismic tomography.
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1 Introduction

In seismic studies, it is crucial to have a sufficient

amount of data that represent the study area, and al-

low for meaningful conclusions to be drawn. However,

in practice, seismic data are usually collected from

sparsely sampled stations. In many cases, data may be

collected from seismic arrays with missing traces or sta-

tions because of reasons such as: malfunctioning instru-

mentation, presence of obstacles, presence of no-access

areas, feathering, dead traces, and/or economic consid-

erations. Most multi-trace data processing algorithms

cannot adequately handle irregular sampling problems.

These difficulties make it challenging to obtain de-

tailed information on subterranean structures, and to

avoid spatial aliasing. Numerical recovery of seismic

data has therefore become a valuable tool in amending

unevenly distributed datasets. In particular, interpolat-

ing seismic traces or recovering seismic data from one
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specific seismometer is common when reconstructing

seismic datasets, but unfortunately, conventional recov-

ery methods typically fail to provide details that are

useful in revealing the fine structures presented in seis-

mic wavefields. Thus, it is needed to develope a new

recovery approach that can provide detailed, accurate

recovery of seismic traces.

Conventional interpolation approaches (Larner et

al., 1981; Kabir and Verschuur, 1995; Hindriks and Dui-

jndam, 2000; Trad et al., 2003; Wang, 2002; Liu and

Sacchi, 2004; Zwartjes and Sacchi, 2007) are valid for

the de-aliasing of seismic events, seismic data are usu-

ally self-similar on both local and global scales. Stan-

dard interpolation recovery approaches are not optimal

methods for dealing with data that exhibit local-global

self-similarity. Using fractal methods to recover seismic

data may yield ideal results, since fractals are them-

selves self-similar on local and global spatial scales. In

contrast, non-fractal interpolation recovery methods are

easily adapted to smooth data sets, but usually ignore

detailed structures and local properties of more compli-

cated data sets, including data sets with irregularities,

or sampling gaps.

Conventional fractal recovery methods based on

the Random Fractional Brown Motion model (Barns-
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ley and Demko, 1985; Fan et al., 2005) assign the

same value for the vertical scaling factor, which plays

the most important role in the whole recovery process

throughout the entire interpolated interval. This gener-

alization makes it difficult to obtain the important in-

formation that carries details about the local properties

of the data. In addition, conventional fractal interpola-

tion methods do not have any explicit expression, so the

approach is often a complicated, iterative process.

2 Basic formulas

In this paper, we employ explicitly localized, frac-

tal interpolation functions within interpolating inter-

vals that use explicit-variable vertical scaling factors

throughout the whole data recovery process. Conse-

quently, we are able to successfully remove the above-

mentioned limitations of conventional fractal recovery

methods by using affine transform and iterative func-

tion systems. The basic idea is that the localized fractal

interpolation function used to recover the missing seis-

mic data is derived from the concepts of affine trans-

form and the iterated function systems. We assume here

that the data are self-similar on local and global spatial

scales, and that the vertical scaling factors, which play

the most important role during the recovery process,

are explicitly represented by the variable endpoints of

the local interpolating intervals (Barnsley and Demko,

1985; Singer and Zajdler, 1999; Chu and Chen, 2003;

Navascués and Sebastián, 2004; Fan et al., 2005). Gen-

erally, the two-dimensional affine transform (map) is de-

fined by:
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where ωn is a contracting mapping. The zero in the coef-

ficient matrix guarantees that the resulting linear fractal

interpolation function will be a single value (Barnsley

1986). There are N maps for the N+1 interpolation

points, and the interpolation points are required to be

single-valued with respect to their first index.

Usually, Ln(x) and Fn(x, y) are defined as localized

linear functions that have the expression

Ln(x) = anx+ en

and

Fn(x, y) = cnx+ dny + fn, (2)

respectively. Each affine map is constrained to map the

endpoints of the set of interpolation points to two con-

secutive interpolation points, which are
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where (xn−1, yn−1) and (xn, yn) are two consecutive in-

terpolation points with xn>xn−1. (x0, y0) and (xN , yN)

are the endpoints associated with the interpolation

points. Once the interpolation points are chosen, the

free parameters of each affine map are then determined.

The adjustable parameter dn(|dn| < 1), which is

called the vertical scaling factor, plays a key role in the

data recovery.

3 Time-domain implementation

If we assume that ymax and ymin are the maximum

and minimum over the interval [xn−l, xn+l], and ζ is

determined by ζ = 1.0 + random(n), where random(n)

is a random deviate generated from a uniform (0, 1)

distribution, then the vertical scaling factor dn can be

represented by

dn =
yn − yn−1

ζ
√

(ymax − ymin)2 + (yn − yn−1)2
. (4)

Because random(n) is unique at the nth point, the

vertical scaling factor dn is unique. Apparently, the ver-

tical scaling factor dn calculated in this way ranges from

−√
2/2 to

√
2/2. From equations (1), (2), (3) and (4),

the high fidelity, localized, fractal recovery approach can

be constructed.

Feng and Zhou (1998) discussed the stability of

one approach that is used in this paper. Wang and Fan

(2011) discussed the analytical characteristics of frac-

tal interpolation functions with function-vertical scal-

ing factors. Their results guaranteed that our method

is feasible in recovering the seismic data.

To increase the method’s efficiency, we introduce

the inorder traversing binary tree algorithm into the re-

covery process (see appendix).

4 Influence of the vertical scaling

factors to the accuracy of fractal

recovery

In order to investigate how the vertical scaling fac-

tors influence the accuracy of fractal recovery proposed

in this paper, we use the Ricker wavelet as the test func-
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tion to analyze the variation tendency of fractal recovery

errors with the variation of vertical scaling factors.

We carry out the experiments with fixed and vary-

ing vertical scaling factors. The results demonstrate

that the explicit expression of the vertical scaling factors

significantly improves the accuracy of fractal recovery.

The expression of the wavelet is

f(t) = [1− 2(πf0t)
2]e−(πf0t)

2

, (5)

where the constant parameter f0 is the central fre-

quency of the wavelet, and t is the time.

Table 1 gives the values of the fixed vertical scaling

factors and the corresponding recovery errors. Figure

1a shows the reference curve and the recovered curves

computed by the fractal recovering approach with dif-

ferent fixed vertical scaling factors. The recovery error

increases proportionally with an increase in the vertical

scaling factors. Figure 1b illustrates the relationship be-

tween the recovery errors and the values of the vertical

scaling factors.

Figure 1a shows that the recovered curves deviate

from the theoretical curve with an increase in the verti-

cal scaling factors, which indicates that the recovery er-

rors increase proportionally with an increase in vertical

scaling factors. Figure 1b demonstrates this observation

more clearly.

Table 1 Vertical scaling factors and the corresponding recovery errors for the Ricker wavelet

dn 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.90

Error (%) 0.016 0.06 0.12 0.20 0.30 0.46 0.70 1.13 2.14 3.41
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Figure 1 Recovery errors of the Ricker wavelet. (a) Reference curve and the recovered curves com-

puted by fractal recovering approach with different fixed vertical scaling factors. The solid line is the

reference curve and the dashed lines are the recovered curves with different vertical scaling factors. (b)

Variation of the recovery errors to the vertical scaling factors.

In order to compare the accuracy of the data re-

covery using the explicit vertical scaling factors shown

in equation (4) with that of the fixed vertical scaling

factors, we still use the Ricker wavelet as an example.

Figure 2a shows the recovery curve (dashed line) with

explicit vertical scaling factors, and Figure 2b shows

how the vertical scaling factors vary with different in-

terpolating points.

Figure 2 shows that the recovery accuracy is very

good, even if the vertical scaling factors change dramat-

ically with the change of the interpolating points.

5 Numerical tests

To demonstrate the validity and the reliability of

the fractal recovery method, we show a typical recovery

example using the recovery approach for the step func-

tion and the derivative of a Gauss wavelet. Figures 3a

and 3b compare the original curves and the recovered

curves for the step curve and the derivative curve of
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the Gauss function, respectively. The dashed lines were

obtained using the localized fractal recovery approach

presented here, and the solid lines are the exact curves.

Although the new recovery method appears simple, it

is both accurate (Figure 1) and efficient. This method

is not only suitable for unsmoothed (Figure 3a) and

smoothed (Figure 3b) data structures, but accurately

recovers the local properties of a data set (Figure 3a).
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Figure 2 Recovery accuracy of the explicit vertical scaling factors. (a) Fractal recovery curve of the

Ricker function with explicit vertical scaling factors. (b) Variation of the vertical scaling factor with

the change of interpolating points.

As is known, the heterogeneous model is more re-

alistic than a plane-layered model, and is also more

complex in application. To evaluate the capability of

our fractal method in the presence of heterogeneity,

we designed a heterogeneous model (Figure 4a) and

synthesized common-shot seismograms. The physical

parameters of the heterogeneous model are given in

Table 2. The source is located at the surface in the cen-

ter of the model, and the receivers are symmetrically

located on both sides of the source. The original (solid

line) and the recovered (dashed line) seismograms are

shown in Figure 4b. As can be seen from the figure, the

recovered seismogram accurately resembles the original

seismogram. To confirm the similarity between the two

Original curve
Recovered curve

Sampling points
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Figure 3 Testing the accuracy of the localized fractal recovery method presented in this paper. (a)

Original data curve (solid line) and recovered data curve (dashed line). (b) Original Gauss wavelet

(solid line) and recovered wavelet (dashed line).
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Figure 4 (a) Heterogeneous model (Zhang et al., 2006). (b) Originally synthesized (solid line) and recovered (dotted

line) common shot seismograms.

Table 2 The physical parameters of the heterogeneous model (Zhang et al., 2006)

No. of media C11/1010Pa C13/1010Pa C33/1010Pa C55/1010Pa α0/m·s−1 β0/m·s−1 ε δ ρ/kg·m−3

1© 1.881 6 0.652 8 1.881 6 0.614 4 2 800 1 600 0.00 0.00 2 400

2© 2.348 9 0.786 9 2.060 5 0.667 0 2 900 1 650 0.07 0.03 2 450

3© 2.388 0 0.828 2 2.132 1 0.683 3 2 950 1 670 0.06 0.03 2 450

4© 3.123 3 0.964 3 2.402 5 0.810 0 3 100 1 800 0.15 0.08 2 500

5© 4.006 4 1.229 5 2.861 7 0.949 9 3 350 1 930 0.20 0.10 2 550

6© 3.832 2 1.320 2 2.777 0 0.940 0 3 300 1 920 0.19 0.17 2 550

7© 3.562 5 1.169 1 2.873 0 0.973 4 3 350 1 950 0.12 0.09 2 560

8© 3.369 6 1.076 4 3.369 6 1.146 6 3 600 2 100 0.00 0.00 2 560

Note: α0, β0, ε, δ are Thomsen’s parameters obtained from Cij, ρ is density.

seismograms, we computed the cross-correlation coeffi-

cient between the recovered seismogram, which was pur-

posefully erased from the common-shot record, and the

original one. The resulting coefficient of 0.9912 demon-

strates the similarity between the two. In addition, the

coefficient of determination is 0.880 2, further indicating

a good correlation between the recovered seismogram

and the original one. These two tests confirm that our

method of recovering the lost data is robust.

6 Real data tests

We now demonstrate an application of the ex-

plicit fractal recovery approach in recovering high-

resolution seismic data from sparsely and non-uniformly

distributed seismic stations. The example illustrated

here uses seismic data from the Jiyang Depression and

the Southern Bohai Bay Basin in Northern China (Zhao

et al., 2004). We selected records from a seismic event

recorded at ten seismic stations. The seismogram is

shown in Figure 5a. The intervals between the adja-

cent two stations range from 5.28 km to 15.79 km, and

the average spacing between stations is 10 km. Location

information from the seismic event is given in Table 3.

The seismic data are band-pass-filtered between

0.05 Hz and 4 Hz. Instrumental responses as well as

mean and linear trends are removed by data filter-

ing. Because the seismogram is complicated and highly

irregular, conventional recovery approaches cannot re-

produce the local properties and detailed structure

of the dataset. We eliminated the even traces in the

seismogram section to construct a sparsely sampled

seismogram (Figure 5b) for recovery purposes. Fig-

ure 5c shows the seismogram section after recovery

with the newly developed fractal recovery approach.

Comparing the original and recovered seismogram sec-

tions, we find that the two are essentially identical

in amplitude, phase and waveform. To demonstrate the
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Table 3 Parameters of the seismic event used in this paper

Event No.
Origin time (UTC)

Lat./◦N Long./◦E Depth/km MW
Date

a-mo-d

Time

h:min:s

010102 2001-01-02 07:30:04 6.75 126.81 33 6.4

Trace number

t/s

Trace number

t/s

Trace number

t/s

t/s
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Figure 5 Recovery of nonuniform seismic data. (a) Original seismogram section from seismic traces of

event 010102 at seismic stations 143SLX, 137HJZ, 131LJZS, 125XFX, 119YFZ, 113YZC, 107XZX, 101QDZ,

95QDZ and 87SZZ. (b) Sparse seismogram section (the even traces are erased from panel a). (c) Recovered

seismogram section, including the even traces from Figure 5a and the interpolated traces. (d) Comparison of

original seismogram (solid line) at Station 131LJZS and recovered seismogram (dashed line).

precision and accuracy of the recovery method, we com-

pared a recovered trace with its original trace (which

was erased in the initial section). This comparison yields

a near-perfect match (Figure 5d). Correlation analy-

sis for this recovered trace and its original trace show

that the determination coefficient R2 is 0.985. These

results indicate that the fractal recovery method can

accurately deal with the problems associated with com-

plicated data structures, provided that the dataset is

self-similar on local and global spatial scales. Such a

result would normally be impossible by using conven-

tional data recovery methods. Also, since the recovery

is essentially identical to the original data, the conclu-

sion can be made that the seismic data have the local

and global self-similarity property associated with frac-

tal geometry. Actually, a detailed recovery method of

complex data sets is realized by using the high-fidelity

fractal approach proposed in this paper.

7 Discussion and conclusions

In summary, we have proposed a new method for

recovering seismic data based on a localized fractal that

is particularly adept at amending unevenly distributed
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datasets. Although this method is a data-driven algo-

rithm that does not require any geological or geophysi-

cal assumptions, the seismic data naturally contain ge-

ological or geophysical information of the studied area,

and are self-similar on local and global spatial scales.

The new approach is numerically stable and easier to

implement. The method is robust and able to gener-

ate near-perfect results, as we have demonstrated with

real-world examples. These numerical results illustrate

that the use of our high-fidelity fractal recovery scheme

is a valid and efficient approach, not only for seismic

wave field de-aliasing, but also for detailed, amplitude-

preserving recovery of seismic data from sparsely and

unevenly distributed seismic traces.

Results shown in Figure 5 demonstrate the use-

fulness of the localized fractal recovery method, and in

particular, its ability to obtain detailed information for

high-resolution seismic imaging of the Earth’s interior.

Indeed, this method is valid for any research field that

requires detailed, accurate recovery of sparsely sampled

and irregular data sets, provided that the data exhibits

local and global self-similarity. Also it is noted that our

approach only consider the first-order interpolation re-

covery. Futher studies are needed for the effects on data

that may be found with higher orders. Extending the

approach to higher dimensions may yield a more pre-

cise, reliable, and economical method for high-resolution

imaging and high-precision wavefield reconstructions.

The examples illustrate that the fractal recovery

algorithm provides significant improvements over the

conventional methods. We expect that this algorithm

can be extended to reconstruct data from missing seis-

mic datasets with even larger gaps, and this is a question

that will be investigated in the near future.
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Appendix

The following codes illustrate how we realize the inorder traversing binary tree algorithm.

{ InitStack(stack) // Construct a null stack

Push(stack, Y BT ) // Push the root point into the stack, top=top+1

While(not empty(stack))

{while(GetTop(stack)!=null)

push(stack, GetTop(stack)→lchild) // Push the left sub-tree into the stack

stack(top)=Pop(stack) // move upward the top of the stack

If (not empty(stack))

{visit(GetTop(stack))

stack(top)=Pop(stack)

push(stack, GetTop(stack)→rchild) // Push the right sub-tree into the stack

}
}

}
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