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Abstract A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident

plane SH waves is presented. Although some previous analytical work had already dealt with hill topography

of semi-circular and shallow circular, our work aims at calculating surface motion of very prolate hill for high

incident frequency, and explaining the special vibrating properties of very prolate hill. Accuracy of the solution

is checked by boundary conditions, numerical results for surface motion of oblate and prolate hills are calculated,

and some conclusions are obtained.
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1 Introduction

One of the major concerns of strong-motion seis-

mology is to explain and quantify seismic characteristics

of local topographies. It may be studied either by ana-

lytical or numerical methods. The analytical method is

often called wave function expansion method. Numeri-

cal methods are methods such as the finite differences,

finite elements, boundary elements, etc. The advantage

of numerical methods is that they can be applied to

local topographies of arbitrary shape, while analytical

methods are essential for exploring the physical nature

and checking the accuracy of numerical methods.

The pioneering work for the analytical solutions

was done by Trifunac (1971, 1973), and he developed

the closed-form analytical solutions of surface motion

of a semi-cylindrical alluvial valley or canyon for inci-

dent plane SH waves, then the solutions were extended

to the case of a semi-elliptical alluvial valley or canyon

by Wong and Trifunac (1974a, b), and to the case of a

shallow circular alluvial valley and canyon by Yuan and

Liao (1994, 1995).

However, the closed-form analytical solutions of
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surface motion of a semi-cylindrical or a shallow cir-

cular hill for incident plane SH waves were developed

more recently by Yuan and Men (1992) and Yuan and

Liao (1996) using auxiliary function method. Then the

solutions were improved to higher incident frequency by

sine and cosine series expansion technique (Lee et al.,

2006).

Compared with a semi-cylindrical hill or a shal-

low circular hill, a semi-elliptical hill is more approxi-

mate for natural convex topography, and especially it

can simulate a very prolate hill.

This paper presents a closed-form solution of sur-

face motion of semi-elliptical hill for incident plane SH

waves by using the sine and cosine series expansion tech-

nique proposed by Lee et al. (2006), and aims at giving

results for some very prolate hills for high incident fre-

quency and explaining some vibrating properties.

2 The model

As shown in Figure 1, the model to be analyzed

in this paper is located in elliptical coordinates which

define a family of confocal ellipses and confocal hyper-

bolas intersecting with each other orthogonally. We de-

scribe an oblate hill by {(ξ, η)|ξ=ξ0, 0≤η≤π} with y≤0

for its half-space, and a prolate hill by {(ξ, η)|ξ=ξ0,

−π≤η≤−π/2 ⋃
π/2≤η≤π} with x≥0 for its half-space.

The material property of soil is described by its rigidity
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Figure 1 The model in elliptical coordinates. An

oblate hill is defined by {(ξ, η)|ξ=ξ0, 0≤η≤π} with

y≤0 for its half-space, or a prolate hill is defined by

{(ξ, η)|ξ=ξ0, −π≤η≤−π/2 ⋃
π/2≤η≤π} with x≥0 for

its half-space.

μ and shear wave velocity β. The half-space is elastic,

isotropic and homogeneous.

2.1 Elliptical coordinates

Elliptical coordinates define a family of confocal

ellipses and confocal hyperbolas intersecting with each

other orthogonally. The relationship between Cartesian

coordinates x−y and elliptical coordinates is

{
x = e cosh ξ cos η 0 ≤ ξ< ∞
y = e sinh ξ sin η 0 ≤η≤ 2π

, (1)

where ξ is radial coordinate and η is angular coordinate

with e being the focal length of ellipse. The minor-to-

major axial ratio M is defined as

M =
minor axis B

major axis A
= tanh ξ. (2)

With different minor-to-major axial ratioM , we can de-

fine either oblate hills or prolate hills, and some typical

oblate hills or prolate hills shown in Figure 2 are studied

in this paper.

Figure 2 Hill with different minor-to-major axial ratios M .

The two-dimensional Helmholtz equation in ellip-

tical coordinates for scalar displacement potentials ϕ is

(
∂2ϕ

∂ξ2
+

∂2ϕ

∂η2

)

+ e2k2(cosh2ξ − cos2η)ϕ = 0, (3)

where k=ω/β is wave number.

Separating variables by ϕ(ξ, η)=X(η)Y (ξ) for

equation (3), it comes two independent ordinary dif-

ferential equations:

X ′′(η) + (b− 2q cos 2η)X(η) = 0, (4a)

Y ′′(ξ) − (b− 2q cosh 2ξ)Y (ξ) = 0, (4b)

where q=e2k2/4 and b is the characteristic number. The

solutions for equation (4a) are called angular Mathieu

functions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ce2m(η, q) =

∞∑

r=0

A2m
2r (q) cos 2rη

se2m+2(η, q) =
∞∑

r=0

B2m+2
2r (q) sin 2rη

ce2m+1(η, q) =

∞∑

r=0

A2m+1
2r+1 (q) cos(2r + 1)η

se2m+1(η, q) =

∞∑

r=0

B2m+1
2r+1 (q) sin(2r + 1)η

. (5)

There are several normalization conventions of an-

gular Mathieu functions and here we adopt the following

orthogonal series:

∫ 2π

0

ce2m(η, q)dη =

∫ 2π

0

se2m(η, q)dη =

π (or other constant). (6)

The solutions for equation (4b) are called radial Math-

ieu functions:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mc
(j)
2m+p(ξ, q) =

1

A2m+p
p εp

∞∑

r=0

(−1)
r+m

A2m+p
2r+p ×

[
Jr(μ1)Z

(j)
r+p(μ2) + Jr+p(μ1)Z

(j)
r (μ2)

]
p ∈ {0, 1}

Ms
(j)
2m+p(ξ, q) =

1

B2m+p
p

∞∑

r=0

(−1)
r+m

B2m+p
2r+p ×

[
Jr(μ1)Z

(j)
r+p(μ2)− Jr+p(μ1)Z

(j)
r (μ2)

]
p ∈ {1, 2}

,

(7)

where ε0=2, ε1=1, μ1=
√
qexp(−ξ), μ2=

√
q exp(ξ), and

Z(j)(·) means the Bessel function of jth kind.

With q→0, the ellipse regresses into a circle and the

confocal hyperbolas regress into radius of the circle. Al-

so, angular Mathieu functions cem(η, q) and sem(η, q)

become trigonometric functions cosmη and sinmη while

radial Mathieu functions become Bessel functions.

Figure 3 Two regions model.

2.2 Free-field motion

It is assumed that the incident plane SH wave u

has out-of-plane motion in z-direction with circular fre-

quency ω, incident angle θ and amplitude of 1,

u = exp

[

−iω

(

t− x

β
cos θ − y

β
sin θ

)]

. (8)

The motion u can be expressed by Mathieu func-

tions (the time factor exp(−iωt) is omitted here and

thereafter):

u = 2

∞∑

m=0

imcem(η, q)Mc(1)m (ξ, q)cem(θ, q)+

2
∞∑

m=1

imsem(η, q)Ms(1)m (ξ, q)sem(θ, q). (9)

More details on theory of elliptical coordinates and

Mathieu functions are available in literatures (McLach-

lan, 1951; Morse and Feshback, 1953; Pao and Mow,

1973).

2.3 Oblate hill

The half-space is defined by y≤0 for an oblate hill

as shown in Figure 1. The model is divided into two

parts: an interior region Ω and an exterior region D.

Ω region is a full ellipse with the hill as its upper part

by boundary L and a portion of the half-space as its

lower part by boundary L. D region is the rest of half-

space after subtracting the full ellipse. The contact be-

tween the two regions is assumed to be welded well.

Boundary Γ is the flat surface of half-space, namely

Γ={(ξ, η)|ξ∈(ξ0,+∞), η=0, π}. If we use uΩ and uD to

denote wave functions in regions Ω and D, the bound-

ary conditions for the oblate hill are:

1) Traction-free condition at the flat surface of half-

space

σηz |Γ =
μ

eJ

∂uD

∂η

∣
∣
∣
∣
Γ

= 0 (ξ, η) ∈ Γ (10a)

2) Traction-free condition at the hill surface

σξz |L =
μ

eJ

∂uΩ

∂ξ

∣
∣
∣
∣
L

= 0 (ξ, η) ∈ L (10b)

3) Continuity of displacement and traction along

the contact of two regions

uD
∣
∣
L
= uΩ

∣
∣
L

and
μ

eJ

∂uD

∂ξ

∣
∣
∣
∣
L

=
μ

eJ

∂uΩ

∂ξ

∣
∣
∣
∣
L

(ξ, η) ∈ L (10c)

where J is a constant and J2=(cosh2ξ−cos2η)/2.

The free-field solution in the absence of the hill is

obtained by adding equation (9) for angle θ (incident

wave) to another equation (9) for angle −θ (reflected

wave). Since sem(θ, q) is odd in respect of θ, the free-

field solution is

uin+re = 4

∞∑

m=0

imcem(η, q)Mc(1)m (ξ, q)cem(θ, q). (11)

The existence of the hill will introduce scattering

waves us in region D, so the total motion in this region

is uD=uin+re+us. Since us and uΩ must satisfy equation

(3), they may be taken the following form:

us =
∞∑

m=0

amcem(η, q)Mc(3)m (ξ, q)+

∞∑

m=1

dmsem(η, q)Ms(3)m (ξ, q)

(12)

uΩ =

∞∑

m=0

bmcem(η, q)Mc(1)m (ξ, q)+

∞∑

m=1

cmsem(η, q)Ms(1)m (ξ, q)

(13)

where am, bm, cm and dm are all unknowns. Radial

Mathieu functions Mc(3) and Ms(3) are chosen for us
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because they correspond to diverging wave if combined

with time factor exp(−iωt). Since dsem(η, q)/dη 	=0 at

Γ , the unknowns dm in equation (13) must be equal to

0. Then, substitute uin+re in equation (11) and us in

equation (12) with that in equations (10b) and (10c),

yielding

L:

∞∑

m=0

bmcem(η, q)Mc(1)m (ξ0, q) +

∞∑

m=1

cmsem(η, q)Ms(1)m (ξ0, q) = 0

L:

∞∑

m=0

[
4imcem(η, q)Mc(1)m (ξ0, q)cem(θ, q) + amcem(η, q)Mc(3)m (ξ0, q)

]
=

∞∑

m=0

bmcem(η, q)Mc(1)m (ξ0, q) +
∞∑

m=1

cmsem(η, q)Ms(1)m (ξ0, q)

L: μ

∞∑

m=0

[
4imcem(η, q)Mc(1)m

′
(ξ0, q)cem(θ, q) + amcem(η, q)Mc(3)m

′
(ξ0, q)

]
=

μ

∞∑

m=0

bmcem(η, q)Mc(1)m

′
(ξ0, q) + μ

∞∑

m=1

cmsem(η, q)Ms(1)m

′
(ξ0, q)

(14)

Equation (5) reveals that Mathieu functions

sem(η, q) and cem(η, q), although orthogonal in the

range [−π, π], are non-orthogonal in [−π, 0] or [0, π].

So equation (14) cannot be solved directly and the non-

orthogonal terms must be replaced by the orthogonal

ones. Cosine series {cosnη, n∈integer} satisfy this re-

quirement, and a sine function, after even extension,

can be expanded as (Lee et al., 2006)

sin rη =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2r

π

∞∑

n=0

εn
r2 − n2

cosnη − π ≤ η ≤ 0

2r

π

∞∑

n=0

εn
r2 − n2

cosnη 0 ≤ η ≤ π
n, r ∈ integer, n+ r ∈ odd, (15)

where ε0=1 and εn=2 for n≥1. Introducing equations

(5) and (15) into equation (14) yields three equations

that contain cosine terms only. After dropping item

cosnη and separating equations with period of π and

2π for convenience, it comes the desired form in equa-

tion (16). Every integer value of n decides an equa-

tion because of the orthogonality of the series {cosnη,
n∈integer}.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

m=0

{

b2mMc
(1)
2m(ξ0, q)A

2m
2n − c2m+1Ms

(1)
2m+1(ξ0, q)

∞∑

r=0

B2m+1
2r+1

π

2(2r + 1)ε2n

(2r + 1)
2 − 4n2

− a2mMc
(3)
2m(ξ0, q)A

2m
2n

}

=

4

∞∑

m=0

(−1)
m
ce2m(θ, q)Mc

(1)
2m(ξ0, q)A

2m
2n

∞∑

m=0

{

b2mMc
(1)′
2m (ξ0, q)A

2m
2n − c2m+1Ms

(1)′
2m+1(ξ0, q)

∞∑

r=0

B2m+1
2r+1

π

2(2r + 1)ε2n

(2r + 1)2 − 4n2
− a2mMc

(3)′
2m (ξ0, q)A

2m
2n

}

=

4

∞∑

m=0

(−1)
m
ce2m(θ, q)Mc

(1)′
2m (ξ0, q)A

2m
2n

∞∑

m=0

{

b2mMc
(1)′

2m (ξ0, q)A
2m
2n + c2m+1Ms

(1)′

2m+1(ξ0, q)

∞∑

r=0

B2m+1
2r+1

π

2(2r + 1)ε2n

(2r + 1)
2 − 4n2

}

= 0

(16a)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

m=0

{

b2m+1Mc
(1)
2m+1(ξ0, q)A

2m+1
2n+1 − c2m+2Ms

(1)
2m+2(ξ0, q)

∞∑

r=0

B2m+2
2r+2

π

8(r + 1)

4(r + 1)2 − (2n+ 1)2
−

a2m+1Mc
(3)
2m+1(ξ0, q)A

2m+1
2n+1

}

= 4

∞∑

m=0

(−1)
m
ice2m+1(θ, q)Mc

(1)
2m+1(ξ0, q)A

2m+1
2n+1

∞∑

m=0

{

b2m+1Mc
(1)′
2m+1(ξ0, q)A

2m+1
2n+1 − c2m+2Ms

(1)′
2m+2(ξ0, q)

∞∑

r=0

B2m+2
2r+2

π

8(r + 1)

4(r + 1)
2 − (2n+ 1)

2−

a2m+1Mc
(3)′

2m+1(ξ0, q)A
2m+1
2n+1

}

= 4
∞∑

m=0

(−1)mice2m+1(θ, q)Mc
(1)′

2m+1(ξ0, q)A
2m+1
2n+1

∞∑

m=0

{

b2m+1Mc
(1)′

2m+1(ξ0, q)A
2m+1
2n+1 + c2m+2Ms

(1)′

2m+2(ξ0, q)
∞∑

r=0

B2m+2
2r+2

π

8(r + 1)

4(r + 1)2 − (2n+ 1)2

}

= 0

(16b)

More details of the derivation can be found in Fu

(2008). The above infinite equations can be solved af-

ter being truncated, and once all the unknowns are ob-

tained, surface motion near the hill can be calculated.

2.4 Prolate hill

While for a prolate hill, it is convenient to redefine

the half-space by x≥0, with the surface of the hill and

the half-space represented by the thick dashed line in

Figure 1. The boundaries change to

L =
{
(ξ, η)| η ∈

[
−π
2
,−π

]⋃[π

2
,π

)
, ξ = ξ0

}

L =
{
(ξ, η)| η ∈

[
−π
2
,
π

2

]
, ξ = ξ0

}
(17)

Γ =
{
(ξ, η)| ξ ∈ (ξ0,+∞), η = ±π

2

}

while the formula in equation (10) remain the same.

The free-field solution uin+re for the prolate hill is

obtained by adding equation (9) for θ (reflected wave)

and equation (9) for π−θ (incident wave). Since

ce2m+1(π−θ, q)=−ce2m+1(−θ, q) and se2m(π−θ, q)=

−se2m(−θ, q), the free-field solution becomes

uin+re = 4

∞∑

m=0

(−1)
m
ce2m(η, q)Mc

(1)
2m(ξ, q)ce2m(θ, q)+

4
∞∑

m=0

(−1)mise2m+1(η, q)Ms
(1)
2m+1(ξ, q)se2m+1(θ, q).

(18)

In order to satisfy equation (10a), let the scattering

waves us be

us =

∞∑

m=0

a2mce2m(η, q)Mc
(3)
2m(ξ, q)+

∞∑

m=0

d2m+1se2m+1(η, q)Ms
(3)
2m+1(ξ, q). (19)

Mathieu functions ce2m(η, q) and se2m+1(η, q)

are orthogonal in range [−π/2,−π]⋃ [π/2, π) and

[−π/2,π/2], but ce2m+1(η, q) and se2m(η, q) are not,

so they should be treated. Setting η′=η+π/2 for equa-

tion (15), it comes

sin 2rη′ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−4r

π

∞∑

n=0

ε2n+1

4r2 − (2n+ 1)2
(−1)n−r+1 sin(2n+ 1)η′ η′ ∈

[
−π
2
,−π

]⋃[π

2
,π

)

4r

π

∞∑

n=0

ε2n+1

4r2 − (2n+ 1)
2 (−1)

n−r+1
sin(2n+ 1)η′ η′ ∈

[
−π
2
,
π

2

]

cos(2r + 1)η′ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2(2r + 1)

π

∞∑

n=0

ε2n

(2r + 1)2 − 4n2
(−1)n−r cos 2nη′ η′ ∈

[
−π
2
,−π

]⋃[π

2
,π

)

2(2r + 1)

π

∞∑

n=0

ε2n

(2r + 1)
2 − 4n2

(−1)
n−r

cos 2nη′ η′ ∈
[
−π
2
,
π

2

]

n, r ∈ integer . (20)
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Then introducing equations (5) and (20) into a set

of equations whose structure are similar to equation

(14), we obtain the final equation (21) for the prolate

hill, and am, bm, cm and dm are the unknowns.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

m=0

{

b2mMc
(1)
2m(ξ0, q)A

2m
2n + b2m+1Mc

(1)
2m+1(ξ0, q)

∞∑

r=0

[
(−1)

n−r
A2m+1

2r+1

π

2(2r + 1)ε2n

(2r + 1)
2 − 4n2

]

−

a2mMc
(3)
2m(ξ0, q)A

2m
2n

}

= 4

∞∑

m=0

(−1)
m
ce2m(θ, q)Mc

(1)
2m(ξ0, q)A

2m
2n

∞∑

m=0

{

b2mMc
(1)′
2m (ξ0, q)A

2m
2n + b2m+1Mc

(1)′
2m+1(ξ0, q)

∞∑

r=0

[
(−1)

n−r
A2m+1

2r+1

π

2(2r + 1)ε2n

(2r + 1)
2 − 4n2

]

−

a2mMc
(3)′

2m (ξ0, q)A
2m
2n

}

= 4
∞∑

m=0

(−1)mce2m(θ, q)Mc
(1)′

2m (ξ0, q)A
2m
2n

∞∑

m=0

{

b2mMc
(1)′

2m (ξ0, q)A
2m
2n − b2m+1Mc

(1)′

2m+1(ξ0, q)
∞∑

r=0

[
(−1)

n−r
A2m+1

2r+1

π

2(2r + 1)ε2n

(2r + 1)
2 − 4n2

]}

= 0

(21a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

m=0

{

c2m+1Ms
(1)
2m+1(ξ0, q)B

2m+1
2n+1 + c2m+2Ms

(1)
2m+2(ξ0, q)

∞∑

r=0

[
B2m+2

2r+2

π

8(−1)
n−r

(r + 1)

4(r + 1)
2 − (2n+ 1)

2

]

−

d2m+1Ms
(3)
2m+1(ξ0, q)B

2m+1
2n+1

}

= 4
∞∑

m=0

(−1)mise2m+1(θ, q)Ms
(1)
2m+1(ξ0, q)B

2m+1
2n+1

∞∑

m=0

{

c2m+1Ms
(1)′

2m+1(ξ0, q)B
2m+1
2n+1 + c2m+2Ms

(1)′

2m+2(ξ0, q)
∞∑

r=0

[
B2m+2

2r+2

π

8(−1)n−r(k + 1)

4(r + 1)2 − (2n+ 1)2

]

−

d2m+1Ms
(3)′
2m+1(ξ0, q)B

2m+1
2n+1

}

= 4

∞∑

m=0

(−1)
m
ise2m+1(θ, q)Ms

(1)′
2m+1(ξ0, q)B

2m+1
2n+1

∞∑

m=0

{

c2m+1Ms
(1)′
2m+1(ξ0, q)B

2m+1
2n+1 − c2m+2Ms

(1)′
2m+2(ξ0, q)

∞∑

r=0

[
B2m+2

2r+2

π

8(−1)
n−r

(k + 1)

4(r + 1)
2 − (2n+ 1)

2

]}

= 0

(21b)

3 Accuracy of the solutions

Accuracy of the solution can be checked by the

satisfaction extent of the boundary conditions. For this

purpose, dimensionless displacement residual error ub

and stress residual error σb are defined as

ub =

∣
∣uin+re + us − uΩ

∣
∣

u0

and

σb =

∣
∣σin+re + σs − σΩ

∣
∣

σ0
. (22)

The value of σb along boundary L equals that along

L. Here, u0 is the displacement amplitude of incident

wave with σ0=−|μu0ω|/β representing stress amplitude

of incident wave. It is convenient to define dimension-

less incident frequency ETA=2A/λ for an oblate hill

and ETA=2B/λ for a prolate hill, which describes the

relationship between characteristic dimension of the hill

and the incident wavelength λ. And Figures 4 and 5 il-

lustrate the displacement and stress residual errors ub

and σb under the vertical incident waves (θ=90◦) for the
two oblate hills and four prolate hills shown in Figure

2.
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Figure 4 Displacement residual error (ub) and stress residual error (σb) for oblate elliptical hill.

Figure 5 Displacement and stress residual error for prolate elliptical hill.

Figure 4 shows the residual error for oblate hills

with M=0.1 and 0.5, respectively. Because of the sym-

metry, only half is illustrated. It is noticed from the

figures that the residual errors ub and σb are relative-

ly large near the right rim (η=0◦), and that the stress

residual error σb is much larger than the displacement

residual error ub. And for oblate hills, if ETA≤10, trun-

cation term m=n=200 is enough to achieve the accura-

cy of 10−3 for the displacement residual error ub, except

at two rims.
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The relationship between ETA, M and q can be

written as

q =
(ETA× π)2

4

(
1−M2

)
for oblate hill, (23a)

q =
(ETA× π)2

4

(
1

M2
− 1

)

for prolate hill. (23b)

If ETA andM are beyond some values, or q is very large,

Mathieu functions calculation subroutines (e.g., Blanch,

1966; Leeb, 1979; Shirts, 1993a, b; Alhargan, 2000a, b,

2006) available now are still not accurate enough, and

consequently, residual error may become large. Accord-

ing to our experience, q≤180 is roughly the limitation.

Although q>180 does not necessarily indicate the fail-

ure of Mathieu functions, it is strongly recommended

that ub and σb should be checked carefully. For oblate

hills, the accurate results can be obtained even when

ETA is greater than 10. But for prolate hill, q is easy

to reach high value since M in equation (23b) appears

as the denominator, ETA can not be that high. Figure

5 shows the displacement and stress residual errors for

some prolate hills, and ETA can be 5.0 for M=0.5, can

be 2.0 for M=0.2, and can be 1.0 for M=0.1. However,

it should be pointed out that here, once the accurate

Mathieu functions for q>180 are available in the fu-

ture, the numerical results for higher ETA can be easily

achieved.

Figure 6 illustrates the displacement and stress

residual errors of an oblate hill with M=0.99 for

ETA=50. Here M=0.99 represents a nearly semi-

circular hill, and we use m=n=300 for truncation. It

is noticed that although ETA is extremely high here,

the residual error is still very small. This is because

that when minor-to-major axial ratio M→1, the ellipti-

cal hill degenerates into a semi-circular hill with Math-

ieu functions and radial Mathieu functions reducing to

trigonometric functions and Bessel functions, respec-

tively, whose accurate values are available even under

extremely high ETA. It is shown that the method in

this paper is effective for an extensive range of inciden-

t frequency as long as Mathieu functions are precise

enough.

Figure 7 shows the comparison of our result of

nearly semi-circular hill (M=0.99) for incident frequen-

cy ETA=1.0 with that of semi-circular hill by Yuan and

Men (1992). It can be seen that they agree very well

with each other.

Figure 8 illustrates the comparison of our result of

nearly semi-circular hill (M=0.99) for incident frequen-

cy ETA=5.0 with those of semi-circular hill by Lee et

al. (2006) and Liang and Ba (2008). It is observed that

there is nearly no difference among them.

Figures 9 and 10 show the comparison between

Figure 6 Displacement and stress residual

error for nearly semi-circular hill.

Figure 7 Comparison between the results by Yuan and Men (1992) for semi-circular hill and the results

by this paper for nearly semi-circular hill with M=0.99 under incident frequency ETA=1.0.
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Figure 8 Comparison among the results by Lee et al. (2006) (a), by Liang and Ba (2008) (b) for semi-circular

hill, and the results by this paper (c) for nearly semi-circular hill with M=0.99 under incident frequency ETA=5.0.

Figure 9 Comparison between the results by Lee and Amornwongpaibum (2011) (a) and by this paper (b)

for oblate hill with M=0.5 under incident frequency ETA=5.0.
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Figure 10 Comparison between results by Amornwongpaibum and Lee (2011) (a) and by this paper (b)

for prolate hill with M=1/1.9 under incident frequency ETA=5.0.

the results by Lee and Amornwongpaibum (2011) and

by this paper for oblate hill with M=0.5 under incident

frequency ETA=5.0, and the comparison between the

results by Amornwongpaibum and Lee (2011) and by

this paper for prolate hill with M=1/1.9 under incident

frequency ETA=5.0. It can be seen that both compar-

isons are in good agreement.

Here, it should be pointed out that, this paper,

Lee and Amornwongaibun (2011) and Amornwongaibun

and Lee (2011) are finished independently, with differ-

ent objective and different way of solution. To match the

coefficients of elliptic sine and cosine terms, this paper

expands elliptic cosine in terms of trigonometric cosine,

and elliptic sine in terms of trigonometric sine, as in

Wong and Trifunac (1974b), then uses the orthogonali-

ty of trigonometric cosine to express trigonometric sine

in terms of trigonometric cosine. This approach is more

classical. On the other hand, Lee and Amornwongaibun

(2011) and Amornwongaibun and Lee (2011) expressed

elliptic sine directly in terms of elliptic cosine, saving an

intermediate step of trigonometric sine and cosine. This

paper aims at very prolate hill, with M being taken up

to 0.1, while M is only taken up to 1/1.9 in Amornwon-

gaibun and Lee (2011).

4 Numerical results and analysis

The displacement amplitude and its phase can be

defined as

amplitude = |u| (24a)

and

phase = arctan [Imu/Reu] /π. (24b)

In the absence of local topography, surface displacement

amplitude equals 2 everywhere and its phase would be

a straight line

phase(u) = − ω

πβ
x = −ωA

πβ

x

A
cos θ =

− x

A
ETAcos θ. (25)

As the hill introduces scattering waves, the amplitude

and phase deviate from their original shapes.

Figures 11 through 16 illustrate surface motion

of the oblate and prolate hills shown in Figure 2. The

upper part of each sub-figure represents displacement
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Figure 11 Surface displacement amplitude and phase for oblate elliptical hill (M=0.1). In each sub-figure,

the upper part illustrates surface displacement amplitudes, with the lower part relevant phase.

amplitude with the lower representing its phase. Hori-

zontal axis in Figures 11 and 12 is x/A for oblate hills,

and horizontal axis in Figures 13 to 16 is y/B for prolate

hills.

Figures 11 and 12 show surface motion of oblate

hill with minor-to-major axial ratios M=0.1 and

M=0.5, respectively, with incident frequency ETA=0.5,

1.0, 2.0, 5.0, and 10.0, and with incident angle θ=0◦,
30◦, 60◦ and 90◦. For M=0.1, the hill is very oblate and

just likes a step. When ETA is low, the displacement

amplitude fluctuates mildly around 2 and its phase is

roughly a straight line. As ETA increases, the displace-

ment amplitude gradually vibrates wildly, and its peak

become larger especially for ETA=10.While forM=0.5,

the surface displacement amplitude increases signifi-

cantly, and its phase becomes more complex. In region

−1≤x/A≤1 (hill surface), the displacement amplitudes

are larger and fluctuate more vigorously for high in-

cident frequencies, also the nearly-standing waves can

be observed here. With incident angle θ increasing, the

displacement amplitude on hill surface increases cor-

respondingly, and with ETA increasing, the displace-

ment amplitude on the hill surface increases in general.

Surface displacement amplitude in two sides x/A<−1

and x/A>1 is less complicated. For vertical incidence

of waves, the displacement amplitude is much larger on

the hill surface than the half-space surface, while for

grazing incidence of waves, shadow zone is evident on

and behind the hill.
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Figure 12 Surface displacement amplitude and phase for oblate elliptical hill (M=0.5). In each sub-figure,

the upper part illustrates surface displacement amplitude, with the lower part relevant phase.

Figures 13 through 16 show the surface motion

for prolate hills with the minor-to-major axial ratios

M=0.7, 0.5, 0.2 and 0.1, respectively, with incident an-

gle θ=0◦, 30◦, 60◦ and 90◦, and with incident frequency

ETA having different limit for different M . In order to

be consistent with Figures 11 and 12 for oblate hills,

θ=0◦ still corresponds to grazing incidence of waves and

θ=90◦ to vertical incidence of waves. It is shown that

with ETA increasing, the displacement amplitude vi-

brates more vigorously and the displacement amplitude

increases for large incident angle (θ=90◦ or θ=60◦). For
the given ETA, the displacement amplitude on the hill

surface is larger for more prolate (i.e., with smaller M)

ones because the waves are reflected forth-and-back in-

side the hill more probably, which is a special property

in prolate hill. While for the given M , the displacement

amplitude on the hill surface increases with increasing

θ and the displacement amplitude reaches its maximal

value for θ=90◦. As for very prolate hills (e.g., with

M=0.2 and M=0.1), the extremely standard standing

waves with essential 180◦ phase change can be easily

observed on the hill surface, with the phase roughly be-

ing a straight line on the half-space surface. This is also

a special phenomenon in prolate hill.

5 Conclusions

This paper presents a closed-form analytical solu-

tion of surface motion of a semi-elliptical cylindrical hill

for incident plane SH waves using the sine and cosine
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Figure 13 Surface displacement amplitude and phase for prolate elliptical hill (M=0.7). In each sub-figure,

the upper part illustrates surface displacement amplitudes, with the lower part relevant phase.

Figure 14 Surface displacement amplitude and phase for prolate elliptical hill (M=0.5). In each sub-figure,

the upper part illustrates surface displacement amplitude, with the lower part relevant phase.
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Figure 14 Surface displacement amplitude and phase for prolate elliptical hill (M=0.5). In each sub-figure,

the upper part illustrates surface displacement amplitude, with the lower part relevant phase.

Figure 15 Surface displacement amplitude and phase for prolate elliptical hill (M=0.2). In each sub-figure,

the upper part illustrates surface displacement amplitude, with the lower part relevant phase.
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Figure 16 Surface displacement amplitude and phase for prolate elliptical hill (M=0.1). In each sub-figure,

the upper part illustrates surface displacement amplitude, with the lower part relevant phase.

series expansion technique, and accuracy of the solu-

tion is checked by the boundary conditions. Numerical

results for surface motion of oblate and prolate hills are

calculated, and some conclusions can be obtained.

In terms of subroutines of Mathieu functions avail-

able now, incident frequency can be very high for oblate

hills; while for very prolate hills, incident frequency can

not be that high. However, excellent numerical results

have been obtained for some very prolate hills in this

paper. If more accurate Mathieu functions subroutines

are available in the future, this problem can be solved.

Surface motion around a hill depends significant-

ly on hill shape, incident frequency, and incident angle,

and may fluctuate rapidly over short distances. For ver-

tical incidence of waves, the displacement amplitude is

much larger on hill surface than on half-space, while for

grazing incidence of waves, shadow zone is more evident

for more prolate hill. For the given incident frequency,

the displacement amplitude on the hill surface is larger

for more prolate hill, because waves are reflected forth-

and-back inside the hill more probably. For very prolate

hill, the extremely standard standing waves can be eas-

ily observed even for low incident frequency.
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