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Abstract This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal

polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results

we can see that three types of waves, fast P-waves, S-waves and slow P-waves, can be observed in the seismic

wave field. The experiments on anisotropic models demonstrate that the wavefront is elliptic instead of circular

and S-wave splitting occurs in anisotropic two-phase media. The research has confirmed that the rules of elastic

wave propagation in fluid-saturated porous media are controlled by Biot’s theory. Experiment on a layered fault

model shows the wavefield generated by the interface and the fault very well, indicating the effectiveness of CFPD

method on the wavefield modeling for real layered media in the Earth. This research has potential applications

to the investigation of Earth’s deep structure and oil/gas exploration.
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1 Introduction

According to the elastic theory for two-phase me-

dia, the media in the Earth’s interior is composed of

solid phase that is porous and homogeneously isotrop-

ic and fluid phase that is viscous and saturated. The

two-phase media can represent real materials to some

extent and the relevant theories have been vastly devel-

oped and have improved seismic exploration significant-

ly. Gassmann (1951) proposed the elastic wave propa-

gation theory in porous elastic solids and established

the famous Gassmann’s equations that describe quan-

titatively the relationship between seismic velocity and

porosity of the media. Then Biot (1956a, b) improved

Gassmann’s theory and laid the foundation of the the-

ory for two-phase media.
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Biot’s equations for the propagation of elastic wave

in fluid-saturated porous media stimulate the elastic

wave propagation in two-phase media (Biot, 1956a, b).

Wave equations established by Biot can be easily han-

dled in the situation of homogeneous media, however,

it is impossible to obtain the analytical solutions in the

presence of arbitrary heterogeneities in the media. Nu-

merous numerical simulation methods have been devel-

oped by seismologists to solve this problem. The widely

used methods include finite difference method (FDM),

finite element method and the Fourier method as well as

the spectral-element method, each of which has its own

merits and drawbacks (Zhou and Greenhalgh, 1992).

Seismologists all over the world have done a lot

of amazing works to promote the development of the

numerical modeling method in two-phase media. Zhu

and McMechan (1991) simulated the wave field in two-

phase media with finite difference method; Niu et al.

(1994) discussed the wave equation and the its solu-

tion with finite element method for cracked anisotropic

media saturated by fluid and gas; Dai et al. (1995) sim-
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ulated the wave field in anisotropic two-phase media by

solving the first-order velocity-stress wave equation; the

computational formulas of the wave equation for the

fluid-saturated porous media with a artificial bound-

ary were derived by Shao and Lan (2000) based on

finite element method; Yang (2002) simulated the elas-

tic wave propagation in two-phase periodic thin layers

(PTL) media and isotropic two-phase media with finite

element method; the pseudo-spectral numerical resolu-

tion and finite element resolution for wave propagation

in anisotropic two-phase media were obtained by Liu

and Li (2000) and Liu and Wei (2003); Sun and Yang

(2004) resolved the problems of frequency dispersion

and stability by adopting the staggered-grid technique;

the arbitrary even-order finite difference resolution of

the velocity-stress wave equation for three-dimensional

anisotropic two-phase media was given by Pei (2006).

In this paper, a convolutional differentiator method

based on generalized Forsyte orthogonal polynomial,

which was developed by Cheng et al. (2008) and applied

to model seismic wave propagation in heterogeneous

media by Li and Li (2008), is applied to the numerical

simulation of seismic wave propagation in heterogeneous

two-phase media. It has been proved that the method

has the advantages of both high computation efficiency

and precision. Here, the spatial derivatives of the wave

equations are computed by convolutional Forsyte poly-

nomial differentiator and the temporal derivatives are

computed by first-order staggered-grid finite-difference

scheme. The results demonstrate that the method is re-

liable and competent for seismic wave modeling in real

media.

2 Splitting of the first-order

velocity-stress equations

Biot’s theory for the elastic wave propagation in a

fluid-saturated porous media describes the characteris-

tics of wave field in fluid-saturated porous solid. Biot’s

theory is based on the following assumptions: (1) the flu-

id phase is continuous and the pores are connected; (2)

the porous materials are statistically isotropic; (3) the

size of the seismic wavelength is much larger than that

of the pores; (4) the deformations of the solid framework

are small; (5) the solid matrix is elastic; (6) there is no

relative displacement occurs between the fluid and solid

phase; (7) the dispersion and gravity are negligible.

The first-order velocity-stress can be written as fol-

lows:
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2) Velocity component of the solid phase
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3) Stress component of the fluid phase
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and 4) stress component of the solid phase
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In the equations above mentioned, σii|i=x,y,z is normal

stress of the solid phase while τyz, τxz and τxy are shear

stress of the solid phase; S is normal stress of the fluid

phase; vi|i=x,y,z is particle velocity of solid material in i

direction while Vi|i=x,y,z is particle velocity of fluid ma-

terial in i direction; ρ11 is density of the solid material,

ρ22 is density of the fluid material, and ρ12 is coupling

density parameter; Q is the coupling parameter relat-

ing to bulk variation between the solid phase and the

fluid phase, and R represents the elastic parameter re-

lating to the fluid phase; ε is the bulk strain of the fluid

phase; bi|i=x,y,z is dissipation coefficient which satisfies

bx=by=bz in isotropic two-phase media and bx=by in

vertical transversely isotropic Biot media; D6×6, which

varies in different media, is elastic coefficient matrix of

the solid phase. In homogeneously isotropic media,
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with only two separate elastic parameters A and N ,

while in transversely isotropic media,
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where, d11=d22=λ∐+2μ∐, d12=d21=λ∐, d13=d23=d31=

d32=λ⊥, d33=λ⊥+2μ⊥, d44=d55=υ, d66=μ∐ with five

separate elastic parameters λ∐, μ∐, μ⊥ λ⊥, and υ.

3 Convolutional Forsyte polyno-

mial differentiator

The interpolating function of the Forsyte polyno-

mial can be written as (Xie, 1981)

φ (x) = C0P0 (x) +

n∑

j=1

CjPj (x) (5)

which is a generalized orthogonal polynomial. In the

above equation,

P0 = 1

P1 (x) = (x− α1)P0 (x)

P2 (x) = (x− α2)P1 (x) − β1P0 (x)

P3 (x) = (x− α3)P2 (x) − β2P1 (x)
...
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,

f(xi) represents the value of the interpolated function

f(x) at the point xi. P0(x), P1(x), P2(x), · · · , Pj+1(x) in

equation (5) are defined as Forsyte polynomial system.

Taking the first-order derivative of equation (5)

with respect to x obtains

φ′ (x) =
dφ (x)

dx
= C1 +

N∑

j=2

CjP
′
j (x) . (6)

Then, Forsyte polynomial differentiator is written

as

d

dx
= C1 +

N∑

k=2

CkP
′
k (x) (7)

where

Ck =

m∑

i=1

Pk (xi)

m∑

i=1

P 2
k (xi)

.
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Equation (7) can be discretized as

d1(iΔx) = C1 +

N∑

j=2

CjP
′
j (iΔx) , (8)

where, i is the sampling index and Δx is the sampling

interval along x direction. A Gaussian function present-

ed as follow is used to truncate equation (8).

w(n) = ce−anΔx2

, |n| = 0, 1 , 2, · · · , mx. (9)

where, mx is the sampling number of unilateral trun-

cated length, c is a constant and a (0.1≤a≤0.75) is

the attenuation factor. By means of the window func-

tion (9), the first-order convolutional differentiator is

derived.

d̂1(iΔx) =

{
(−1)

i
d1(iΔx)w(i) i = 1, 2, · · · , m

−d̂1(jΔx) i = −1, −2, · · · , −m; j =− i
, (10)

d̂1(0Δx) = 0.

In practice, we need to choose appropriate length

and coefficients of the convolutional differentiator so

that both local information and global information of

the wave field can be taken into account. We used a

7-point differentiator, a 9-point differentiator and an

11-point differentiator to compute the derivatives, re-

spectively and we find that the precision of the 7-point

differentiator is obviously lower than that of the 9-point

differentiator, while the precision of the 11-point differ-

entiator is almost the same as that of the 9-point differ-

entiator but the amount of calculation is larger. So by

analysis and comparison, we choose the 9-point convo-

lutional differentiator, which has a appropriate length

for the computation of the derivatives, to compute the

wave propagation in two-phase media.

Figure 1 shows the amplitude variation with sam-

pling points of 9-point convolutional differentiator. As

shown in Figure 1, the amplitude attenuates quickly

and the optimal coefficients are antisymmetrical. These

attributes of the convolutional differentiator are very

important for taking both local and global information

of the wave field into consideration.

We chose Gaussian function f(x)=exp(-a2x2) (Li

and Li, 2008) as the test function to test the accuracy

of the 9-point CFPD. Figure 2 shows the result of com-

parison of the derivative obtained by 9-point Forsyte

orthogonal polynomial (CFPD) with the result from

pseudo-spectral method. We can see that the deriva-

tive obtained by 9-point CFPD is more accurate than

that from pseudo-spectral method, fitting the analytical

result very well. So it is confirmed that the 9-point

Sampling points

A
m

pl
itu

de
/

Figure 1 Amplitude versus sampling points for 9-

point convolutional differentiator.

CFPD can be used for the numerical modeling of seis-

mic wave propagation.

In CFPD scheme introduced here, the spatial and

temporal derivatives are obtained by CFPDmethod and

staggered-grid finite difference method, separately.

By analysis, the stability condition of CFPD

method can be written as vΔt/Δd≤√
2/π, which is sim-

ilar to that of the pseudo-spectral method (Gazdag,

1981). In the above inequality, v is the maximal velocity

of the media, Δt is the time sampling interval and Δd

is the spatial sampling interval. This stability condition

can effectively avoid the numerical dispersion caused by

unreasonable parameters of the model in the process of

computation.
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Figure 2 Comparison of accuracy of derivatives.

In order to absorb the artificial reflection from

the computational edge, we adopt the PML absorbing

boundary condition in Biot’s equations to attenuate the

outgoing waves and to eliminate the artificial reflections

(Li, 2011).

4 Numerical experiments

In numerical modeling of seismic wave propaga-

tion, wavelet needs to be used to represent the source.

Ricker wavelet and Gauss wavelet are two kinds of

wavelets frequently used in numerical modeling. In this

paper, we select Ricker wavelet as the source, of which

the time function is

f (t) = [1− (πf0t)
2] exp[−(πf0t)

2]

and the space function is

f(x, z) = exp{−α2[(x− x0)
2 + (z − z0)

2]}

where f0 is the dominant frequency, (x0, z0) is the lo-

cation of the source and α is a constant which controls

the decay rate of the source impulse in space.

4.1 A homogeneously isotropic model

For a homogeneous 2D two-phase model, the pa-

rameters are listed in Table 1. The grid size is 256×256

with grid spacing Δx=Δz=10 m and the time step is

set as Δt=1 ms. A Ricker wavelet with the dominant

frequency of 25 Hz is used here as the seismic source,

which is located at the coordinate (125, 125).

Table 1 Physical parameters of a homogeneous two-phase medium (from Pei, 2006)

Solid phase Fluid phase Coupling parameter

d11 d13 d55 ρ11 R ρ22 Q ρ12

Dissipation

coefficient b

26.4 12.72 6.84 2.17 0.331 0.191 0.953 −0.083 3.00

Note: dij , R and Q are in unit of 109 kg·m−1·s−2, b is in unit of kg·m−3·s−1 and ρij is in 103 kg·m−3.

Figures 3 and 4 clearly show that three kinds of

waves, fast P-wave P1, S-wave S and slow P-wave P2,

exist in the wave field propagating in homogeneously

isotropic two-phase media. The slow P-wave P2, which

is able to indicate the existence of oil/gas or water, is a

special wave existing in two-phase media (Meng et al.,

2003). Seismic waves in the solid phase and fluid phase

are coupled with each other. Fast P-waves in the sol-

id phase and fluid phase are in phase with each other

while slow P-waves are out of phase with each other,

as seen in Figure 4. Moreover, the amplitude of slow

P-wave in the fluid phase is much larger than that in

the solid phase. Additionally, we can see that P2’s am-

plitude is even larger than S’s in the fluid phase at this

time (t=280 ms), this perhaps because that the dissipa-

tion coefficient b is so small here that the attenuation

of slow P-wave is not quick. In fact, slow P-wave at-

tenuates very quickly in the Earth and its amplitude is

affected by the parameter b (Biot, 1956a, b; Zhang et

al., 2008). Generally, the true values of b in the Earth

are fairly large, leading to very quick attenuation of the

amplitude of slow P-wave and that is the reason why

we cannot always observe the slow P-wave in seismic

explorations. The fast P-wave is what we use in seismic

explorations.
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Figure 3 Snapshots of the x components (left) and the z components (right) at t=400 ms for 2D

isotropic two-phase media. Top two panels are for fluid phase, and bottom panels for solid phase.

z (at i for x axis)

P

P
S

Fluid phase
Solid phase

A
m

pl
itu

de

Figure 4 Seismograms of vertical component of the fluid phase (solid line) and the solid phase

(dashed line) at one point (i=125) along a vertical line.

4.2 Anisotropic models

4.2.1 Transversely isotropic two-phase media

For wave propagation in the anisotropic two-phase

media, the elements of the elastic coefficient matrix

D6×6 need to satisfy the conditions of conservation of

energy:

d11≥0, d33≥0, d55≥0, E2=d33d11−d213≥0
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where, d13 and d55 are two key elements that affect the

velocity of wave propagation and the shapes of wave-

fronts in transversely isotropic media (He and Zhang,

1996). Therefore, next we will take transversely isotrop-

ic two-phase media as an example to investigate the

characteristics of wave propagation in anisotropic me-

dia.

To examine the effects of coefficients d13 and d55
on wave propagation, we make a scheme as follow: first-

ly, change the value of d13 and keep d11, d33 and d55 to

be constant; secondly, change the value of d55 and keep

d11, d33 and d13 to be constant. The grid size is 200×200

with grid spacing 10 m and the time step is 1 ms. The

seismic source is a Ricker wavelet with the dominant

frequency of 15 Hz and the location is at (100, 100).

The parameters are listed in Table 2. The transversely

isotropic two-phase media used here are zero-azimuth

with z being the principal axis of symmetry. Figure 5

shows the snapshots of waves.

Table 2 Physical parameters of transversely isotropic two-phase media

Solid phase Fluid phase Coupling parameters
Dissipation

coefficient
No. in

Fig.5
d11 d13 d33 d55 d66 ρ11 R ρ22 Q1 Q3 ρ12 b11 b33

a 26.4 −10 15.6 4.38 6.84 2.17 0.331 0.191 1.14 0.953 −0.083 0.5 3

b 26.4 1 15.6 4.38 6.84 2.17 0.331 0.191 1.14 0.953 −0.083 0.5 3

c 26.4 9 15.6 4.38 6.84 2.17 0.331 0.191 1.14 0.953 −0.083 0.5 3

d 26.4 12.72 15.6 4.38 6.84 2.17 0.331 0.191 1.14 0.953 −0.083 0.5 3

e 26.4 12.72 15.6 20 6.84 2.17 0.331 0.191 1.14 0.953 −0.083 0.5 3

f 26.4 12.72 15.6 27 6.84 2.17 0.331 0.191 1.14 0.953 −0.083 0.5 3

Note: dij , R and Q are in unit of 109 kg·m−1·s−2, b is in unit of kg·m−3·s−1 and ρjj is in 103 kg·m−3.

A lot of information can be obtained by observ-

ing Figure 5. First of all, fast P-wave P1, S-wave S and

slow P-wave P2 as denoted by A, B and C respectively,

are clearly seen in Figure 5c. The wavefronts are elliptic

instead of circular because the velocities of the seismic

waves are different along different directions. Secondly,

the wavefronts of S-wave become sharp-angled and in-

tersected, as clearly shown in Figure 5b. We see that S-

wave splitting, which is caused by the anisotropy of the

media, occurs in many directions except the intersection

directions. S-wave splits into two kinds of waves: the fast

S-wave S1 and the slow S-wave S2, as marked in Fig-

ure 5b. But in the directions of the intersection the two

kinds of S-waves have the same propagation speed caus-

ing no splitting (Liu and Li, 2000; Pei, 2006). In addi-

tion, d13 and d55 have important influence on the shapes

of wave field. When d55 is constant, the intersections

diminish and vanish finally with d13 increasing (Figure

5a–5d) and when d13 is constant, the intersections reap-

pear with d55 increasing (Figure 5d–5f). Meanwhile, the

wavefront of P1 transforms from a rhombus to an ellipse

and then to a square. By analysis on the anisotropic

characteristics of wave propagation mentioned above,

we could infer crack orientations and reservoir structure

so that we can know where oil and gas exist. The strong

anisotropic characteristics and dispersion of the fast and

slow P-waves depend on permeability anisotropy, which

is related to the crack orientations. Therefore, the at-

tenuation and dispersion characteristics of fast and slow

P-waves as well as S-wave splitting are the important

factors indicating crack orientations and reservoir struc-

ture (Yang et al., 2000).

4.2.2 A layered fault model

Now we present a layered fault model of isotropic

two-phase media to detect the effects from the interface

and the fault. A 30 m high fault of which the top in-

terface is located at z=100 m and the bottom interface

is located at z=130 m, is set in the model (Figure 6).

The physical parameters of the media are shown in Ta-

ble 3 below. The grid used here and the time step are

the same as the ones in the transversely isotropic mod-

el. The seismic source is set as a 20 Hz Ricker wavelet

located at (100, 80) and the wavefield is seen in Figure

7.

As shown in Figure 7, the wavefield affected by the

fault is very complicated. Not only the transmitted, re-

flected and refracted waves caused by the interface but

the diffracted waves generated by the fault step are al-

so clearly presented in the snapshots. We can see the

conversions between the three types of waves (fast P-

waves, S-waves and slow P-waves) on the interface and

the fault. Additionally, we can also find that few fre-

quency dispersions occur in the wave field. Referring to

the outcome obtained by Dai et al. (1995) using finite
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difference method and the outcome obtained by Zhang

et al. (2008) using pseudo-spectral method, we can con-

firm that this convolutional differentiator method is ap-

plicable for the wave field modeling in heterogeneously

layered media, which is of great significance to the seis-

mic exploration.

(a)

(c) (d)

(e) (f)

(b)

intersection

S
S

intersection

S
S

A

B C

A

B
C

Figure 5 Snapshots of the vertical components of fluid phase (left in subfigure a–f) and solid phase (right in subfigure

a–f) at t=280 ms for 2D transversely isotropic two-phase media with varying d13 and d55 from (a) to (f) corresponding

to (a) to (f) in Table 2. In Figure 5c, A, B, and C denote the fast P-wave, S-wave and slow P-wave. S-wave splitting

can be clearly observed in the figure, leading to the intersections of the wavefronts of S-wave, as marked in Figure 5b.

A ( , )

Source ( , )

B ( , )

Figure 6 A layered fault model.

5 Discussion and conclusions

Based on generalized Forsyte orthogonal polyno-

mial, the characteristics of waves in two-phase medi-

a have been studied by using a convolutional differen-

tiator method. Meanwhile, we used the staggered-grid

finite difference scheme to calculate the temporal deriva-

tive of the first-order velocity-stress wave equation of

two-phase media. The results from a homogeneously

isotropic model and a transversely isotropic model con-

firm the conclusions derived by Biot’s theory. The inter-

face effects can also be well modeled using the CFPD

method.

The accuracy test comparing this method with

pseudo-spectral method shows that this method has

high accuracy. The local and global information can be
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Figure 7 Snapshots of the horizontal component (left) and vertical component (right) at t=300 ms for

the layered fault model (fluid phase). Waves generated by the interface, i.e., a and b denote the transmitted

P-wave and reflected P-wave, c is trasmitted SV-P wave, d is diffracted wave generated by the fault step,

and e and f are refracted waves. The slow P-wave can be clearly seen in the top layer but no transmitted

slow P-waves are observed in the bottom layer because of the high value of dissipation coefficient b. The slow

P-wave is converted to fast P-wave (P2–P1) diffracted out from the fault edge when hitting the fault step.

Table 3 Physical parameters of a two-layer model (from Dai et al., 1995)

Solid phase Fluid phase Coupling parameters Dissipation coefficient

d11 d13 d55 ρ11 R ρ22 Q ρ12 b

34.0 20.33 6.84 2.167 0.331 0.191 0.953 −0.083 3.00

79.7 55.65 12.0 2.43 0.790 0.255 0.700 −0.100 7000

Note: The parameters are in the same units as those in Table 2.

considered at the same time by optimizing the coeffi-

cients of the operator and adjusting the operator length.

As it has been investigated, both local and global infor-

mation of the wave field has been considered so that

fine resolution of the anisotropic media is obtained.

This research can be easily extended to the deep

process accompanied by fluid beneath active orogen

belt. The deep medium and tectonic environment of

the earthquake “pregnancy”, generation and develop-

ment are very complicated with the characters of het-

erogeneity and anisotropy. As we all know, the seismic

source media are broken undergoing the force process.

Consequently, the structure of the media is changed as

well as the deep fluid moving and upwelling along the

fault and weak belt. Therefore it is necessary to develop

the theory of two-phase media for further research on

the seismic wave kinetics in deep environment (Teng et

al., 2009). Additionally, the theory for two-phase media

will be of great significance in the applications of deep

oil and gas prospecting.
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