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Abstract Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several

spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known

Tangshan sequence based on classical empirical laws and a few assumptions. The relative fit of competing models

is compared by Akaike Information Criterion. The spatial clustering pattern is well characterized by the model

which gives the best fit to the data. A simulated aftershock sequence is generated by thinning algorithm and

compared with the real seismicity.
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1 Introduction

Nearly all large shallow earthquakes are accompa-

nied by aftershocks which decay in terms of (modified)

Omori’s law. The comparative abundance of aftershocks

with different magnitudes is nearly distributed as expo-

nential distribution. Based on the empirical criterions,

the occurrence rate of aftershocks at time t following the

ith earthquake (ti, Mi) is assumed to be proportional

to Aeα(mi−mn)/(t− ti + c)p, where Ai∝eα(mi−mn). As-

suming also that each aftershock itself can trigger an

event, the conditional intensity in epidemic-type after-

shock sequence (ETAS) model (Ogata, 1988) is specified

by

λ(t|Ht) = μ+
∑

i:ti<t

Aeα(mi−mn)

(t− ti + c)p
.

Five parameters in the conditional intensity func-

tion play different roles in characterizing the clustering

and are varying spatially. Among them, p and α indicate

the decaying rate of aftershock activity and the power
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of a shock (main shock or aftershock) generating its

offsprings respectively. Through “point process residual

analysis” (Ogata, 1988), abnormal earthquake activity

relative to the model including “relative activity” and

“relative quiescence” can be sensitively detected. It is

necessary to develop spatio-temporal models to indicate

the abnormal earthquake activity temporally as well as

spatially near the period and region of “relative quies-

cence” for the purpose of earthquake prediction.

We consider several possible spatio-temporal mod-

els and apply them to Tangshan aftershock sequence

occurred in North China. The goodness-of-fit tests are

compared in terms of AIC to highlight some spatial clus-

tering characteristics such as the relationship between

earthquake magnitude and clustering scale. A simulat-

ed data set is generated from the estimated model and

compared to the real seismicity.

2 Spatio-temporal point process

model

Hawkes type self-exciting point process models are

extensively applied to investigate the clustering charac-

teristics. The conditional intensity function for such a

model is given by
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λ(t, x, y|Ht) = μ(x, y) +
∑

i:ti<t

g(t− ti, x− xi, y − yi,Mi) =

μ(x, y) +

∫ t

0

∫∫

A

∞∫

M0

g(t− s, x− ξ, y − η,M)N(ds, dξ, dη, dM),

for (t, x, y)∈ [0, T )×A where N(ds, dξ, dη, dM)=1, if

an infinitesimal element (ds, dξ, dη, dM) includes an

event (ti, xi, yi, Mi) for some i at time ti with epi-

center (xi, yi) and magnitude Mi, otherwise N(ds, dξ,

dη, dM)=0, Ht is the history of the process. The whole

conditional intensity function consists of two parts. The

first part is the background rate which is either a con-

stant or not. The summation of the second part means

that it is permitted that each earthquake including af-

tershock can generate its own aftershocks. The trigger

intensity in the second part governs the behavior of af-

tershocks decaying both temporally and spatially.

Musmeci and Vere-Jones (1991) suggested a

spatial-temporal clustering model with the parameteri-

zation form of the trigger intensity

g(t, x, y,M) =
CeαM e−βL

2πσxσyt
exp

[
− 1

2t

(
x2

σ2
x

+
y2

σ2
y

)]
,

and also a cauchy form

g(t, x, y,M) =
CeαM e−βL

2πσxσyt

1

π2(x2 + t2c2x)(y
2 + t2c2y)

.

For estimating background rate u(x, y), a kernel type

smoothing μ̂(x, y) for μ(x, y) is performed and an ad-

ditional parameter is applied to adjust the background

rate and the rest part of the conditional intensity func-

tion
λ(t, x, y) = (1− p)μ̂(x, y)+

p
∑

i:ti<t

g(t− ti, x− xi, y − yi,Mi),

The model was applied to analyze Italian histori-

cal earthquake catalogue.

Kagan (1991) and Rathbum (1993) suggested oth-

er forms of the trigger intensities. Among a variety of

spatio-temporal models, Ogata (1998) scrutinized sev-

eral models with the form of response function

g(t, x, y,M) =
K0

(t+ c)p
exp

{
− x2 + y2

2deα(M−M0 )

}
, (1)

g(t, x, y,M) =
K0

(t+ c)p
eα(M−M0 )

(x2 + y2 + d)q
, (2)

g(t, x, y,M) =
K0

(t+ c)p

{
x2 + y2

eα(M−M0)
+ d

}−q

. (3)

Further investigation on identifying main shocks

in a cluster was performed by Ogata (1998) based on

“MBC” algorithm. According to the algorithm, a space-

time window was set to obtain the background rate and

the epicenters of aftershock were estimated. However,

there exist a number of declustering algorithms. Each

one can generate a declustered catalogue and result in

a different estimation of background rate. A stochastic

declustering algorithm based on the model suggested

by Zhuang et al. (2002) was applied to generate declus-

tered catalogue and obtain the background rate, see also

Zhuang et al. (2005). The goodness-of-fit test of models

shows that the model with heterogeneous background

intensity is remarkably better than that with homoge-

neous Poisson field intensity in terms of AIC. However,

the anisotropic clustering models are not significantly

better than the isotropic models despite several param-

eters are introduced to investigate the characteristic of

spatial clustering. The conditional intensity rate of the

compared anisotropic models is

λ(t, x, y|Ht) = vμ̂(x, y)+
∑

i:ti<t

g(t− ti, x− xi, y − yi,Mi).

The response functions are of the form

g(t, x, y,M) = K(M)× (p− 1)c(p−1)

(t+ c)
p ×

{
1

πσ(M)
f

[
r(Θ)

2

σ(M)

]}
,

where r(θ)2=
1√

1− ρ2

(
σ2

σ1
x2 − 2ρxy +

σ2

σ1
y2
)

with

θ=arctan
y

x
. In addition, among the three classes of

models, the heterogeneous background model with the

response function in model (3) provided the best per-

formance by AIC for the investigated seismic areas.
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2.1 Space-time model for Tangshan sequence

Now, we assume that

(1) The background rate in a studied region is con-

stant or is a function of location and independent of

time;

(2) Each event can generate its own aftershocks;

(3) The aftershocks decay with time in terms of

modified Omori’s law;

(4) The probability distribution of the location (x,

y) of an aftershock is independent of the time.

The conditional intensity for such a model is

λ(t, x, y|Ht) = μ(x, y) +
∑

i:ti<t

K(Mi)g(t− ti)

f(x− xi, y − yi|Mi).

Let conditional intensity functions include

λ(t, x, y|Ht) = μ+
∑

i:ti<t

Aeα(mi−m0 )

(
1 +

t− ti
c

)−p

exp

[
−|x− xi|

d1
− |y − yi|

d2

]
, (4)

λ(t, x, y|Ht) = μ+
∑

i:ti<t

Aeα(mi−m0 )

(
1 +

t− ti
c

)−p
[
(x− xi)

2
+ (y − yi)

2

eα(mi−m0 )
+ d

]−q

, (5)

λ(t, x, y|Ht) = μ+
∑

i:ti<t

Aeα(mi−m0 )

(
1 +

t− ti
c

)−p

exp

[
− |x− xi|
d1eα(mi−m0)

− |y − yi|
d2eα(mi−m0)

]
, (6)

where φ=(A,α, c, p, d1, d2) for equations (4) and (6),

and φ=(A,α, c, p, d, q) for equation (5).

Given the occurrence times and spatial locations

of earthquakes with magnitudes (ti, xi, yi, Mi) dur-

ing time interval [T1, T2] and in a region A, the log-

likelihood of the model is

LogL(μ, φ) =

n∑

i=1

Logλ(ti, xi, yi,Mi|Ht)−

∫ T2

T1

∫∫

A

λ(t, x, y|Ht)dtdxdy. (7)

It is evident that the superposed conditional intensity

λ(t|Ht) =

∫∫

A

λ(t, x, y|Ht)dxdy

is consistent with conditional intensity of ETAS model.

In other words, the response functions (4) and (5)

satisfy
∫∫

A

g(t, x, y)dxdy ≈
∫∫

R2

g(t, x, y)dxdy =
Aeα(M−M0 )

(t+ c)
p

and the response function (6) satisfy

∫∫

A

g(t, x, y)dxdy ≈
∫∫

R2

g(t, x, y)dxdy =
Ae2α(M−M0 )

(t+ c)
p .

The likelihoods for models (4) and (6) can be explicitly

expressed once the studied region is assumed to be a

rectangle. However, the likelihood for model (5) cannot

be explicitly expressed. We approximate it by numerical

method.

3 Application to Tangshan se-

quence

SSlib includes many useful historical earthquake

catalogues. The data are chosen from SSLib ranged

within 116.6◦E–119.5◦E, 38.5◦N–40.4◦N for the time

span 1975-01-01–1988-01-01 which includes the well-

known Tangshan sequence. See the epicentral distribu-

tion of the aftershock sequence in Figure 1. We consider

several data sets in the same region with different cut-

off magnitude levels 4 and 4.5. The completeness of the

threshold magnitude is about 4.0. Below this level, the

catalogue might be incomplete. AIC and the estimat-

ed parameters of models (4), (5) and (6) for different

cut-off magnitude levels are listed in Table 1. AIC is

an information theoretical criterion for model selection

which provides a tradeoff to balance the goodness-of-

fit measured by the likelihood and the complexity of

the model, usually measured by the dimension of the

model, to prevent over-fit by otherwise an unnecessary

complicated model. It is defined by −2logL+2k, where

logL is the log-likelihood and k is the number of the

parameters.

Among the seven parameters, α and p are specially

useful for characterizing the clustering of an aftershock

sequence. According to Table 1, it is evident that μ and

A are increasing with the decreasing cut-off magnitude

levels for the same model. However, p and q are reducing
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Figure 1 The epicentral distribution of earthquakes with magnitude M≥4.

Table 1 Estimated parameters and the AIC values for the models with homogeneous Poisson field for the background
seismicity

M≥4 μ A α C p d1(d) d2(q) AIC

Model (4) 1.028e−3 2.186e+2 0.782 1.081e−2 0.928 6.296e−2 3.690e−2 1 472.5

Model (5) 7.332e−4 7.372e−4 0.942 9.750e−3 0.916 1.008e−3 1.950 1 491.9

Model (6) 9.108e−4 7.668e+2 0.534 8.647e−3 0.905 3.038e−2 1.574e−2 1 428.1

M≥4.5 μ A α C p d1(d) d2(q) AIC

Model (4) 4.479e−4 1.030e+2 0.906 3.024e−2 1.007 8.044e−2 4.332e−2 807.1

Model (5) 4.611e−4 6.025e−7 0.945 3.501e−2 1.004 9.486e−3 4.109 823.4

Model (6) 4.195e−4 2.854e+2 0.484 3.107e−2 1.001 4.888e−2 2.289e−2 781.8

with decreasing cut-off magnitude levels. Other param-

eters such as C, d1 and d2 show similar trend as that

of p and q for the same model. We also note that p in

model (6) is systematically smaller than models (4) and

(5) for all the threshold magnitude levels. In addition,

Table 1 also shows that model (6) performs better than

all other models in terms of AIC. The outcome is stable

for all the threshold magnitude levels. From this point

of view, the spatial clustering feature of an aftershock

sequence correlates with the magnitude of its ancestor,

that is to say, the spatial clustering scale of aftershocks

associates with the magnitude of their ancestor.

In most cases, the assumption of homogeneous

background rate is impractical. In fact, background rate

in a specified region varies from place to place. See Fig-

ure 1 for the epicentral distribution of Tangshan se-

quence. The conditional intensity functions of the al-

ternative models with heterogeneous background rate

are as follows:

λ(t, x, y|Ht) = μ(x, y) +
∑

i:ti<t

Aeα(mi−m0)

(
1 +

t− ti
c

)−p

exp

[
−|x− xi|

d1
− |y − yi|

d2

]
, (8)



Earthq Sci (2011)24: 401–408 405

λ(t, x, y|Ht) = μ(x, y) +
∑

i:ti<t

A

(
1 +

t− ti
c

)−p

exp

[
− |x− xi|
d1eα(mi−m0 )

− |y − yi|
d2eα(mi−m0 )

]
. (9)

To estimate the background rate, we first perform a

kernel type smoothing such that

μ̂(x, y) =
1

nh2

n∑

i=1

K

(
x− xi

h
,
y − yi
h

)
,

where K(x, y) is taken as a standard multivariate nor-

mal kernel function and h is the band width. Here,

we use a single smoothing parameter h=0.96×n(−1/6).

Then an additional parameter is applied to adjust back-

ground rate and the rest part of the conditional intensi-

ty function. Thus the background rate is given by μ(x,

y)=vμ̂(x, y) with a parameter v to be estimated. The

integrals of the log-likelihood in all above models are ap-

proximated numerically in terms of heterogeneous back-

ground rate in the log-likelihood.

The extended model is fitted to the same data set

as aforementioned. Table 2 lists the estimated parame-

ters and AIC values. As far as the models with heteroge-

neous background rate are concerned, each model per-

forms considerably better than their counterpart with

homogeneous background rate. In addition, v and A in

Table 2 show the same trend as that in Table 1 with

decreasing magnitude thresholds. Furthermore, model

(9) gives a better fit than model (8) for all magnitude

cutoffs in terms of AIC, suggesting stability of the out-

come. In fact, model (9) gives the best fit for all cas-

es. The heterogeneous background intensity models al-

so cause the estimation of α and p larger by comparing

Table 1 and Table 2.

Table 2 Estimated parameters and the AIC values for the models with heterogeneous Poisson field for the background
seismicity

M≥4 v A α C p d1 d2 AIC

Model (8) 0.532 5 55.491 6 1.168 3 0.104 0 1.450 4 0.059 8 0.038 7 870.2

Model (9) 0.545 1 396.439 9 0.689 8 0.032 7 1.453 7 1.551e−2 1.116e−2 828.5

M≥4.5 v A α C p d1 d2 AIC

Model (8) 0.208 5 28.279 9 1.216 0 0.237 4 1.481 7 0.081 7 0.047 9 584.2

Model (9) 0.207 2 121.133 6 0.575 8 0.270 0 1.485 1 4.028e−2 2.167e−2 574.4

4 Simulation implementation

As far as a marked point process is concerned,

time and mark coordinates can be simultaneously sim-

ulated by thinning method. However, such a straight

simulation can be avoided by simulating time and space-

magnitude coordinates sequentially in terms of super-

posed conditional intensity

Λ(t) =

∫∫

A

λ(t , x , y|Ht )dxdy

as described in Musmeci and Vere-Jones (1990), Ogata

(1981, 1998). It is generally assumed that the magnitude

is stable and independent of its occurrence time. Here,

simulation begins from the most largest main shock and

the magnitude of simulated events is taken as the same

as that of real catalogue in chronological order. The

magnitude-time plot of simulated catalogue from mod-

el (9) with cut-off magnitude of 4.0 and the real one

are showed in Figure 2. Simulated data set is generated

according to following steps:

(1) Simulate a sequence of occurrence times {ti}ni=1

in terms of the superposed conditional intensity with re-

spect to locations

Λ(t) = v0 +
∑

j :tj<t

vj (t)

by thinning method, where v0=
∫
A μ(x, y)dxdy and

vj(t)=
∫∫

R2 g(t− tj , x− xj , y − yj,Mj)dxdy, generate a

magnitude mi.

(2) generate spatial coordinates as follows:

a) set i=1;

b) generate a uniform random number U in (0, 1];

If U≤ v0
Λ(ti)

, generate (xi, yi) in terms of heterogeneous

Poisson field intensity by thinning method, or else put

J=1;

c) if U≤Λ(tJ )

Λ(ti)
, set J=J+1, repeat current step;

d) generate (xi, yi) in terms of Laplace distribu-

tion, put xi=xj+xi and yi=yj+yi;
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Figure 2 (a) and (b) are the M -T plots for two simulated catalogues based on model (9), the events

magnitude (≥4) in two plots are assigned as same as the real catalogue in chronological order. (c) is the M -T

plot of the real catalogue.

e) put i=i+1, go to step b);

f) if (ti, xi, yi, Mi)/∈A, delete (ti, xi, yi, Mi), i=1,

. . ., n.

In this study, we are using model (9) with M0=4

to generate simulated data set. The magnitude of sim-

ulated events are taken as the same as that of real

catalogue in chronological order. Figures 2 and 5 show

the magnitude-time and epicentral distribution of the

simulated data set. Figures 3 and 4 show time versus

longitude and latitude plots for the simulated sequence.

Note that the pattern of simulated data set is similar

to that of the real one both spatially and temporally

from Figures 2–5. The epicentral distribution of simu-

lated data set is approximate to that of the real one.

However, there exist significant differences between the

simulated catalogues and the real one. The clustering

E

E

n ( d)

n ( d)

(a)

(b)

Figure 3 (a) is the time versus longitude plot for the simulated events based on model (9). (b) is the time

versus longitude plot for the real catalogue. The threshold magnitude is greater than or equal to 4.
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(a)

N

n ( d)

(b)

Figure 4 (a) is the time versus latitude plot for the simulated events based on model (9). (b) is the time

versus longitude plot for the real catalogue. The threshold magnitude is greater than or equal to 4.

E

N

Figure 5 The epicentral distribution of simulated data from model (9) with magnitude M0≥4.

in real data is more intensive both temporally and spa-

tially. The distinctions may be caused by many factors.

Firstly, the assumption that background rate is inde-

pendent of the occurrence time may be impractical. In

fact, background rate in a specified region may vary

from time to time with certain trend due to many geo-

physical factors. Sometimes, the cumulative number of

real events is systematically larger or smaller than the

expected number predicted from models. Such a system-

atical deviation of the real pattern from the model can
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not be automatically adjusted by current model. At the

same time, we assume the magnitude sequence is inde-

pendent of times, spatial locations. Other assumptions

of the model also result in the differences between the

simulated catalogue and the real one.

5 Concluding remarks

Among models (4–6) with homogeneous back-

ground rate, model (6) gives the best fit to the real

seismicity for all the cut-off magnitude levels. Similar

results hold for the models with heterogeneous back-

ground rate for all the threshold magnitude levels. The

difference of AIC increases as the size of the data set in-

creases. The above result gets clearer for the data with

the lower threshold magnitude levels. The scale of the

clustering is clearly dependents on magnitude with fac-

tor eα(mi−m0). However, the uncertainty of the ETAS

parameter estimates is important (Wang et al., 2010a)

and the impact of this uncertainty on the model choic-

es is very interesting and will be investigated by the

simulation method described by Wang et al. (2010a)

in the future work. In addition, earthquake triggering

behavior estimates could be significantly biased by the

missing earthquake links due to the choice of minimum

magnitude threshold, time and space window, which has

been explored by Wang et al. (2010b). The impact of

these missing links on our model choices will be inves-

tigated in the further research. We generate simulated

events in terms of the estimated models by the thin-

ning method. Here, the simulation study is tentative;

the genuine seismic activity is fundamentally more com-

plicated. The spatial clustering is so intensive for such

a sequence that the bilateral Laplace distribution with

scale factor eα(mi−m0) gives a better fit to the data.

Simulations according to the estimated parameters in

model (9) show some similar and also distinctive fea-

tures which may illuminate further studies.

Remark 1 From Figure 1, we notice that the

spatial distribution of the earthquakes is non-isotropic.

In fact, the events are distributed in a NE direction

along the fault trace. Intuitively, by rotating coordinates

to parallel the slip direction of the faults, the preferred

model under the new coordinates might be further im-

proved. However, how to compare models under differ-

ent coordinate systems in terms of some information

theoretical criterions such as AIC or BIC is unclear.

The limitations may illuminate further improvements

for current models.

Remark 2 From Figures 2–4, one notes that the

main shock is followed by an intensive aftershock activi-

ty relative to the real catalogue, i.e., the expected num-

ber of aftershocks in terms of the model is greater than

that of the observed. It suggests that the whole seismic

activity may be divided into several phases. Thus, the

model with different phase changes may provides bet-

ter performance. Such a phase change may relates to the

geophysical intrinsic changes such as “relative activity”

and “relative quiescence”.

Remark 3 The completeness threshold of the

earthquake catalogue for Tangshan sequence is about

4. The analytical results listed in Tables 1 and 2 for

events with magnitude greater than 4 and the above

is more credible. We admit that one issue associated

with current analysis is that some events with missing

epicenter records pose influence on the estimation.
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