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Abstract The boundary-volume integral equation numerical technique can be a powerful tool for piecewise

heterogeneous media, but it is limited to small problems or low frequencies because of great computational cost.

Therefore, a restarted GMRES method is applied to solve large-scale boundary-volume scattering problems in

this paper to overcome the computational barrier. The iterative method is firstly applied to responses of dimen-

sionless frequency to a semicircular alluvial valley filled with sediments, compared with the standard Gaussian

elimination method. Then the method is tested by a heterogeneous multilayered model to show its applicability.

Numerical experiments indicate that the preconditioned GMRES method can significantly improve computation-

al efficiency especially for large Earth models and high frequencies, but with a faster convergence for the left

diagonal preconditioning.
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1 Introduction

Boundary-element (BE) methods have been ap-

plied to 2D and 3D seismic models in exploration

geophysics during the past several decades (e.g.,

Bakamjian, 1992; Bouchon, 1993; Chen and Zhou, 1994;

Fu and Mu, 1994; Dong et al., 1995; Fu, 1996; Li-

u et al., 2008a, b; Yu et al., 2010). However, these

boundary methods are limited by their abilities to

handle volume heterogeneities. The volume hetero-

geneities lead to a coupled boundary-volume inter-

action that requires an extension of the tradition-

al boundary methods to account for volume hetero-

geneities. To solve this problem, Fu (2003) incorpo-

rated the boundary integral representation into the

Lippmann-Schwinger integral equation to model rough-

ly topography in complex near surface areas. The

method provides an efficient scheme to synthesize

seismograms in piecewise heterogeneous media by the

explicit use of boundary continuity conditions across

subsurface interfaces. The scattering term associated

with volume integrals over volume heterogeneities can
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be calculated by accurate Gaussian integration numer-

ical algorithms, which guarantees an optimum seis-

mic modeling for scattering effects by volume hetero-

geneities with arbitrary complexity.

Although this boundary-volume integral equation

numerical technique can be a powerful tool for piece-

wise heterogeneous media, it is limited to small prob-

lems or low frequencies because of great computational

cost. The computation becomes extremely prohibitive

due to very large size of the resulting matrices to be in-

verted when the ratio of model dimension to wavelength

becomes too large. An efficient alternative is to find a

feasible iterative method to overcome the computation-

al barrier. The purpose of this paper is to pursue an

efficient iterative solution for boundary-volume scatter-

ing problems.

Various iterative methods, such as conjugate gra-

dient square (CGS), the generalized minimal residual

method (GMRES), and Bi-conjugate gradient stabilized

method (BiCGSTAB), have been widely used to the so-

lution for scattering problems (e.g., Cao and Macaskill,

1995; Zhou and Hong, 2002; Xia et al., 2004; Wei

and Liu, 2007a, b). In this paper, a restarted GMRES

method is used to solve large-scale boundary-volume

scattering problems. The iterative method is firstly val-

idated by dimensionless frequency responses to a semi-
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circular alluvial valley (filled with sediments), compared

with the standard Gaussian elimination method. Then

the method is tested by a heterogeneous multilayered

model to show its applicability. A preconditioning tech-

nique is also used to improve convergence rate.

2 Method

2.1 Generalized Lippmann-Schwinger integral

equation

Wave propagation in a large-scale boundary struc-

ture with internal volume heterogeneities can be de-

scribed by a generalized Lipmann-Schwinger integral

equation (GLSIE, Fu, 2003). It is formulated as the

superposition of incident, boundary-scattering, and

volume-scattering waves. The problem to be studied is

illustrated in Figure 1. In this model, there are N
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Figure 1 Configuration of the problem considered in

this study.

heterogeneous layers Vi(i=1, 2, . . .,N) over a half-space,

among which the ith layer is bounded by two irregular

interfaces ∂Vi−1 and ∂Vi. The uppermost interface ∂V0

is a free surface, and an arbitrary source is embedded

in the ith layer. For simplicity, we restrict the present

study to the 2D SH problem (or acoustic problem). The

solution domain of the problem for the ith layer is de-

fined as V̄i ∈ Vi + ∂Vi−1 + ∂Vi. Seismic response u(r)

for steady state scalar wave propagation in the ith layer

satisfies the following scalar equation

∇2u(r) +
[
k(i) (r)

]2
u(r) = −δsis(r, ω)

r ∈ V̄i i = 1, 2, ..., N, (1)

where k(i)(r) = ω/v(i)(r), v(i)(r) is the velocity distri-

bution of the ith layer, δsi = 1 for i = s and δsi = 0

for i �= s, ω is the frequency, s(r, ω) is the source term

and ∇2 is the Laplacian operator. The seismic response

u(r) also satisfies the following boundary conditions:

1) The traction-free condition on the free surface:

∂u(r)/∂n = 0 at r ∈ ∂V0.

2) The continuities of displacement and traction at

the interface ∂Vi,

⎧
⎨
⎩

u
(i)
− (r) = u

(i)
+ (r)

∂u
(i)
− (r)

∂n
=

∂u
(i)
+ (r)

∂n

r ∈ ∂Vi, (2)

where ‘−’ denotes the top side of ∂Vi toward Vi and ‘+’

denotes the underside of ∂Vi toward ∂Vi+1.

3) The radiation boundary condition imposed on

the far-field behavior at infinity.

⎧
⎪⎨
⎪⎩

lim
|r|→∞

u(r) = 0

lim
|r|→∞

∂u(r)

∂r
= 0

. (3)

To explicitly use the boundary condition defined by e-

quation (2) in the solution of the problem, we trans-

form equation (1) into an integral equation in terms

of boundary and volume integrals of the solution do-

main. The scattering sources in the solution domain V̄i

include the top boundary ∂Vi−1, the bottom boundary

∂Vi, the seismic source and the volume heterogeneities

in Vi. According to integral equation theory (Pao and

Varatharajulu, 1976), the total seismic response u(r) at

a location r ∈ V̄i is composed of

u(r) = u0(r) + us
1(r) + us

2(r) + us
3(r). (4)

u0(r) is the incident field in the background medium

and can be represented as

u0(r) =
∫
Vi
s(i)(r′, ω)G(i)(r, r′)dr′ =

δsiS(ω)G
(i)(r, r0)

, (5)

where G(i)(r, r0) is the Green’s function. us
1(r) is the

boundary field scattered by the top boundary ∂Vi−1 and

satisfies the following boundary integral equation:

us
1(r) =

∫

∂Vi−1

[
G(i)(r, r′)t(i−1)(r′)− u(i−1)(r′)

∂G(i)(r, r′)
∂n

]
dr′, (6)
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where u(i−1)(r) is the displacement on ∂Vi−1,

t(i−1) (r) = ∂u(i−1) (r) /∂n is the normal gradient of the

displacement on ∂Vi−1. Similarly, us
2(r) is the boundary

field scattered by the bottom boundary ∂Vi and satisfies

the following boundary integral equation:

us
2(r) =

∫

∂Vi

[
G(i)(r, r′)t(i)(r′)− u(i)(r′)

∂G(i)(r, r′)
∂n

]
dr′. (7)

us
3(r) is the volume field scattered by the volume het-

erogeneities in Vi and satisfies the following Lippmann-

Schwinger integral equation:

us
3(r) =

[
k
(i)
0

]2 ∫

Vi

O(i)(r′)w(i)(r′)G(i)(r, r′)dr′, (8)

where k
(i)
0 = ω/v

(i)
0 is the background wavenumber, v

(i)
0

is the background velocity of the ith layer, the relative

slowness perturbation O(i)(r)=[v
(i)
0 /v(i)(r)]2 − 1, and

w(i)(r) is the displacement inside Vi.

Substituting equations (5–8) into equation (4) and

considering the “boundary naturalization” of the in-

tegral equations, that is, a limit analysis when the

“observation point” r=(x, z) approaches the boundary

∂Vi and tends to coincide with the “scattering point”

r′ = (x′, z′) when r′ ∈ ∂Vi, we obtain the GLSIE:

∫

∂Vi−1

[
G(i)(r, r′)t(i−1)(r′)− u(i−1)(r′)

∂G(i)(r, r′)
∂n

]
dr′ +

∫

∂Vi

[
G(i)(r, r′)t(i)(r′)− u(i)(r′)

∂G(i)(r, r′)
∂n

]
dr′+

(
k
(i)
0

)2
∫

Vi

O(i)(r′)w(i)(r′)G(i)(r, r′)dr′ + δsiS (ω)G(i) (r,r0) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w(i)(r) r ∈ Vi

C(i−1)(r)u(i−1)(r) r ∈ ∂Vi−1

C(i)(r)u(i)(r) r ∈ ∂Vi

0 r /∈ V̄i

, (9)

where the coefficients C(r) generally depend on the lo-

cal geometry at r. For piecewise homogeneous media

[i.e. O(i)(r) = 0], us
3 (r) = 0 and equation (4) reduces

to a standard boundary integral equation.

The causal Green’s function is defined everywhere

in the free space, relating an observation point r to

a scattering point r′. It satisfies the homogeneous

Helmholtz equation in the reference medium:

∇2G(i) (r, r′) +
[
k
(i)
0

]2
G(i) (r, r′) =

−δ(r − r′) r, r′ ∈ Vi. (10)

For 2-D problems, the Green’s function is given by

(Abramowitz and Stegun, 1968)

G(i)(r, r′) =
i

4
H

(1)
0

[
k
(i]
0 |r′ − r|

]
, (11)

where i =
√−1 and H

(1)
0 denotes the Hankel function of

the first kind and of zeroth order. These integral equa-

tions naturally satisfy Sommerfeld non-reflecting and

decay boundary conditions defined by equation (3).

2.2 Numerical discretization of boundary-

volume integral equations

The collocation method has been widely used for

numerical solutions of all types of integral equations.

The numerical solution of equation (9) by the collo-

cation method involves several steps. Each boundary

∂Vi is divided into L(i) boundary elements denoted by

Γe(e=1, 2, . . ., L(i)) and each volume Vi into M (i) finite

elements denoted by Ωe (e=1, 2, . . ., M (i)). The total

node number of V i is N (i). In the collocation method,

interpolation shape functions φ are used so that the

variables (r, u, t and w) are approximated by the linear

combination of their nodal values over an element Γe or

Ωe defined geometrically between the node I1 and I2,

for instance,

u(i) (ξ) =

I2∑
l=I1

u(i) (rl)φl (ξ) , (12)

where ξ denotes the local coordinate of an element. The

integrals in equation (9) can be computed over each el-

ement respectively as
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h
(i,1)
jk =

L(i−1)∑
e=1

I2∑
l=I1

[∫
Γe

∂
∂nG

(i) [rj , r
′(ξ)] φl(ξ)dr

′(ξ)
]
δlk + C(i−1)(rj)δjk, (13)

g
(i,1)
jk =

L(i−1)∑
e=1

I2∑
l=I1

[∫

Γe

G(i) [rj , r
′(ξ)] φl(ξ)dr

′(ξ)
]
δlk, (14)

h
(i,2)
jk =

L(i)∑
e=1

I2∑
l=I1

[∫
Γe

∂
∂nG

(i) [rj , r
′(ξ)] φl(ξ)dr

′(ξ)
]
δlk + C(i)(rj)δjk, (15)

g
(i,2)
jk =

L(i)∑
e=1

I2∑
l=I1

[∫

Γe

G(i) [rj , r
′(ξ)] φl(ξ)dr

′(ξ)
]
δlk, (16)

K
(i)
jk =

M(i)∑
e=1

I2∑
l=I1

{[
k
(i)
0

]2 ∫

Ωe

O(i)[r′(ξ)]G(i) [rj , r
′(ξ)]φl(ξ)dr

′(ξ)
}
δlk − δjk (17)

where δlk and δjk are the Kronecker delta functions.

The Gaussian integration algorithm is used to numeri-

cally evaluate these integrals (Xu, 1995). Equation (9)

can be written in an operator form

H(i,1)u(i−1)(rj)−G(i,1)t(i−1)(rj) +H(i,2)u(i)(rj)−

G(i,2)t(i)(rj) = K(i)w(i)(rj) + δsif(rj),

j = 1, 2, ..., N (i), (18)

where f is the incident field H(i,1) and G(i,1) are the

top-boundary coefficient matrices composed of h
(i,1)
jk

and g
(i,1)
jk , H(i,2) and G(i,2) are the bottom-boundary

coefficient matrices consisting in h
(i,2)
jk and g

(i,2)
jk , and

K(i) is the perturbation-domain coefficient matrix com-

posed of K
(i)
jk .

Equation (18) can be further compacted as a ma-

trix equation for j = 1, 2, ..., N (i)

A(i,1)m(i−1) +A(i,2)m(i) = K(i)w(i) + δsif , (19)

where we define the boundary coefficient matrices

A(i,1)=[H(i,1), −G(i,1)] and A(i,2)=[H(i,2), −G(i,2)],

and the unknown boundary displacement-traction vec-

tor mi=[u(i), t(i)]. Solving the linear system of equa-

tions (19) results in seismic responses u(r) for all nodes

in the medium. Since a considerable amount of matrix

operations are involved and the matrix for each frequen-

cy component must be inverted, the GLSIE method is

computationally intensive at high frequencies. There-

fore, an efficient iterative method is used here to solve

equation (19).

2.3 The GMRES method

The generalized minimum residual (GMRES)

method was proposed by Saad and Schultz (1986) in

order to solve large, sparse and non Hermitian linear

systems. GMRES belongs to the class of Krylov based

iterative methods. It relies on the Arnoldi process, and

the approximate solution has the property of minimiz-

ing at every step the norm of the residual vector over

the Krylov subspace (Ma, 2005). However, the Arnol-

di orthogonalization process requires a large amount of

memory especially when the subspace grows. Therefore

a restarted technique is generally used to cope with this

memory drawback.

The boundary-volume integral equation (19) can

also be written as

Aψ = f, (20)

where A∈Rn×n and ψ, f ∈ Rn. Suppose ψ0 is an initial

guess to the solution, and r0 = f − Aψ0 is the initial

residual vector. The GMRES method builds an approx-

imate solution of the form

ψm = ψ0 + V mym, (21)

where V m is an orthonormal basis for the Krylov sub-

space of dimension m defined by

Km = Span
{
r0,Ar0, · · · ,Am−1r0

}
, (22)

and where ym ∈ Rm. The vector y is determined so that

the 2-norm of the residual rm = f−Aψm is minimal over

Km. The basis V m for the Krylov subspace Km is ob-

tained via the well-known Arnoldi process (Ma, 2005).

The orthogonal projection of A onto Km results in an
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upper Hessenberg matrix Hm = V T
mAV m of order m.

The Arnoldi process satisfies the relationship

AV m = V mHm + hm+1,mvm+1e
T
m, (23)

where V m=(v1, v2, · · · , vm), hm+1,m=‖ṽm+1‖2,
vm+1=ṽm+1/hm+1,m, ṽm+1=Avm −

m∑
i=1

hi,mvi, hi,m

=(Avm, vi), and em is the mth canonical basis vec-

tor. Equation (23) can be rewritten as

AV m = V m+1H̄m, (24)

where Hm=

[
Hm

0...0 hm+1,m

]
is an (m+1)×m upper

Hessenberg matrix.

Let v1 = r0/β where β = ‖r0‖. The residual asso-

ciated with the approximate solution verifies

rm = f−Aψm = f−A (ψ0 + V mym) = r0−AV mym =

βv1 − V m+1Hmym = V m+1

(
βe1 −Hmym

)
. (25)

Since V m is a matrix with orthonormal columns, the

residual norm ‖rm‖ =
∥∥βe1 −Hmym

∥∥ is minimal when

ym solves the linear least-squares problem

min
ym∈Rm

∥∥βe1 − H̄mym
∥∥ (26)

The following is a flowchart of the restarted GMRES

algorithm (Figure 2). It is important to choose an ap-

propriate restart parameter m as the choice can signif-

icantly affect the convergence rate. The restart param-

eter m is generally chosen small relative to n to keep

storage and computation requirements reasonable.

choose ε and ψ , r f Aψ , β ||r ||, ν r /β

for k  to m

for i  to k

~hi k (Aνk , νi )  νk Aνk ∑hi kνi 

k

i

||rm|| ||f Aψm|| ≤ ε

ψ ψm , output ψ ψ ψm , and restart

FalseTrue

~~hi+ k ||νk || , νk νk hk k

||rm|| min||βe Hm ym|| , then ψm ψ Vm ym

Figure 2 A flow chart of the restarted GMRES algorithm.

Preconditioning techniques are often used to im-

prove the performance and reliability of Krylov sub-

space methods. The term preconditioning refers to

transforming the system A into another system with

more favorable properties for iterative solution. In gen-

eral, a good preconditioner should meet the following

requirements: (1) The preconditioned system should be

easy to solve; (2) The preconditioner should be cheap

to construct and apply. With a good preconditioner, the

computing time for the preconditioned iteration should

be significantly less than that for the unpreconditioned

one. If the preconditioner M is written in the form

M=M1·M2, we actually solve the linear system

M1
−1AM2

−1ψ′ = M 1
−1f, (27)

where ψ′ = M−1
2 ψ. Note that M2 = I for left pre-

conditioning, and M1 = I for right preconditioning.

In this paper both left and right diagonal precondition-

ing techniques are applied to accelerate convergence and

compared with each other.
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3 Numerical tests

The iterative method is tested to show its ef-

fectiveness by modeling a semicircular alluvial valley

(filled with sediments) and a heterogeneous near sur-

face layered model with flat topography, compared with

the standard Gaussian elimination method. Numeri-

cal modeling is implemented in the frequency domain.

A variable element dimension technique was adopted

in the program implementation (Fu, 1996) to improve

computation speed because sampling at three elements

per wavelength is sufficient to ensure the accuracy of

the results (Campillo, 1987). Because the wavelength

is the function of frequencies and velocities, the dimen-

sion of boundary elements for each subregion in a model

is computed according to the medium velocity and the

computational frequency. The model is then automati-

cally discretized in terms of updated element dimensions

for each computational frequency.

Shown in Figure 3a is a complex fault mod-

el with six subregions Ωi (i=1, 2, . . ., 6) with the

wave velocities (km/s) indicated in the figure. The

dimensions of the model are 3 800 m horizontally

and 1 500 m vertically. The source is a minimum-

phase Gauss wavelet with a central frequency of 15

Hz. The stacked sections are calculated in the frequen-

cy range 0–40 Hz, with receivers along the free sur-

face. Figure 3b shows the stacked section calculated us-

ing the finite-difference method made by Seismic Un*x

(http://www.cwp.mines.edu/cwpcodes/). In compari-

son with our result (Figure 3c) given by equation (9),

we see a perfect agreement between them but a more

distinct description of the fault interface for the latter.

The above comparison confirms the validity of my for-

mulations and computation program.

The semicircular hetergeneous valley of radius a is

shown in Figure 4. The frequency responses along the

horizontal topography to a vertical incident wave are

computed for the dimensionless frequency η=1.0. The

dimensionless frequency is defined as η=2a/λ, where λ

is the wavelength of incident waves. The shear wave ve-

locity inside the valley is 1 500 m/s in the background

medium of 3 000 m/s. For valley velocity perturbation

of 0 percent, the dimension of the resulting matrix is

309×309. For valley velocity perturbations of 10–25 per-

cent, the dimension of the resulting matrix is 912×912.

Here the stopping criterion ε is 1×105, and the restart

parameter m is 34.

Ω
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Figure 3 The geometry of a complex fault model (a) with six subregions Ωi (i=1, 2, . . ., 6), and the seismic

sections for the complex fault model by the finite-difference method (b). The result in (c) is given by equation (9).
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Figures 5 and 6 show the comparison of conver-

gence of different valley velocity perturbations by non-

preconditioned, left and right diagonal preconditioned

GMRES (m) method. The experiments indicate that

the preconditioned methods have a considerable im-

provement over non-preconditioned method, and the

left diagonal preconditioned method is slightly better

than the right diagonal preconditioned one. These above

results are further confirmed by the comparison between

the GMRES(m) methods and the Gaussian elimination

method in Tables 1 and 2. Figures 7 and 8 show the com-

parison of iterative results by the left preconditioned

GMRES (m) method with random velocity perturba-

tions of 0 and 15 percent, respectively. It can be seen

that the convergence is still fast when the matrix di-

mension increases from 309 to 912.

Figure 9 shows a heterogeneous multilayered model

with randomly velocity perturbation in the near sur-

face layer and the wave velocity indicated in the figure.

The computations for this example are performed with

frequency range 0–40 Hz and the source at depth 20 m

below the free surface. The dimensions of the model are

3 000 m horizontally and 1 000 m vertically. The source

is a minimum-phase Gauss wavelet with a central

Incident wave

Half space Valley

ν

ν

δ

Figure 4 Geometry of a semicircular valley with the

radius of a and the wave velocity ν1 in the surrounding

homogeneous half-space with the wave velocity ν2.
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Figure 5 Comparison of convergence by non-
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Figure 6 Comparison of convergence for different valley velocity perturbations of 10–25 percent by non-preconditioned

(a), left (b) and right (c) diagonal preconditioned GMRES (m) method.
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Table 1 Comparison of different algorithms for the semicircular valley with random velocity perturbation of 0 percent

Algorithm
Gaussian elimination

method

Non-preconditioned

GMRES(m)

Left preconditioned

GMRES(m)

Right preconditioned

GMRES(m)

Number of iterations / 159 21 24

CPU time/s 2.3 2.23 0.28 0.79

Table 2 Comparison of different algorithms for the semicircular valley with random velocity perturbation of 15 percent

Algorithm
Gaussian elimination

method

Non-preconditioned

GMRES(m)

Left preconditioned

GMRES(m)

Right preconditioned

GMRES(m)

Number of iterations / 296 28 37

CPU time/s 11 6.23 1.46 3.09

Distance (x/a)

A
m

pl
itu

de

Figure 7 Comparison between the accurate solution

of equation (9) (solid line) and the iterative solutions of

the fifth (dotted line), the tenth (dashed line) and the fif-

teenth (dots) iterations for random velocity perturbation

of 0 percent. Frequency responses are computed resulting

from vertical incident SH wave with η=1.0 to the semi-

circular valley.

Distance (x/a)

A
m

pl
itu

de

Figure 8 Comparison between the accurate solution

of equation (9) (solid line) and the iterative solutions of

the fifth (dotted line), the fifteenth (dashed line) and the

twenty-fifth (dots) iterations for random velocity pertur-

bation of 15 percent. Frequency responses are computed

resulting from vertical incident SH wave with η=1.0 to

the semicircular valley.

 km/s

 km/s

 km/s

 km/s source δ

z/
km

x/km

Figure 9 A heterogeneous near-surface layer with flat

topography (δ is the velocity perturbation).

frequency of 15 Hz. For 0 percent velocity perturba-

tion in the near-surface layer at frequency of 40 Hz, the

dimension of the resulting matrix is 1 535×1 535. For

15 percent velocity perturbation, the dimension of the

resulting matrix is 4 338×4 338. Here the stopping cri-

terion is 1×105, and the restart parameter m is 40.

The comparisons in Figure 10 indicate that the

preconditioned GMRES(m) methods perform still well

for such larger matrix computations, whereas the non-

preconditioned GMRES(m) method doesn’t work. The

results in Tables 3 and 4 show that the preconditioned

GMRES(m) methods improve the computational effi-

ciency greatly by comparison with the Gaussian elimi-

nation method. We also evaluate the accuracies of it-

erative solutions by the comparison of the waveform

recording in Figure 11. The result of the preconditioned

GMRES(m) method shows an excellent agreement with

that of the Gaussian elimination method.

4 Conclusions

In this paper, the restarted GMRES method is

used to solve large boundary-volume integral equations.

The iterative method is validated by dimensionless fre-

quency responses to a semicircular alluvial valley (filled
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Figure 10 Comparison of convergence by non-preconditioned (solid line), left (dotted line) and right (dashed

line) diagonal preconditioned GMRES(m) method for random velocity perturbations of 0 (a) and 15 (b)

percent in the near-surface layer, respectively.

Table 3 Comparison of different algorithms for the multilayered model with randomly 0 percent velocity perturbation in

the near-surface layer

Algorithm
Gaussian elimination

method

Non-preconditioned

GMRES(m)

Left preconditioned

GMRES(m)

Right preconditioned

GMRES(m)

Number of iterations / >100 0 159 165

CPU time/s 56.63 / 26.54 28.17

Table 4 Comparison of different algorithms for the multilayered model with randomly 15 percent velocity perturbation in
the near-surface layer

Algorithm
Gaussian elimination

method

Non-preconditioned

GMRES(m)

Left preconditioned

GMRES(m)

Right preconditioned

GMRES(m)

Number of iterations / >100 0 159 165

CPU time/s 515 / 83 84

(a) (b)

t/s

A
m

pl
itu

de

t/s

A
m

pl
itu

de

Figure 11 Comparison of the waveform recordings of mid-trace computed by the left diagonal precon-

ditioned GMRES(m) method (dots) and the Gaussian elimination method (solid line) for random velocity

perturbations of 0 (a) and 15 (b) percent in the near-surface layer, respectively.

with sediments), compared with the standard Gaussian

elimination method. Then the method is tested by a het-

erogeneous multilayered model to show its effectiveness.

The modeling results indicate that application of diag-

onal preconditioning improves convergence, with great

savings on both computing time and memory require-

ments.

In summary, the preconditioned GMRES method

significantly improves computational efficiency especial-

ly for large earth models and high frequencies, but with

a faster convergence for the left diagonal precondition-

ing.
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