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Abstract  Physical and mathematical arguments are presented for equipartition as the statistical state achieved by a ran-
dom field, independent of its sources, in the limit of enough scattering. The arguments are simplest for the case of thermally 
excited fields, but are shown to apply also, with caveats, in non-equilibrium acoustics and seismology. Practical implications 
are discussed. 
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1 Introduction  

The term equipartition signifies that appropriately 
normalized average energy densities in different places, 
or different modes, of a diffuse wave field are equal 
(Nyquist, 1928; Kittel and Kroemer, 1980; Weaver, 
1982). This statistical concept is venerable and useful, 
and sometimes problematic. Its utility springs from the 
enormous simplifications it engenders. It is striking that 
one can say anything general about the statistics of a 
wave field. Surely there are many degrees of freedom; 
why should the statistics of the field be so simple, and 
so independent of its sources? And yet it appears that 
under relatively simple conditions these fields are equi-
partitioned and their statistics are simple. The properties 
of a random wavefield, in particular its correlations, are 
universal and independent of its source. 

There are several aspects to the concept. In seis-
mology the term has come to signify the state of a dif-
fuse field in which wave energy is partitioned between 
shear and longitudinal waves in a precise ratio (see be-
low). It is less well appreciated that full equipartition 
implies corresponding ratios for other kinds of waves as 
well, e.g., Rayleigh and Love. The term also signifies 
that waves are equally intense from all directions of in-
cidence. 

This paper is mostly pedagogic. It is intended to 
review the concept, including its origins in thermody-
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namics and its consequences for energy ratios and re-
trieval of the Green’s function, and to argue for its ap-
plicability to media with non-thermal sources such as 
those of seismology. It is intended to introduce the con-
cept of local equipartition in unbounded media, and to 
outline conditions under which one expects to find 
equipartition in practice. It is also argued that equiparti-
tion, being so universal, is an important state against 
which to compare any random seismic field. 

2 Thermal equipartition 
Classical statistical thermodynamics shows that a 

system, at specified total energy, achieves maximal 
thermodynamic entropy if the natural (eigen) modes 
have equal expected energies (Nyquist, 1928; Kittel and 
Kroemer, 1980). For the case of acoustics, for example, 
thermally excited phonons in a finite solid (Kittel and 
Kroemer, 1980), we write the amplitudes an of the natu-
ral modes as uncorrelated Gaussian random variables 
with the following correlation function: 

 
< anam

* > = δnm 2εn / ω n
2

< anam > = 0

⎧
⎨
⎪

⎩⎪
,  (1) 

where εn is the average energy in the nth natural mode 
and ωn is its frequency. 

The thermal case is special in that energy 
re-distributing scatterings permit flows of energy be-
tween different frequencies. This implies that average 
energy is the same for all natural modes; the quantity εn 
is then interpretable as Boltzmann constant times abso-
lute temperature, kBT (Quantum mechanics provides a 
correction which here we neglect). They also differ in 
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that sources are distributed (the fluctuation dissipation 
theorem (Callen and Welton, 1951)) precisely in propor-
tion to dissipation. For acoustics above about 100 kHz, 
noise fields are usually dominated by thermal fluctua-
tions because man-made and natural sources are weak or 
rapidly dissipated. Due to the robustness of equipartition 
in this regime, and despite the weakness of thermal fluc-
tuations, it is here that some of the more striking dem-
onstrations of Green’s function retrieval have been made 
(Marvin et al., 1980; Weaver and Lobkis, 2001). 

Noise in acoustics and seismology and ocean 
acoustics below 100 kHz is dominated by non-thermal 
sources. Such fields are not in equilibrium with the am-
bient temperature, and source strengths are not distrib-
uted in the same way as the dissipation. The thermody-
namic arguments do not apply and equipartition does not 
necessarily follow. The lack of significant inelastic scat-
tering means that εn (even if (1) applies) is in principle a 
function of frequency. As a consequence, a random 

field’s statistics can be dependent on details of its source, 
in particular the source’s distribution in time and space 
and frequency. Nevertheless, a version of the maximum 
entropy concept often continues to apply and a variation 
on thermal equipartition is sometimes retained. 

3 Consequences of equipartition 
Below we review derivations of the principle of 

equipartition for the non-thermal case. Before doing that, 
though, it is instructive to first demonstrate two of its 
more striking consequences.  

The usual modal expansion for the free linear vi-
brations of a finite structure is 

 ψ (x, t) = Re anu
(n) (x)exp(iω nt)

n
∑ ,  (2) 

where u(n) is the nth natural mode, ωn is its frequency, 
and an is its complex amplitude. Thus (the time- deriva-
tive of) the field-field correlation is 
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the last line of which was derived using the assumed 
correlations (1). Except for the minus sign and the factor 
of εn and the support at negative τ, this is the familiar 
natural mode expansion of Green’s function (Morse and 
Feshbach, 1953; Economou, 1983). Hence one draws 
the conclusion that an equipartitioned field has correla-
tions equal to Green’s function. In the event that ε has a 
weak frequency dependence, one concludes that C′ cor-
responds to a band-pass filtered version of G. In the 
event that ε has a rapid frequency dependence, the filter 
has long and possibly irregular duration and C′ resem-
bles G more poorly. 

Another striking consequence of equipartition is 
that a diffuse elastic wave field will, in the bulk, parti-
tion its energy between shear and longitudinal waves in 
a proportion 
 3 3

S P P S2 .E E c c=  (4) 

This number depends on Poisson’s ratio but is typically 
about 10 or more. The result follows from simple mode 
counting procedures (Kittel and Kroemer, 1980; Kinsler 
et al., 1982; Weaver, 1982) in which modal density is 
seen to be inversely proportional to the cube of wave-
length (and hence the cube of velocity c). An additional 
factor of two arises above from the two independent 
polarizations of shear waves. This ratio was derived in-
dependently by Papanicolaou et al. (1996) in a very dif-
ferent context as the steady state ratio of elastic energies 
achieved by a multiply scattered wave field. The expres-
sion is more complex at a free surface (Weaver, 1985; 
Hennino et al., 2001) where the energy density of 
Rayleigh waves is also of interest. One also recognizes 
that there is a characteristic ratio of horizontal to vertical 
kinetic energy. Characteristic energy ratios are indeed 
observed in multiply scattered seismic waves (Hennino 
et al., 2001). This can be used as a signature of equipar-
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tition. 
Equipartition in non-thermal systems can be under-

stood, and derived, in at least two distinct ways, each 
with the potential to give insight into how and whether 
equipartition may or may not occur in practice. One 
method posits that there should be some sort of dynamic 
balance between different kinds of energy, and further-
more that reciprocity demands that that balance be in a 
certain universal proportion. The other method posits 
that the statistics of a wave field ought to be such as to 
maximize information entropy. The following sections 
present the two approaches. 

4 Dynamic balance of diffuse energy 
flow 

That there should be some characteristic ratio of 
energies in a steady-state diffuse field is not difficult to 
appreciate. Even if a source is such that wave energy is 
produced in certain modes and not others, mode conver-
sion will mix the energies. A steady state dynamic bal-
ance is then to be expected as energy in mode ‘i’ is aug-
mented due to conversion from modes ‘j’ and dimin-
ished by conversion from mode ‘i’ to modes ‘j’. On tak-
ing the average power flows to be proportional to the 
average energy densities we write 

 

   

dEi

dt
= α ij E j

j≠i
∑ − ( α ji )Ei

j≠i
∑

d{E}
dt

= A{E}

⎧

⎨
⎪⎪

⎩
⎪
⎪

,  (5) 

where the α are energy mode conversion coefficients, all 
non-negative. A is a positive semi-definite matrix of 
coefficients and {E} is an array of mode energies. Here 
we may imagine that indices ‘i’ represent shear or lon-
gitudinal waves, or different substructures, or different 
volumes in room acoustics. This first-order constant 
coefficient set of equations has exponential solutions 
exp(−γ t) with characteristic rates γ , all nonnegative. 
Conservation of total energy E=∑Ei (implicit in the 
above equations) demands that one of those rates is γ = 0. 
The eigenvector {e} associated with that eigenvalue 
satisfies A{e}= 0 and corresponds to some characteristic 
ratio of energies in the different substructures. As long 
as A is not block diagonal (i.e. when all modes are cou-
pled to all others, directly or indirectly) there is only one 
such eigenvalue γ  =  0 and eigenvector {e}. This is the 
only steady state solution of equation (5); it is the dif-

ferential equation’s attractor. The energy distribution 
achieved at late time is proportional to {e} and inde-
pendent of initial conditions.  

Equation (5) is a limit of a more realistic case in 
which there are dissipations and sources of energy as 
well as mode conversions. In the presence of dissipation 
σ and steady input powers {P}, one modifies (5) as 

 

dEi

dt
= α ij E j

j≠i
∑ − ( α ji )Ei − σ i Ei + Pi

j≠i
∑

d{E}
dt

= ( A − σ ){E}+{P}

⎧

⎨
⎪⎪

⎩
⎪
⎪

.  (6) 

The steady state solution of (6) such that d{E}/dt = 0 is 
{E}= −(A−σ )−1{P}. It is in general now not proportional 
to {e}. The presence of dissipation and steady power 
input may distort the equilibrium distribution of energy 
away from {e}. If, however, P happens to be propor-
tional to the damping and to the natural distribution {e} 
of energy: Pi = pσi ei with some proportionality p, then 
the steady state distribution is {E} = −[A−σ]−1{P}= 

−[A−σ ]−1pσ {e}= p{e}. The distribution is unchanged 
from the special limiting case ∝{e} obtained at late 
times in the absence of dissipation. While the propor-
tionality Pi = pσiei may seem arbitrary, it is obeyed pre-
cisely in the thermal case (Callen and Welton, 1951). 

That the special distribution {e} is equipartitioned, 
i.e., that this eigenvector corresponds to each natural 
mode having equal average energy (independent of the 
details of the α ), is not as obvious as the conclusion that 
there must be some characteristic steady state ratio {e}. 
Such a conclusion requires further argument. 

5 Equipartition in finite structures 
In a finite structure proofs of equipartition can be 

composed in various ways. Perhaps the simplest are 
those based on maximum information entropy (Jaynes, 
1982). Given a random wavefield described by its modal 
expansion as in equation (2), we inquire as to the joint 
probability function p(a1, a2, a3, ⋅⋅⋅) for the complex mo-
dal amplitudes a. The information entropy associated 
with such a probability density function is  

1 2 1 2( , , ) ln[ ( , , )] d Re d Im ,n n nI p a a p a a a a= Π∫ L L  (7) 

which, in accord with the usual arguments (Jaynes, 1982) 
must be maximized subject to the condition that sundry 
additional pieces of information are known. For exam-
ple, we might impose two conditions: the normalization 
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of the probability density function, and the total energy. 
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On maximizing I while imposing constraints by means 
of Lagrange multipliers, one concludes that the prob-
ability density function must be 
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with F being a normalization constant and β being one 
of the Lagrange multipliers. One immediately concludes 
that the field has Gaussian statistics with correlations 
indicated by (1) with constant εn= E/ number of modes = 

1/β. The correlation function is exceptionally simple in 
terms of the modal amplitudes (called normal coordi-
nates in vibrations) a. In terms of more immediately 
useful field variables such as displacements or strains at 
sundry positions, the correlation function is just G. 
Gaussian statistics follow from maximal information 
entropy and in turn imply both equipartition and re-
trieval of G. Equipartition, and retrieval C′=G, are two 
ways of stating the same thing, merely in different coor-
dinates. A similar point is emphasized by Sánchez- 

Sesma et al. (2008). 
These arguments are slightly modified if the con-

straint is on the smooth spectral density of energy E(ω) 
rather than the total energy E. In non-thermal acoustics 
the field is excited by sources with specified spectral 
densities, and energy does not migrate in frequency. In 
this case the statistics of p are constrained by the 
(smooth) frequency-dependent spectral density of en-
ergy E(ω), not by total energy. In that case β has a 
(smooth) dependence on ωn. 

It may be that the system is composed of two or 
more independent subsystems that do not exchange en-
ergy, for example two uncoupled volumes in room 
acoustics, or shear and longitudinal waves in an elastic 
body with rigid-smooth boundaries. In this case the en-
ergy in each subsystem is determined only by its own 
source, and the modes of the two subsystems will have 
separate probability density functions with different β. 

If, however, those two kinds of modes do exchange 
energy, then one concludes that the amount of energy of 
each kind is merely proportional to the number of modes 
of that kind. This is the origin of the conclusion equation 

(4) (Weaver, 1982). A related consequence is that two 
coupled acoustic volumes, e.g., coupled reverberation 
rooms, have energies proportional to their respective 
number of modes, in turn proportional to their volumes 
if they have the same wave speeds. After equilibrium is 
reached, the two coupled rooms will have identical en-
ergy densities, even if the sources are only in one room. 
Similarly, a source of purely longitudinal waves in a 
finite elastic structure will generate, after sufficient 
mode conversion, a field that is predominantly com-
posed of shear waves in accord with equation (4). An-
other consequence is that seismic codas are dominated 
by shear waves.  

Equipartition may also be established by a detailed 
consideration of mode conversion rates α. Mode con-
version reflection coefficients from longitudinal to shear 
are typically much greater than the reverse. Thus a 
steady state balance requires a much higher energy den-
sity in shear waves than in longitudinal waves. Egle 
(1981) used this to derive the ratio [equation (4)] nu-
merically for ultrasonics in a finite body with a traction 
free surface. The same inequalities, and consequences, 
apply to scattering cross sections, as discussed analyti-
cally by Papanicolaou et al. (1996) in an argument based 
on reciprocity. Weaver (1984) showed that the reciproc-
ity of the S-matrix governing edge reflections implies 
that the steady state balance of Lamb wave energy den-
sities in a thick plate must correspond to equipartition, 
regardless of dispersion or anisotropy or boundary con-
ditions. His argument applies equally well to the simpler 
case of bulk waves in a 3-D solid. Lyon and Maidanik 
(1962) showed by means of a detailed discussion of the 
equations of motion, that a single mechanical oscillator 
in contact with a large system must have an average en-
ergy equal to that of the average mode in the large sys-
tem. 

An additional caveat of only rare practical impor-
tance, but fascinating to many, may be noted. If the cou-
pling is very weak, and energy flow is slow on the time 
scale of the modal density (called the Heisenberg time), 
then energy does not become equipartitioned after an 
arbitrary source. This is the physical basis for Anderson 
localization (Weaver and Lobkis, 2000; Hu et al., 2008).  

The upshot is that as long as mode conversion rates 
α are fast compared to a) differences of dissipation σ 
and b) inverses of Heisenberg times, then an arbitrary 
source yields, perhaps after a short time, a field whose 
statistics are well characterized as equipartitioned. Not 
only may one conclude {E}∝{e}∝ number of modes, but 
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also the more striking retrieval equation, C′=G equiva-
lent to (1) and to (3). 

6 Open systems and local equipartition 
In an open or very large system, however (consider 

for example the entire Earth) the notion of non-thermal 
equipartition per se can be nonsense. Seismic energy is 
not distributed equally over all the Earth. In the context 
of the present discussion we may understand this as 
owing to dissipations, σ, of seismic waves being com-
parable to or faster than scattering and re-distributions, 
α, across the Earth. Nevertheless open systems can 
achieve a kind of local equipartition, in which all the 
modes of a region and/or of a certain type, are equally 
energetic on the average. In this case the correlation 
function C′ only resembles a local version of G, a G that 
lacks the influence of the missing types of waves or the 
influence of distant scatterers. 

Much of the early work on retrieval of G in open 
systems considered homogeneous media with sources at 
infinity. If these sources are distributed uniformly in 
angle and if there is no dissipation, one promptly derives 
the relation C′=G, i.e. equipartition (Roux and Kuper-
man, 2004; Snieder, 2004). Those discussions are per-
haps particularly accessible and intuitive. However, the 
theorem is more general; it applies also to inhomogene-
ous media and even to media with dissipation if the 
sources are distributed in proportion to the dissipation. 
Wapenaar (2004) in a series of papers shows how a spe-
cific set of random sources on a surface surrounding a 
non-dissipative heterogeneous region, gives rise to a 
random field in the interior with the required correla-
tions. Weaver and Lobkis (2004) showed that a random 
field incident upon a finite dissipationless heterogeneous 
region will give rise to the required correlations if the 
incident random field itself has the required correlations. 
Thus a field locally equipartitioned in one place will, if 
in equilibrium with another place, generate a field in the 
other place that is also locally equipartitioned.  

7 What do we expect in practice? 
Much of the current excitement in seismic Green’s 

function retrieval has arisen from circumstances in 
which noise fields are diffuse (i.e. random with smooth 
variations in intensity) but not equipartitioned. Seismic 
correlation functions tend to be dominated by Rayleigh 
waves, indicating perhaps that the ambient noise field 
contains little contribution from bulk waves. That the 

amplitude of the retrieved waveform depends upon di-
rection indicates that the propagation directions in the 
noise field are not isotropically distributed either.  

This means that the wave field is not equiparti-
tioned and thus is not very multiply-scattered; little 
mode conversion α has transpired. The wide success of 
time-of flight retrieval from ambient seismic noise is 
owed more to asymptotic arguments for ray propagation 
in a continuous distribution of intensity versus direction, 
arguments like those of references (Roux and Kuperman, 
2004; Snieder, 2004; Weaver et al., 2009; Froment et al., 
2010), rather than to the principle of equipartition or 
equation (3). The researcher interested in time-of flight 
retrieval perhaps need not consider the concept of equi-
partition. Nevertheless partition ratios are in principle 
important parameters. In those cases in which partition 
is equal, Green’s functions should be recoverable with 
relative amplitudes that are robust. It appears to be a 
somewhat neglected issue: to what extent is a given am-
bient seismic noise field (locally) equipartitioned? 
Hennino et al. (2001) measured the late time coda at a 
station in Mexico. Their array was configured so that 
both seismic displacements and strains could be recov-
ered. In consequence they could assess the energy in 
various modes. They showed that, within the late coda 
of earthquake waveforms, the field was equipartitioned. 
The correct energy ratios were observed, for example 
shear to longitudinal, or horizontal to vertical, inde-
pendent of the earthquake source. The conclusion was 
that their late time coda was multiply scattered; enough 
mode conversion had taken place by scattering for the 
equilibrium ratios to be established. Thus coda, if atten-
tion is confined to late times, should be superior to am-
bient seisms for the retrieval of Green’s functions. (The 
chief reason for preferring ambient noise is that there is 
so much more of it; averages converge more quickly; 
one need not wait for earthquakes). Campillo and Paul 
(2003) successfully retrieved Green’s functions from 
codas in Mexico. Paul et al. (2005) using coda wave-
forms from Alaska, recovered non-time-symmetric 
Rayleigh wave arrivals, thus indicating that the propaga-
tion directions in their codas were not isotropically dis-
tributed. They noted, however, that the time symmetry 
increased as the coda aged. Multiple scattering was 
tending to equilibrate the coda partition. They also noted, 
in numerical simulations, that the characteristic ratio (4) 
of propagation mode energies ES/EP was achieved long 
before the distribution of propagation directions became 
isotropic. This suggests that as waves multiply-scatter, 
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isotropy is achieved slowly but other signatures of 
equipartition are achieved quickly. 

8 Conclusions 
Equipartition is a general principle describing the 

statistics of a diffuse field as independent of initial con-
ditions or sources. Equipartition obtains in the limit of a 
large number of mode converting scatterings or reflec-
tions. It is observed in the laboratory and in late seismic 
coda. As such it is an important state against which to 
compare any random wave field. Ambient seismic noise 
appears to be rarely equipartitioned, even locally. For-
tunately, practical retrievals of surface wave propagation 
time from ambient seismic noise have not depended on 
having full equipartition. Nevertheless it may be useful 
to ask of certain seismic fields the degree to which they 
do approximate equipartition. Constraints on mode 
conversion rates versus losses could be obtained from 
such comparisons. In those cases in which the fields are 
equipartitioned, correlations will provide highly robust 
measures of Green’s functions. 
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