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Abstract  General purpose graphic processing unit (GPU) calculation technology is gradually widely used in various 
fields. Its mode of single instruction, multiple threads is capable of seismic numerical simulation which has a huge quantity 
of data and calculation steps. In this study, we introduce a GPU-based parallel calculation method of a precise integration 
method (PIM) for seismic forward modeling. Compared with CPU single-core calculation, GPU parallel calculating perfectly 
keeps the features of PIM, which has small bandwidth, high accuracy and capability of modeling complex substructures, and 
GPU calculation brings high computational efficiency, which means that high-performing GPU parallel calculation can make 
seismic forward modeling closer to real seismic records. 
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1 Introduction  

As the exploration of petroleum resources is 
developing continuously, depth of subsurface target and 
requirement for precision of exploration method are both 
growing, which causes rapid increase of data volume. 
Meanwhile, continuous cost increases in the field of 
geophysics data processing. For the sake of better 
recognizing the propagation and imaging of seismic wave 
in complex subsurface structures, it is essential to develop 
new modeling method with higher precision in order to 
carry out the forward modeling and inverse for seismic 
wavefields. Higher demand on the capacity of calculation 
devices has attracted more attention.  

For the past 20 years, the performance of CPU is 
continuously growing with Moore’s law, while the 
parallel calculation algorithm for multi-CPU system has 
been widely applied. CPU manufacturers also developed 
multi-core CPUs. Intel achieved six-core CPU in 2009. 
However, the problem of CPUs, which have relatively 
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fewer processing units, has never had a fundamental 
change in their hardware architecture. Although super 
computers manage thousands of CPUs, and PC-Clusters 
are also set up for parallel computing, the contradiction 
is not still solved between CPUs’ mainly serialized 
feature in processing, and huge volume geophysics data 
with relatively simple and repetitious calculating steps. 

On the other hand, great demand for emulation 
technique of complex graphic processing forces faster 
development of graphic processing unit (GPU). 
Although the frequency of a GPU’s processing unit is 
less than that of a CPU’s, a GPU can handle much more 
processing units, which makes GPU’s performance 
much better than CPU’s of similar costs. Cutting-edge 
GPU’s capacity of floating point arithmetic has reached 
1012 FLOPS, advancing a six-core GPU’s by two orders 
of magnitude (Zhang et al, 2009). 

In this paper, we provide a precise integration 
method (PIM) to explore the application of GPU-based 
parallel calculation for difference modeling method. We 
enhanced the PIM calculation program by GPU-friendly 
optimization to fully exploit its calculation efficiency, 
and to illuminate the significance of GPU parallel 
calculation in practical production of petroleum 
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exploration. 

2 Precise integration method 
Precise integration method (Tang, 2007; Yang, 

2009) is a wave equation solving method designed for 
complex subsurface structures. This method can handle 
numerical dispersion and meet strict stability criteria of 
finite difference method (FDM). The basic idea is to 
employ a difference approximation in spatial domain, 
converting the wave equation into a set of differential 
equations with respect of time and then solve this 
equation system using an integration of a matrix of 
exponential functions. Theoretically this solution is 
accurate in the time domain, which solves the problem 
of numerical dispersion from the FDM, hence increasing 
the total accuracy. The whole spatial domain can be 
divided into several sub-domains. We use a single-point 
sub-domain to reduce the data bandwidth, with which 
we compromise between accuracy and efficiency. This 

method, with less data and higher stability and capable 
in heterogeneous medium and complex boundary 
conditions, has better results for complex subsurface 
structures and structures with relief surface. 

For a 2D isotropic medium in x-z domain, the 
acoustic equation can be written as follows 
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where u is pressure perturbation propagating in the 
medium, and v is the acoustic velocity. For simplicity, 
the source function is omitted. All sources in this study 
is explosion, therefore the problem is completely 2-D. 

Discretizing the spatial coordinates from equation 
(1), we get two-order difference equation 
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This is a five-point sub-domain format, and the 
grid configuration is shown in Figure 1. 

In time domain, considering the equations 

 

Figure 1 Configuration of grids for five-point sub-domain. 
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where M is the mass matrix, C is damping matrix, K is 
stiffness matrix, and F is equivalent load, U0 and 0U&  
are both initial conditions of matrix U. Introducing 

/ 2= +&P MU CU , we obtain 
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Equation (4) has its analytic solution in time 
domain as 

 ( )

0
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Considering constant time steps which is tn=nΔt, 
introducing T(Δt)=eHΔt, and matrix f becomes f n for 
time interval [tn, tn+1], we can then get the explicit 
scheme from equation (6) 

 1 ( ) .n n n+ −= + − 1V TV T I H f  (7) 

For acoustic wave equation, we have M=I and C=0, 
equation (5) can be rewritten as 
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After obtaining V, we can get U from the first half 
of V. Usually, the elements of U are considered as the 
final solution at the location (i, j), which is U={ui, j}. 
The two-order difference equation (1) becomes 
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Introducing weight coefficient 
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iterative solution 
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The value at current time is expressed with those of 
the previous two time steps in this iteration solution. To 
reduce dispersion, under single-point sub-domain, the 
stability condition for two- and four-order difference 
equation is 

1.1109
2 2

v t
x

Δ π≤ ≈
Δ

 

Comparing with the stability condition of FDM, 
vΔt/Δx≤1, PIM has advantage in stability. We use 
two-order difference equations for following numerical 
tests. 

For source implementation, we just add source 
function in the iteration solutions, with the same 
calculation format with non-source areas. And for 
absorbing boundaries, we acquire a perfectly matched 
layer absorbing boundary condition for the second-order 
seismic wave equation (Komatitsch and Tromp, 2003). 
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3 GPU-based parallel algorithm 
Under the compute unified device architecture 

(CUDA), GPU-based parallel calculating program can 
combine well with high level programming languages 
such as C and FORTRAN. There are a number of GPU 
-based high performing parallel algorithm in the field of 
scientific calculating.  

Unlike the ideas of dividing model into several 
partitions for PC-Cluster, CUDA is designed with a 
two-stage thread managing system. The whole model is 
put into a grid, which contains numerous blocks, with no 
more than 512 threads in each block. During the 
procedure of processing, the program send all threads of 
a block into a stream multiprocessor (SM). The SM then 
assign each thread to a stream processor (SP). Every SM 
can have up to eight active blocks processing at the 
same time. A GPU contains dozens of SMs, and a SM 
has eight SPs. All the assignment work of blocks and 
threads are automatically completed by GPU (NVIDIA, 
2008). The advantage of this managing system is that 
program designers do not have to care about the actual 
number of SMs and SPs or make specialized programs 
for each device, just like what they do for PC-Clusters. 
The same codes can run on every CUDA-supported 
GPU. In the other words, the program has better 
portability. 

The best suitable strategy for GPU-based program 
designing is to divide the model into very small pieces, 
matching along with a large number of threads. The 
calculation steps for each thread should be kept simple. 
From numerical test we can see that the strategy is very 
efficient especially for models with larger scale. 

Figure 2a shows the kernel calculating flow of 
CPU-based PIM program. Based on it, we applied 
several steps to transit the method on GPU. All data for 
calculating is stored in global memory of GPU, which 
can be accessed by all threads from both CPU and GPU, 
for reason that there’s no data interchange between 
different threads. We assign every meshed units of the 
model to a thread. So the total number of threads equals 

to the number of meshed units, including absorbing 
boundaries. The number of threads in each block is 
limited to 512, while the number of threads in each 
dimension of grid is only limited to 65 535, so we set the 
block size to 16×16, and the number of blocks in the 
grid is decided by the actual scale of the model. Most 
often used constants such as time-unrelated item of 
source function, factors of absorbing boundaries and 
weighting coefficient, are stored in the constant memory 
of GPU, which has cache for faster access. 

Figure 2b show the kernel calculating flow of 
GPU-based PIM parallel program. All the GPU tasks are 
located in the loop of time step (with gray background 
in Figure 2b). There’s no data interchange between 
devices during that repetitive procedure, which increases 
the efficiency. For the aspect of instruction optimization, 
the program adopts asynchronous technique. While 
GPU is calculating, CPU write collected data from last 
shot into the resulting SEG-Y file. The synchronous 
technique also increases the efficiency. 

 

Figure 2 PIM program calculation flow for CPU (a) and GPU (b). 

4 Efficiency analys is of GPU-based 
program 

We test the relation between efficiency of the 
program and volume of model. All following numerical 
test results only indicate kernel calculation time, that is, 
they do not include the time of initializing. Environment 
Test includes Intel Core i7 CPU (clock frequency: 3.2 GHz), 
4 GB RAM and a NVIDIA GTX 260 GPU (24 SMs, 192 
SPs, clock frequency of SP: 1242 MHz, memory on GPU: 
896 MB).  

Table 1 PIM program calculation time of different volume of model 
No. Model volume GPU blocks CPU time/ms GPU time/ms Acceleration ratio 

1 16×16    1   31.7 1.69×102 0.13 
2 64×96   24 1.56×103 1.92×102 8.12 
3 192×256  192 1.28×104 4.30×102 29.8 
4 512×512 1024 5.48×104 1.47×103 37.3 
5 1024×1024 4096 2.25×105 5.35×103 42.1 
6 2048×2048 16384 8.18×105 2.12×104 38.4 
7 4096×4096 65536 3.54×106 1.02×105 34.7 
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Testing model is a constant velocity model with 
one shot in the center, which is the minimum phase 
Ricker wavelet, the number of time steps is 1 000, and 
the time interval of the calculation is 1 ms. Table 1 
shows the scale of the model (equivalent to total threads) 
and calculation time of both CPU and GPU. 

Test No.1 uses only one block of GPU. As 
‘collecting shot gather’ is to transfer data between 
devices, GPU program spends longer time than CPU. 
Test No. 2 has the same number of blocks as the number 
of SMs in the test device. There’s only one active blocks 
in each SM. The scale of test No.3 is eight times as large 
as that of test No.2, which means all blocks are active in 
the test device. Only models with larger scale than test 
No.3 can be performed with full load. GPU-based 
program has apparent advantage in tests Nos.4−7. The 
acceleration ratio (the ratio of CPU time to GPU time) is 
steady at approximately 40. The acceleration ratio 
changes with the volume of the models are shown in 
Figure 3. In tests Nos.6 and 7, the program reduce the 
size of temporary data because of relatively small 
memory on GPU, which causes the time of data transfer 
increase and slows down the GPU performance. 

 

Figure 3 Acceleration ratio of different volume of model. 

5 Case studies 
We carry out two case studies of forward modeling 

to study the application of PIM to both CPU and GPU 
platforms. Case 1 images small-scale low-velocity  

caverns in a high-velocity layer. Case 2 contains large 
scale of complex structure which is of practical value. 
Case 1 Caverns 

The model shown in Figure 4 is a three-layer 
model with four small caverns in the high-velocity layer 
(Li and Zhao, 2006). The size of the largest cavern in the 
left is 40 m×40 m; the size of the two caverns in the 
center are both 30 m×30 m; and the smallest one in the 
right of the model has the size of 20 m×20 m. We 
calculate 60 shots altogether to acquire the seismic data 
with a shot interval of 50 m. Receivers are set to the 
right side of each shot in an off-end spread. The number 
of receivers is 100, with a receiver interval of 10 m. 
Offset ranges from 100 m to 1 090 m. With the size of 
calculation mesh unit set to be 5 m×5 m, we adopt a 15 Hz 
minimum phase Ricker wavelet as the source signature. 
The same procedure is calculated by both PIM programs 
on CPU and GPU. 

 
Figure 4 Caverns model. 

The stacked sections from the results of both 
programs are shown in Figure 5. Even if they are 
calculated on different platforms, the results show no 
difference between the data from GPU and CPU 
platforms,  

 

Figure 5 Stacked section of fracture model from forward modeling result of CPU (left) and GPU (right). 
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Figure 6 Kirchhoff time migration section of fracture model from forward modeling result of CPU (left) and GPU (right). 

 

Figure 7 Kuche geological model. 

which proves that GPU platform safely increases the 
time efficiency. Figure 6 is the post-stack Kirchhoff time 
migration section (from velocities of the original model). 
We can see that PIM clearly indicates three-layer sub-
surface structure and accurately locates the four caverns. 
Case 2 Kuche geological model 

Figure 7 shows Kuche velocity geological model, 
with a width of 16 km and a depth of 6.8 km. We 
calculate 75 shots with a shot interval of 160 m, with the 
same number of receivers on either side of a split spread. 
The maximum offset on either side are 2 km. A 15 Hz 
minimum phase Ricker wavelet is employed as the 

source, and the first shot goes at 2 km to the right of the 
top-left corner of the model. (CDP 400 in Figure 7). 

We test different configuration of grids for different 
devices. For CPU program, we have 200 receivers with a 
receiver interval of 20 m. The model is meshed into 20 m× 
10 m units. For GPU program, we have 400 receivers with 
a receiver interval of 10 m. The model is meshed into     
5 m×5 m, which is of higher precision than that for CPU 
program. 

Due to the difference of the configuration of grids, 
the computational cost of GPU program is eight times as 
large as CPU program, but GPU has an acceleration ratio 
of approximately 40, which makes GPU still faster than 
CPU. Figure 8 shows the stack sections from both CPU 
and GPU programs with different configuration of grids. 
The post-stack time migration sections and post-stack 
depth migration sections are shown in Figures 9 and 10. 

As the calculation grids are set smaller in size for 
GPU, there is some slight dispersion which is not 
apparent in the result. GPU program provides clearer 
and more detailed information. Special subsurface 
structures in the deeper zone can be positioned more 
accurately. Therefore we can rely on the efficiency of 
GPU program to increase the precision by setting 
smaller grid size for the model. 

  

 

Figure 8 Stacked section of Kuche geological model from forward modeling result of CPU (left) and GPU (right). 
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Figure 9 Kirchhoff time migration section of Kuche geological model from forward modeling result of CPU (left) 
and GPU (right). 

 

Figure 10 Post-stack depth migration section of Kuche geological model from forward modeling result of CPU 
(left) and GPU (right). 

6 Discussion and conclusions 
This paper introduces the GPU parallel calculation 

optimization of a precise integration method for seismic 
modeling. According to the numerical tests of simple 
model and geological model, GPU parallel calculation 
maintains the theoretical advantage of PIM, which has 
small data bandwidth, higher precision and better 
stability. Meanwhile, with proper program design and 
optimization, GPU parallel calculation will have a great 
performance on time efficiency, of which the 
acceleration ratio can as high as around 40. That will 
greatly reduce the cost of time and device in practical 
production. 

This study just shows the advantage of GPU parallel 
calculation with a method of seismic modeling. A future 
improvement of GPU includes higher performance of SP 
clock frequency, higher precise processing, larger 
memory support, multi-GPU parallel calculation, etc. 
More GPU-oriented parallel calculating algorithm will be 
developed under the revolutionary multi-staged thread 

managing system. Both development of device and 
algorithm will be a strong force to the development of 
petroleum exploration calculating technology. 
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