
Earthq Sci (2010)23: 387−393 387

Optimization of a precise integration method
for seismic modeling based on graphic

processing unit∗
Jingyu Li 1 Genyang Tang 2 and Tianyue Hu 1,

1 School of Earth and Space Sciences, Peking University, Beijing 100871, China
2 Department of Earth Sciences, Cambridge University, Cambridge CB2 3EQ, United Kingdom

Abstract General purpose graphic processing unit (GPU) calculation technology is gradually widely used in various
fields. Its mode of single instruction, multiple threads is capable of seismic numerical simulation which has a huge quantity
of data and calculation steps. In this study, we introduce a GPU-based parallel calculation method of a precise integration
method (PIM) for seismic forward modeling. Compared with CPU single-core calculation, GPU parallel calculating perfectly
keeps the features of PIM, which has small bandwidth, high accuracy and capability of modeling complex substructures, and
GPU calculation brings high computational efficiency, which means that high-performing GPU parallel calculation can make
seismic forward modeling closer to real seismic records.

Key words: precise integration method; seismic modeling; general purpose GPU; graphic processing unit
CLC number: P315.69 Document code: A

1 Introduction

As the exploration of petroleum resources is
developing continuously, depth of subsurface target and
requirement for precision of exploration method are both
growing, which causes rapid increase of data volume.
Meanwhile, continuous cost increases in the field of
geophysics data processing. For the sake of better
recognizing the propagation and imaging of seismic wave
in complex subsurface structures, it is essential to develop
new modeling method with higher precision in order to
carry out the forward modeling and inverse for seismic
wavefields. Higher demand on the capacity of calculation
devices has attracted more attention.

For the past 20 years, the performance of CPU is
continuously growing with Moore’s law, while the
parallel calculation algorithm for multi-CPU system has
been widely applied. CPU manufacturers also developed
multi-core CPUs. Intel achieved six-core CPU in 2009.
However, the problem of CPUs, which have relatively

∗ Received 1 June 2010; accepted in revised form 23 June 2009;

published 10 August 2010.
 Corresponding author. e-mail: tianyue@pku.edu.cn

© The Seismological Society of China and Springer-Verlag Berlin Heidelberg 2010

fewer processing units, has never had a fundamental
change in their hardware architecture. Although super
computers manage thousands of CPUs, and PC-Clusters
are also set up for parallel computing, the contradiction
is not still solved between CPUs’ mainly serialized
feature in processing, and huge volume geophysics data
with relatively simple and repetitious calculating steps.

On the other hand, great demand for emulation
technique of complex graphic processing forces faster
development of graphic processing unit (GPU).
Although the frequency of a GPU’s processing unit is
less than that of a CPU’s, a GPU can handle much more
processing units, which makes GPU’s performance
much better than CPU’s of similar costs. Cutting-edge
GPU’s capacity of floating point arithmetic has reached
1012 FLOPS, advancing a six-core GPU’s by two orders
of magnitude (Zhang et al, 2009).

In this paper, we provide a precise integration
method (PIM) to explore the application of GPU-based
parallel calculation for difference modeling method. We
enhanced the PIM calculation program by GPU-friendly
optimization to fully exploit its calculation efficiency,
and to illuminate the significance of GPU parallel
calculation in practical production of petroleum

Doi: 10.1007/s11589-010-0736-4

388 Earthq Sci (2010)23: 387−393

exploration.

2 Precise integration method
Precise integration method (Tang, 2007; Yang,

2009) is a wave equation solving method designed for
complex subsurface structures. This method can handle
numerical dispersion and meet strict stability criteria of
finite difference method (FDM). The basic idea is to
employ a difference approximation in spatial domain,
converting the wave equation into a set of differential
equations with respect of time and then solve this
equation system using an integration of a matrix of
exponential functions. Theoretically this solution is
accurate in the time domain, which solves the problem
of numerical dispersion from the FDM, hence increasing
the total accuracy. The whole spatial domain can be
divided into several sub-domains. We use a single-point
sub-domain to reduce the data bandwidth, with which
we compromise between accuracy and efficiency. This

method, with less data and higher stability and capable
in heterogeneous medium and complex boundary
conditions, has better results for complex subsurface
structures and structures with relief surface.

For a 2D isotropic medium in x-z domain, the
acoustic equation can be written as follows

2 2 2

2
2 2 2(),u u uv

t x z
∂ ∂ ∂= +
∂ ∂ ∂

 (1)

where u is pressure perturbation propagating in the
medium, and v is the acoustic velocity. For simplicity,
the source function is omitted. All sources in this study
is explosion, therefore the problem is completely 2-D.

Discretizing the spatial coordinates from equation
(1), we get two-order difference equation

 ,+ =&&U KU F (2)

where T
, 1, , 1 1, , 1[]i j i j i j i j i ju u u u u+ − − +=U ,

2 2 2 2
, , , ,2

, 2 2 2 2 2 2

2
1, 2

1,2 2 2

2
, 1

2

1 12 ()

1 1 () 0 0 0

i j i j i j i j
i j

i j
i j

i j

v v v v
v

x z x z x z
v

v
x x z

v
z

+
+

−

+ − − − −
Δ Δ Δ Δ Δ Δ

− +
Δ Δ Δ

= −
Δ

K 2
, 1 2 2

2
1, 2

1,2 2 2

2
, 1

2

1 1 0 2 () 0 0

1 1 0 0 2 () 0

 0 0

i j

i j
i j

i j

v
x z

v
v

x x z
v

z

−

−
−

+

+
Δ Δ

− +
Δ Δ Δ

−
Δ

2
, 1 2 2

,

1 1 0 2 ()i jv
x z+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥Δ Δ⎣ ⎦

2 2
1, 2, 1, 1, 1 1, 1

2 2

2 2
, 1 , 2 , 1 1, 1 1, 1

2 2

2 2
1, 2, 1, 1, 1 1, 1

2 2

2 2
, 1 , 2 , 1 1, 1

2

 0
()

()

()

(

i j i j i j i j i j

i j i j i j i j i j

i j i j i j i j i j

i j i j i j i j i

v u v u u
x z

v u v u u
z x

v u v u u
x z

v u v u u
z

+ + + + − + +

− − − − − + −

− − − − − − +

+ + + − + +

+
+

Δ Δ
+

= +
Δ Δ

+
+

Δ Δ
+

+
Δ

F

1, 1
2

)j

x
+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

Δ⎣ ⎦

This is a five-point sub-domain format, and the
grid configuration is shown in Figure 1.

In time domain, considering the equations

Figure 1 Configuration of grids for five-point sub-domain.

Earthq Sci (2010)23: 387−393 389

 (0) ,

(0)

⎧ + + =
⎪ =⎨
⎪ =⎩

0

0

&& &

& &

MU CU KU F
U U

U U

 (3)

where M is the mass matrix, C is damping matrix, K is
stiffness matrix, and F is equivalent load, U0 and 0U&
are both initial conditions of matrix U. Introducing

/ 2= +&P MU CU , we obtain

 ,= +&V HV f (4)

where

,
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

U
V

P
 ,

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0
f

F

/ 2
.1

4 2

− −

−
−

⎛ ⎞−
⎜ ⎟= ⎜ ⎟− −⎜ ⎟
⎝ ⎠

1 1

1
1

M C M
H CMCM C K

 (5)

Equation (4) has its analytic solution in time
domain as

 ()

0
() e e ()d .

tt tt τ τ τ−= + ∫0
H HV V f (6)

Considering constant time steps which is tn=nΔt,
introducing T(Δt)=eHΔt, and matrix f becomes f n for
time interval [tn, tn+1], we can then get the explicit
scheme from equation (6)

 1 () .n n n+ −= + − 1V TV T I H f (7)

For acoustic wave equation, we have M=I and C=0,
equation (5) can be rewritten as

,
⎡ ⎤

= ⎢ ⎥
⎣ ⎦&
U

V
U

0

,
0

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

I
H

K

0⎡ ⎤
= ⎢ ⎥
⎣ ⎦

f
F

.

After obtaining V, we can get U from the first half
of V. Usually, the elements of U are considered as the
final solution at the location (i, j), which is U={ui, j}.
The two-order difference equation (1) becomes

2
, 2

,2

1, , 1, , 1 , , 1
2 2

2 2
().

i j
i j

i j i j i j i j i j i j

u
v

t
u u u u u u

x z
− + − +

∂
= ⋅

∂
− + − +

+
Δ Δ

 (8)

Introducing weight coefficient
4

2

1
,k

k
a α

=

=∑ equation

(8) becomes

2 4

, 2 ()
, ,2

1

i j k
i j k i j

k

u
a u u

t
α

=

∂
+ =

∂ ∑ , (9)

where
2

,
1 2

(1)
2 , 1,

,
(2)2 2 , 1,

(3)2
, , 1,

3 2 (4)
, , 1

2
,

4 2

,

i j

i j i j
i j

i j i j

i j i ji j

i j i j

i j

v
x

u uv
u ux
u uv

z u u
v

z

α

α

α

α

−

+

−

+

⎧
=⎪

Δ⎪ ⎧ =⎪ ⎪⎪ = =⎪⎪ ⎪Δ
⎨ ⎨

=⎪ ⎪=⎪ ⎪Δ =⎪⎪ ⎩
⎪

=⎪⎩ Δ

Taking ()
,
k n

i ju as value ()
,
k

i ju at time n, we get the

iterative solution

[]

1 1
, , ,2 2

2

4 2

2
2cos()()

4 1 cos() 2 ()

n n nn n
i j i j i j

n n

b b
u a t u u

a a
d a t d t

a a

+ −= Δ − − + −

− Δ Δ
+

where
4

()
,

1

,k n
n k i j

k

b uα
=

=∑
4

()
,

1

1 ,
2

k n
n k i j

k

d uα
=

= ∑ &&
4

()
,

1

k n
n k i j

k
e uα

=

=∑ &

The initial conditions are expressed as

[]

0
,

1 0 0 0
, , 2 2

,0
0 04

0

cos()()

2 1 cos()
|

i j

i j i j

i j
t

u

b b
u a t u

a a
ud a t

d t
a t =

⎧
⎪ =
⎪
⎪ = Δ − + −⎨
⎪
⎪ ∂− Δ

+ + ⋅Δ⎪
∂⎩

The value at current time is expressed with those of
the previous two time steps in this iteration solution. To
reduce dispersion, under single-point sub-domain, the
stability condition for two- and four-order difference
equation is

1.1109
2 2

v t
x

Δ π≤ ≈
Δ

Comparing with the stability condition of FDM,
vΔt/Δx≤1, PIM has advantage in stability. We use
two-order difference equations for following numerical
tests.

For source implementation, we just add source
function in the iteration solutions, with the same
calculation format with non-source areas. And for
absorbing boundaries, we acquire a perfectly matched
layer absorbing boundary condition for the second-order
seismic wave equation (Komatitsch and Tromp, 2003).

390 Earthq Sci (2010)23: 387−393

3 GPU-based parallel algorithm
Under the compute unified device architecture

(CUDA), GPU-based parallel calculating program can
combine well with high level programming languages
such as C and FORTRAN. There are a number of GPU
-based high performing parallel algorithm in the field of
scientific calculating.

Unlike the ideas of dividing model into several
partitions for PC-Cluster, CUDA is designed with a
two-stage thread managing system. The whole model is
put into a grid, which contains numerous blocks, with no
more than 512 threads in each block. During the
procedure of processing, the program send all threads of
a block into a stream multiprocessor (SM). The SM then
assign each thread to a stream processor (SP). Every SM
can have up to eight active blocks processing at the
same time. A GPU contains dozens of SMs, and a SM
has eight SPs. All the assignment work of blocks and
threads are automatically completed by GPU (NVIDIA,
2008). The advantage of this managing system is that
program designers do not have to care about the actual
number of SMs and SPs or make specialized programs
for each device, just like what they do for PC-Clusters.
The same codes can run on every CUDA-supported
GPU. In the other words, the program has better
portability.

The best suitable strategy for GPU-based program
designing is to divide the model into very small pieces,
matching along with a large number of threads. The
calculation steps for each thread should be kept simple.
From numerical test we can see that the strategy is very
efficient especially for models with larger scale.

Figure 2a shows the kernel calculating flow of
CPU-based PIM program. Based on it, we applied
several steps to transit the method on GPU. All data for
calculating is stored in global memory of GPU, which
can be accessed by all threads from both CPU and GPU,
for reason that there’s no data interchange between
different threads. We assign every meshed units of the
model to a thread. So the total number of threads equals

to the number of meshed units, including absorbing
boundaries. The number of threads in each block is
limited to 512, while the number of threads in each
dimension of grid is only limited to 65 535, so we set the
block size to 16×16, and the number of blocks in the
grid is decided by the actual scale of the model. Most
often used constants such as time-unrelated item of
source function, factors of absorbing boundaries and
weighting coefficient, are stored in the constant memory
of GPU, which has cache for faster access.

Figure 2b show the kernel calculating flow of
GPU-based PIM parallel program. All the GPU tasks are
located in the loop of time step (with gray background
in Figure 2b). There’s no data interchange between
devices during that repetitive procedure, which increases
the efficiency. For the aspect of instruction optimization,
the program adopts asynchronous technique. While
GPU is calculating, CPU write collected data from last
shot into the resulting SEG-Y file. The synchronous
technique also increases the efficiency.

Figure 2 PIM program calculation flow for CPU (a) and GPU (b).

4 Efficiency analys is of GPU-based
program

We test the relation between efficiency of the
program and volume of model. All following numerical
test results only indicate kernel calculation time, that is,
they do not include the time of initializing. Environment
Test includes Intel Core i7 CPU (clock frequency: 3.2 GHz),
4 GB RAM and a NVIDIA GTX 260 GPU (24 SMs, 192
SPs, clock frequency of SP: 1242 MHz, memory on GPU:
896 MB).

Table 1 PIM program calculation time of different volume of model
No. Model volume GPU blocks CPU time/ms GPU time/ms Acceleration ratio

1 16×16 1 31.7 1.69×102 0.13
2 64×96 24 1.56×103 1.92×102 8.12
3 192×256 192 1.28×104 4.30×102 29.8
4 512×512 1024 5.48×104 1.47×103 37.3
5 1024×1024 4096 2.25×105 5.35×103 42.1
6 2048×2048 16384 8.18×105 2.12×104 38.4
7 4096×4096 65536 3.54×106 1.02×105 34.7

Earthq Sci (2010)23: 387−393 391

Testing model is a constant velocity model with
one shot in the center, which is the minimum phase
Ricker wavelet, the number of time steps is 1 000, and
the time interval of the calculation is 1 ms. Table 1
shows the scale of the model (equivalent to total threads)
and calculation time of both CPU and GPU.

Test No.1 uses only one block of GPU. As
‘collecting shot gather’ is to transfer data between
devices, GPU program spends longer time than CPU.
Test No. 2 has the same number of blocks as the number
of SMs in the test device. There’s only one active blocks
in each SM. The scale of test No.3 is eight times as large
as that of test No.2, which means all blocks are active in
the test device. Only models with larger scale than test
No.3 can be performed with full load. GPU-based
program has apparent advantage in tests Nos.4−7. The
acceleration ratio (the ratio of CPU time to GPU time) is
steady at approximately 40. The acceleration ratio
changes with the volume of the models are shown in
Figure 3. In tests Nos.6 and 7, the program reduce the
size of temporary data because of relatively small
memory on GPU, which causes the time of data transfer
increase and slows down the GPU performance.

Figure 3 Acceleration ratio of different volume of model.

5 Case studies
We carry out two case studies of forward modeling

to study the application of PIM to both CPU and GPU
platforms. Case 1 images small-scale low-velocity

caverns in a high-velocity layer. Case 2 contains large
scale of complex structure which is of practical value.
Case 1 Caverns

The model shown in Figure 4 is a three-layer
model with four small caverns in the high-velocity layer
(Li and Zhao, 2006). The size of the largest cavern in the
left is 40 m×40 m; the size of the two caverns in the
center are both 30 m×30 m; and the smallest one in the
right of the model has the size of 20 m×20 m. We
calculate 60 shots altogether to acquire the seismic data
with a shot interval of 50 m. Receivers are set to the
right side of each shot in an off-end spread. The number
of receivers is 100, with a receiver interval of 10 m.
Offset ranges from 100 m to 1 090 m. With the size of
calculation mesh unit set to be 5 m×5 m, we adopt a 15 Hz
minimum phase Ricker wavelet as the source signature.
The same procedure is calculated by both PIM programs
on CPU and GPU.

Figure 4 Caverns model.

The stacked sections from the results of both
programs are shown in Figure 5. Even if they are
calculated on different platforms, the results show no
difference between the data from GPU and CPU
platforms,

Figure 5 Stacked section of fracture model from forward modeling result of CPU (left) and GPU (right).

392 Earthq Sci (2010)23: 387−393

Figure 6 Kirchhoff time migration section of fracture model from forward modeling result of CPU (left) and GPU (right).

Figure 7 Kuche geological model.

which proves that GPU platform safely increases the
time efficiency. Figure 6 is the post-stack Kirchhoff time
migration section (from velocities of the original model).
We can see that PIM clearly indicates three-layer sub-
surface structure and accurately locates the four caverns.
Case 2 Kuche geological model

Figure 7 shows Kuche velocity geological model,
with a width of 16 km and a depth of 6.8 km. We
calculate 75 shots with a shot interval of 160 m, with the
same number of receivers on either side of a split spread.
The maximum offset on either side are 2 km. A 15 Hz
minimum phase Ricker wavelet is employed as the

source, and the first shot goes at 2 km to the right of the
top-left corner of the model. (CDP 400 in Figure 7).

We test different configuration of grids for different
devices. For CPU program, we have 200 receivers with a
receiver interval of 20 m. The model is meshed into 20 m×
10 m units. For GPU program, we have 400 receivers with
a receiver interval of 10 m. The model is meshed into
5 m×5 m, which is of higher precision than that for CPU
program.

Due to the difference of the configuration of grids,
the computational cost of GPU program is eight times as
large as CPU program, but GPU has an acceleration ratio
of approximately 40, which makes GPU still faster than
CPU. Figure 8 shows the stack sections from both CPU
and GPU programs with different configuration of grids.
The post-stack time migration sections and post-stack
depth migration sections are shown in Figures 9 and 10.

As the calculation grids are set smaller in size for
GPU, there is some slight dispersion which is not
apparent in the result. GPU program provides clearer
and more detailed information. Special subsurface
structures in the deeper zone can be positioned more
accurately. Therefore we can rely on the efficiency of
GPU program to increase the precision by setting
smaller grid size for the model.

Figure 8 Stacked section of Kuche geological model from forward modeling result of CPU (left) and GPU (right).

Earthq Sci (2010)23: 387−393 393

Figure 9 Kirchhoff time migration section of Kuche geological model from forward modeling result of CPU (left)
and GPU (right).

Figure 10 Post-stack depth migration section of Kuche geological model from forward modeling result of CPU
(left) and GPU (right).

6 Discussion and conclusions
This paper introduces the GPU parallel calculation

optimization of a precise integration method for seismic
modeling. According to the numerical tests of simple
model and geological model, GPU parallel calculation
maintains the theoretical advantage of PIM, which has
small data bandwidth, higher precision and better
stability. Meanwhile, with proper program design and
optimization, GPU parallel calculation will have a great
performance on time efficiency, of which the
acceleration ratio can as high as around 40. That will
greatly reduce the cost of time and device in practical
production.

This study just shows the advantage of GPU parallel
calculation with a method of seismic modeling. A future
improvement of GPU includes higher performance of SP
clock frequency, higher precise processing, larger
memory support, multi-GPU parallel calculation, etc.
More GPU-oriented parallel calculating algorithm will be
developed under the revolutionary multi-staged thread

managing system. Both development of device and
algorithm will be a strong force to the development of
petroleum exploration calculating technology.

Acknowledgements This study was supported by
the National Natural Science Foundation of China (Nos.
40974066 and 40821062) and by National Basic Re-
search Program of China (No. 2007CB209602).

References
Komatitsch D and Tromp J (2003). A perfectly matched layer absorbing

boundary condition for the second-order seismic wave equation. Geophys
J Inter 154(1): 146–153.

Li J and Zhao Q (2006). Collection of Pictures of Physical Models for
Petroleum Exploration Seismology. Petroleum industry press, Beijing, 99
(in Chinese).

NVIDIA (2008). CUDA Technical Training Volume I: Introduction to CUDA
Programming. http://developer.nvidia.com/object/gpucomputing.html,
2010-05-04.

Tang G, Hu T and Yang J (2007). Applications of a precise integration method
in forward seismic modeling. The 77th SEG Annual International Meeting,
Expanded Abstract, 2 130−2 134.

Yang J, Liu T, Tang G and Hu T (2009). Modeling seismic wave propagation
within complex structures. Appl Geophys 6(1): 30−41.

Zhang S, Chu Y, Zhao K and Zhang Y (2009). High Performance GPU Calcu-
lating: CUDA. China Water Power Press, Beijing, 6 (in Chinese)

	1 Introduction
	2 Precise integration method
	3 GPU-based parallel algorithm
	4 Efficiency analysis of GPU-based program
	5 Case studies
	Case 1 Caverns
	Case 2 Kuche geological model

	6 Discussion and conclusions
	Acknowledgements
	References

