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Abstract  This paper introduces the method of support vector machine (SVM) into the field of synthetic earthquake pre-
diction, which is a non-linear and complex seismogenic system. As an example, we apply this method to predict the largest 
annual magnitude for the North China area (30°E−42°E, 108°N−125°N) and the capital region (38°E−41.5°E, 114°N−120°N) 
on the basis of seismicity parameters and observed precursory data. The corresponding prediction rates for the North China 
area and the capital region are 64.1% and 75%, respectively, which shows that the method is feasible. 
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1 Introduction  

The support vector machine (SVM) has not only a 
strict theory basis, but also a strong generalization (pre-
diction) capacity, which can better solve the practical 
problems of small samples, nonlinearity, higher dimen-
sion and local minimum point. At present, SVM are 
widely used in text classification, handwriting recogni-
tion, image classification and bioinformatics, and now it 
has been extended to synthetic estimates and prediction 
of time series. Wang et al (2005, 2006) introduced the 
method to predict strong earthquakes in Chinese 
mainland and studied the non-linear relations between 
the time series of strong seismicity in China and the 
global large earthquakes as well as sunspot activities. 
His applications have obtained some meaningful results. 

In view of that earthquake preparation-occurrence 
is a complex nonlinear dynamic process, we introduce 
SVM into a kind of synthetic earthquake prediction. The 
preliminary research by this method on the basis of 
seismic parameters has obtained a better result (Jiang et 
al, 2006). In this paper, SVM is used for a synthetic 
earthquake prediction in the North China area and the 
capital region on the basis of both seismicity parameters 
and observed precursory data. 
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2 Basic principle of SVM regression 
algorithm (Vapnik, 1995) 

It is firstly to consider the linear regression model. 
Suppose that a sample with k cases is described as 
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the linear discriminant function is  

 bf += • xwx)(  (2) 

and assume that all the training data can be fitted as a 
linear function without error under the accuracy of ε, 
that is, 
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Considering the case of permissible fitting error, 
the relaxation indexes ξi≥0 and *

iξ ≥0 are introduced. 
Then equation (3) turns into the following equation: 
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where ξi≥0 and *
iξ ≥0. That the SVM used for regres-

sion estimate is minimizing function (5) under con-
straints (4). 
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The first term of equation (5) is to make the regression 
function more flat, so as to enhance the generalization 
ability. The second term is for reducing errors, the con-
stant C>0 controls the punishment of samples whose 
errors are more than ε, where ε is a positive constant. If  
| f (xi)−yi|<ε, then it will be ignored, otherwise, the error 
counted as | f (xi)−yi|−ε. 

With fewer samples, we generally use the dual  
theory to find a solution for SVMs and turn it into a 
quadratic programming problem. Then the Lagrangian 
function is introduced: 

 
−+−+−+

+=

∑∑
==

•

k

i
iiii

k

i
ii fyC

bL

11

*

***

)]([)(

2
1),,,,,,,(

x

www

εξαξξ

γγααξξ
 

 .)()]([
1

**

1

** ∑∑
==

+−−++
k

i
iiii

k

i
iiii fy γξγξεξα x  (6) 

where, αi, *
iα , γi and 

*
iγ  (i=1, 2, ⋅⋅⋅, k) are not less than 

zero. Then the dual function of the Lagrange function (6) 
is 
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The dual solution to this problem is maximizing equa-
tion (7) under constraints (8) (Xi, 1983) 
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where 0≤αi≤C and ≤ ,0 * Ci ≤≤ α  and i=1, 2, ⋅⋅⋅, k. 
The basic idea of non-linear approximation is: 

firstly, mapping the input space into the 
high-dimensional eigen-space by the non-linear trans-
formation φ (x); secondly, doing linear approximation in 
the high-dimensional eigenspace, that is f (x)=w•φ (x)+b; 
then obtaining the non-linear regression result in the 
original space. Thus the issue of non-linear regression is 
turned into maximizing function 
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under constraints (8).  

If K(xi, xj)=φ (xi) •φ (xj), then equation (9) is turned 
into  
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where   
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Denoting w•φ (x)=w0, f (x) can be expressed as 
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The theory of SVM uses the scalar product K(xi, xj) = 
φ (xi) • φ (xj) in the high-dimensional eigenspace rather 
than uses function φ directly, thus the problem that w 
cannot be expressed with the unknown φ is solved clev-
erly, where K(xi, xj) is called kernel function. It has been 
proved that a symmetric function can be a kernel as long 
as it meets the Mercer condition. The common kernel 
functions are: 1 Polynomial kernel function K(xi, xj) = 
(xi • xj+c)d, c>0, d =1, 2, ⋅⋅⋅; 2 Radial basis kernel func-
tion (RBF) ；)2||||exp(),( 22 σjijiK xxxx −−=  3 Sig-

moid kernel function ])([tanh),( cbK jiji += • xxxx . 
It should be noted that these kernel functions have 

their own input ranges, which should be taken a 
data-scale transformation before specific applications. 
Selecting kernel function needs certain prior knowledge 
and there is no general conclusion at present. Scholkopf 
et al (1998) discussed the selection and construction of 
kernel functions.  

According to the Karush-Kuhn-Tucker (KKT) 
conditions (Xi, 1983), at the optimal solution we have  
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and 
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From equation (13) we have 0* =iiαα , and  
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The above-mentioned algorithms can be achieved easily 
by using the existing optimized software packages. 
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3 Application of SVM to synthetic 
earthquake prediction 

According to the incomplete figures, dozens of 
seismicity parameters and precursors are used in moni-
toring and predicting earthquakes in China at present, 
such as hydrochemistry, water level, geoelectricity, 
geomagnetism, electromagnetic wave, crustal deforma-
tion, gravity, stress and so on. However, earthquake 
preparation is a non-linear and unstable process, ac-
companying a large number of different random phe-
nomena. And seismicity parameters and earthquake 
precursors often show their single or group abnormal 
features in different forms. No matter in the synthetic 
earthquake prediction based on different groups of seis-
mic precursory anomalies by the same method or based 
on the same group of seismic precursory anomalies by 
different methods, the conclusions drawn from different 
phases or the same phase of seismic activities are often 
inconsistent or even contradictory sometimes. It shows 
that there is an obvious non-linear relation between the 
precursory anomalies and the earthquake. The method 
of SVM maps the sample space into a high-dimensional 
eigenspace by a non-linear mapping φ, so as to solve the 
highly non-linear (classification) problems in the eigen-
space. This is a major advantage of SVM for solving 
non-linear problems. Therefore, we apply in this paper 
the technology of SVM, which is usually used to solve 
the systematic problems of indeterminacy, non-linear 
and complexity, to predict the largest magnitude syn-
thetically for a certain area during certain period on the 
basis of seismic precursory abnormal indexes (seismic-
ity parameters and observed precursory data). 
3.1 Selection of seismic precursory abnormal in-
dexes 

A large number of earthquake cases have shown 
that seismic precursory anomalies are discontinuous and 
diversified in spatial distribution. And the abnormal 
items, distribution and duration of seismic anomalies 
before various types of earthquakes differ greatly in dif-
ferent regions. However, in the short-term stage of 
earthquake preparation, the crust medium in the highly 
concentrative stress zone is almost in the state of insta-
bility. The short-term anomalies appeared in the unit 
time are more concentrative than the trend anomalies, 
and the occurrence of seismic precursory anomalies are 
quasi-synchronic in time. Therefore, we focus on the 
characteristics of tempo-spatial distribution of precur-
sory anomalies prior to earthquakes in the North China 

area based on the analysis of 210 earthquake cases from 
Earthquake Cases in China (Zhang, 1988, 1990a, b, 
1999, 2000; Chen, 2002a, b, c) and determine the fol-
lowing rules for selecting earthquake cases and seismic 
precursory abnormal indexes:  

1) Earthquake cases with relatively concentrated 
seismic precursory anomalies in the observation items 
should be the first choice. The seismic precursory ab-
normal indexes of M5.0−5.9, M6.0−6.9 and M≥7.0 
earthquakes should make up 15%−20%, 30%−40% and 
≥50% of the total observation items, respectively.  

2) Seismic precursory anomalies relatively concen-
trated in a larger scope in the vicinity of epicentral re-
gion are selected. The seismic precursory anomalies of 
M5.0−5.9, M6.0−6.9 and M≥7.0 earthquakes should lo-
cate within a radius of 200 km, 300 km and 500 km to 
the epicenters, respectively.  

3) Single seismic precursory anomaly with a 
high-R score should be firstly selected. Similarly, the 
abnormal categories of A and B should be the first 
choice when the seismic precursory abnormal indexes 
have the same high-R score.  

4) Relatively concentrated precursory anomalies 
should be selected on the basis of combining the anom-
aly registration form with the process map of abnormal 
duration of precursor observations and the accounted 
features of precursory anomalies, respectively. 

The seismic precursory abnormal indexes in this 
paper are selected on the basis of the above-mentioned 
rules. And some of the earthquake cases are selected on 
the references of anomaly information of North China 
listed in the prediction research on the trend of Chinese 
earthquakes by the Center for Analysis and Prediction, 
China Earthquake Administration in the past years. 
3.2 Construct of sample data set  

The observed values of various types of seismic 
precursory anomalies are different in physical quantity 
and unit, so they cannot be compared directly or used as 
inputs for quantitative model. Therefore, in researching 
the evolutionary relationship between seismicity pa-
rameters, observed precursor anomalies and earthquake 
preparation-occurrence with time, we make a monthly 
statistic for the precursory abnormal durations before 
various types of earthquakes (Jiang et al, 2000), which 
are considered as predictors for the SVM synthetic pre-
diction model. In Table 1, the abnormal durations of 
seismic gap, seismic belt, b-value, lack of earthquake, 
wave velocity ratio, electromagnetism, hydrochemistry, 
water level, tilt, and short leveling survey are taken as 
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the synthetic predictors for the North China area. As 
different earthquakes have different abnormal indexes, 
so at least five or more abnormal indexes are required 
for each earthquake, otherwise, zero is assigned to the 
abnormal indexes. In this paper, the anomalous duration 

of each seismic abnormal index is taken as the input of 
SVM prediction model and its output is the predicted 
largest magnitude of future earthquake that might occur 
in a certain period and in a certain region.  

Table 1 Statistics of precursory abnormal durations for the North China area (30°E−42°E, 108°N−125°N)  (unit: mo)  
Earthquake  Abnormal duration 

No. Date 
a-mo-d Location M  Gap Belt b LOE RWV EM Hyd WL Tilt SL AF 

 1 1966-03-22 Xingtai, Hebei province 7.2 0 0 0 0.9 0 0 0 1.6 0 12 6 
 2 1967-03-27 Hejian, Hebei province 6.3 0 0 0 0 0 0 0 0.3 0 0 6 
 3 1969-07-18 Bohai Sea 7.4 0 108 48 36 0 10 8 0 0 0 23 
 4 1973-12-31 Hejian, Hebei province 5.3 0 0 0 1 0 0.6 1 0 0 11 11 
 5 1974-04-22 Liyang, Jiangsu province 5.5 37 0 0 0 6 0 0 0.2 0 0 4 
 6 1975-02-04 Haicheng, Liaoning province 7.3 60 0 0 13 39 20 16 0 18 17 39 
 7 1975-09-02 Langjiasha, South Huanghai 5.3 45 20 0 0 0 0 0 0 0 0 4 
 8 1976-04-06 Horinger, Inner Mongolia 6.3 131 164 33 5 0 0.2 0 11 1 0 30 
 9 1976-07-28 Tangshan, Hebei province 7.8 55 37 39 60 24 35 12 25 0 13 74 
10 1976-11-15 Ninghe, Tianjin 6.9 0 0 0 0 0 3 0.5 0.1 0 0 17 
11 1977-05-12 Ninghe, Tianjin 6.3 0 0 0 0 0 1.2 0.3 0 0 0 6 
12 1978-05-18 Yingkou, Liaoning province 5.9 33 3 33 0 19 2 4 1 4 3 15 
13 1979-03-02 Guzhen, Jiangsu province 5.0 22 0 24 16 16 0 0 0 0.5 0 8 
14 1979-06-19 Jiexiu, Shanxi province 5.2 29 0 49 0 0 0 0.2 0 0.2 6 10 
15 1979-07-09 Liyang, Jiangsu province 6.0 36 0 60 24 24 0 14 0.3 0 12 32 
16 1979-08-25 Wuyuan, Inner Mongolia 6.0 32 12 0 12 0 14 0 0.3 0 12 10 
17 1981-08-13 Fengzhen, Inner Mongolia 5.8 0 12 0 12 0 5 0 0.3 0 0 8 
18 1981-11-09 Longrao, Hebei province 5.8 0 10 0 0 0 10 6 0 1 0 14 
19 1983-11-07 Heze, Shandong province 5.9 39 7 11 13 12 3 2 0 0 0 16 
20 1984-05-21 South Huanghai Sea 6.2 108 8 72 0 0 13 24 0 47 9 37 
21 1985-11-30 Renxian, Hebei province 5.3 0 0 0 0 0 0.6 0.5 0.1 0 0 5 
22 1987-02-17 Sheyang, Jiangsu province 5.1 23 23 27 0 0 0 0 0 2 0 12 
23 1989-10-19 Datong, Shanxi province 6.1 56 24 13 34 20 5 12 10 0 0 73 
24 1990-02-10 Taicang, Jiangsu province 5.1 0 11 60 0 0 0 5 6 2 1 39 
25 1991-01-29 Xinzhou, Shanxi province 5.1 0 0 11 11 0 6 24 2 9 8 19 
26 1991-03-26 Datong, Shanxi province 5.8 14 0 0 3 0 7 29 328 191 10 27 
27 1991-05-30 Tangshan, Hebei province 5.1 0 6 0 3 0 0 1 7 0 0 8 
28 1992-01-23 South Huanghai Sea 5.3 0 0 23 23 32 12 0 0 1 0 21 
29 1994-07-26 South Huanghai Sea 5.3 0 10 14 0 0 0 0 0 0 0 8 
30 1995-09-20 Cangshan, Shandong province 5.2 0 0 0 0 6 7 0 0 2 7 13 
31 1995-10-06 Tangshan, Hebei province 5.0 0 0 5 0 0 0 3 10 4 6 16 
32 1996-05-03 Baotou, Inner Mongolia 6.4 0 7 15 0 0 26 0 0 16 0 11 
33 1996-11-09 South Huanghai Sea 6.1 46 154 10 0 2 62 4 13 15 10 25 
34 1997-07-28 South Huanghai Sea 5.1 26 0 0 0 0 0 5 0 0 0 7 
35 1998-01-10 Zhangbei, Hebei province 6.2 24 36 0 0 3 19 31 15 0 1 50 
36 1999-11-01 Datong, Shanxi province 5.6 42 22 0 0 0 11 0 0 0 0 21 
37 1999-11-29 Haicheng, Liaoning province 5.4 0 20 0 0 0 6 12 11 8 0 18 
38 2000-01-12 Xiuyan, Liaoning province 5.1 0 0 0 0 0 4 2 3 0 7 10 
39 2006-07-04 Wen’an, Hebei province 5.1 5 5 0 66 0 3 2 2 0 3 12 

Note: LOE, RWV, EM, Hyd, WL, SL and AF represent the lack of earthquake, ratio of wave velocity, electromagnetism, hydrochemistry, water level, 
short leveling and abnormal frequency, respectively. 

 

3.3 Learning and training of SVM  
Firstly, kernel function is selected. In the compara-

tive analysis of polynomial kernel, radial basis kernel 
and sigmoid kernel functions, we found that the poly-
nomial kernel function d=1 is more suitable for predict-
ing Mmax, the largest magnitude of the earthquake that 
might occur in the North China area in a certain period. 
And then by testing various ε and C and by 2.8 s’ learn-
ing and training, we have obtained four supporting vec-

tors when ε = 0.670 7 and C→∞. The ∗− ii αα  value of 
each supporting vector and its corresponding sample 
number are shown in Table 2. The corresponding values 
of w0 and b are 32.365 and 2.56, respectively. 
3.4 Result analysis  

By introducing the SVM method into the synthetic 
earthquake prediction, we make a statistic analysis on 
the precursory abnormal durations shown in Table 1 as 



Earthq Sci (2009)22: 315−320 319 

an example in the North China area. The former 2/3 
cases are taken as learning samples and the latter 1/3 
cases as samples for extrapolation testing. The results 
are shown in Table 3. 

It is apparent from the results in Table 3 that the 
corresponding rate for training prediction of earthquake 
strength is 0.69, the corresponding rate for extrapolative 
prediction is 0.50 and the total corresponding rate is 
64.1%. 

Table 2 Learning results of support vectors and ∗− ii αα  values 
of training samples 

Support vector Number of samples ∗− ii αα  

1 21 2 608 
2 25 0.670 7 
3 32 0.003 
4 28 96 920 

Table 3 Testing results of SVM synthetic prediction model for 
North China area  

Training results  Extrapolation results 
Mmax Actual  

earthquakes 
Correct  

predictions 
 
 

Actual  
earthquakes 

Correct  
predictions 

5.0−5.9 17 14  7 4 
6.0−6.9  8  5  3 1 

≥7.0  4  1  0 0 

Total 29 20 10 5 

 
In order to test its effectiveness, SVM method is 

used to predict the largest annual magnitude Mmax for 
the capital region (38°N−41.5°N, 114°E−120°E) on the 
basis of the anomaly information of the capital region 
presented in the prediction research on the trend of Chi-
nese earthquakes and the trends of short-term earthquake 
tracking in the capital region compiled by the Center for 
Analysis and Prediction of China Earthquake Admini-
stration since 2000. The anomaly information listed in 
the consultation reports compiled by relevant provinces, 
municipalities and research institutes are also used for 
reference, which are provided by the China Earthquake 
Information Network. The monthly abnormal durations 
of seismic precursory indexes (seismic gap, seismic belt, 
b-value, lack of earthquake, electromagnetism, hydro-
chemistry, water level and tilt) are taken as the inputs of 
SVM prediction model and the output is the predicted 
annual largest magnitude of earthquake in the capital 
region, which are shown in Table 4. If the permissible 
error is ΔMmax = maxM̂ −Mmax= ± 0.5, the corresponding 
rate for the predicted results is 0.75. 

Table 4 Testing results of SVM synthetic prediction model for 
the capital region 

No.   a-mo-d Location Mmax maxM̂ ΔMmax

1 2000-06-25 Douhe, Tangshan 4.4 4.7 0.3 
2 2001-09-19 Bohai 4.7 4.9 0.2 
3 2002-05-19 Ninghe, Tianjin 4.7 4.5 0.2 
4 2003-04-24 Ninghe, Tianjin 4.3 4.9 0.6 
5 2004-01-20 Luanxian, Hebei 5.0 5.1 0.1 
6 2005-08-31 Yuxian, Hebei 4.0 4.5 0.5 
7 2006-07-04 Wen’an, Hebei 5.5 5.0 −0.5 
8 2007-07-04 Yuxian, Hebei 3.8 4.5 0.7 

Mean squared error   0.19 

4 Discussion and conclusions 
SVM is a hot topic in the fields of statistical theory 

learning and machine learning, which is now in a boom 
period. In the current study of earthquake prediction, the 
physical processes of earthquakes are not known clearly, 
so it is still a practical way to apply mathematical statis-
tical methods to earthquake prediction. Therefore, we 
introduce the method of SVM into the synthetic analysis 
and prediction on the basis of seismicity parameters and 
earthquake precursors. Our main purpose is to explore a 
new way to predict earthquake synthetically.  

At present, the synthetic earthquake prediction is to 
study the evolutionary relation between seismic precur-
sory anomalies and processes of earthquake prepara-
tion-occurrence on the basis of various geophysical ob-
servation means. As different earthquakes have different 
seismogenic tectonic environments and different rup-
turing styles, their geophysical volumes observed before 
earthquakes are certainly very different (Chen et al, 
2008). Therefore, the key point in the synthetic earth-
quake prediction is to distinguish seismic precursory 
abnormal features and extract effective seismic abnor-
mal information. 

Different geophysical observation means have dif-
ferent physical properties and their corresponding ab-
normal features before earthquakes are also different, so 
it is difficult to use them directly in the synthetic predic-
tion of earthquakes. In studying the precursory abnormal 
features of seismicities in different periods in this paper, 
we take the seismic precursory abnormal durations as 
the inputs of synthetic prediction model. It not only re-
veals the relationship between earthquake occurrence 
and precursory abnormal duration, but also assigns the 
inputs an identical dimension and obtains a better pre-
diction result. However, further study is still needed for 
the combination and coordination of multiple abnormal 
indexes in the processes of earthquake gestation and 
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occurrence. 
In predicting the category of the largest magnitude 

in a certain period for the North China area, we find that 
the training result of multi-classifier of SVM is not satis-
factory, which is due to the complexity of earthquake 
gestation, small probability of earthquake occurrence 
and extremely difficult acquisition of sample data. Be-
cause the physical mechanism of earthquakes is not 
known very clearly, it is a studying orientation in the 
future to improve the algorithm of SVM multi-classifier 
to adapt to the prediction of earthquake magnitude for 
different periods and different regions.  
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