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Diffraction of plane P waves by a canyon of  
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Abstract  This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a 
two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green’s functions of compressional and shear wave 
sources in poroelastic half-space are derived based on Biot’s theory. The scattered waves are constructed using the fictitious 
wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the 
boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the compari-
son between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability 
of the method. 
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1 Introduction  

Earthquake observation and damage investigation 
have indicated that local site conditions, such as canyons 
and valleys, have significant effects on ground motion. 
Trifunac (1973) gave an exact solution for 2-D scatter-
ing of plane SH waves around a semi-cylindrical canyon, 
and then a lot of studies have been carried out on this 
subject. Among these studies there are analytical solutions 
(e.g., Wong and Trifunac, 1974; Cao and Lee, 1989, 1990; 
Lee and Cao, 1989; Todorovska and Lee, 1991; Yuan and 
Liao, 1994) and numerical solutions (e.g., Sanchez- 
Sesma and Rosenblueth, 1979; Wong, 1982; Kawase, 
1988; Vogt et al, 1988; Bouchon, 1989; Sanchez-Sesma 
and Campillo, 1991; Liu and Liao, 1987; Zhang and 
Zhao, 1988; Liu and Han, 1991; Du et al, 1992; Liao, 
2002; Cao et al, 2004; Zhou and Chen, 2007, 2008; 
Chen, 2007). The analytical method is often referred to 
as wave function expansion method, and the numerical 
methods include finite difference method, finite element 
method, boundary element method, discrete wave num-
ber method, wave source method, etc. 
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It should be noted that soil media are often satu-
rated in reality. And analytical solutions for diffraction 
of plane P and SV waves around canyon in poroelastic 
half-space were obtained in reference (Li and Zhao, 
2003, 2005; Liang et al, 2006), however, these solutions 
are approximate to a certain extent by introducing a very 
big circular-arc to imitate the surface of half-space (Lee 
and Liang, 2008). 

In recent years, a special indirect boundary integra-
tion equation method (IBIEM), which has the advantages 
of reducing dimensions of problems, automatic satisfac-
tion of boundary condition at infinite far, and high cal-
culation precision, has been successfully applied in the 
field of diffraction of plane waves in elastic media (San-
chez-Sesma and Rosenblueth, 1979; Wong, 1982; Luco 
and de Barros, 1994; Dravinski and Mossessian, 1987). 
Based on the single-layer potential theory, the IBIEM 
resolves problems in the following way. Fictitious wave 
sources, by which scattered waves are constructed, are 
placed close to the boundaries of local topographies, and 
magnitude of the fictitious wave sources are determined 
by the boundary conditions. However, up to now the 
IBIEM method is still limited in elastic media, and it is 
valuable for the method to be extended to poroelastic 
media; also, the nature of diffraction of elastic waves 
around local topographies in poroelastic half-space needs 
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to be studied in detail. 
This paper, based on Biot’s theory, derives the 

Green’s functions of compressional and shear wave 
sources in poroelastic half-space, and presents formula-
tion for the diffraction of plane P waves by a 2-D can-
yon of arbitrary shape in poroelastic half-space using the 
indirect boundary integration equation method. The pre-
cision of the method is verified by the satisfaction extent 
of boundary conditions, the comparison between the 
degenerated solutions of single-phased half-space and 
the well-known solutions, and the numerical stability of 
the method. The nature of diffraction of elastic waves 
around a canyon in poroelastic half-space is investigated 
in the companion paper (Liang and Liu, 2009a). 

2 Formulation 
Figure 1 shows a canyon of arbitrary shape in 

poroelastic half-space. To construct scattered waves, 
fictitious sources are introduced close to the boundary S1, 
forming a fictitious line S2. The problem to be studied is 
the 2-D diffraction of plane P waves around the canyon 
of arbitrary shape in poroelastic half-space.  

 

Figure 1 The model 

2.1 Biot’s theory 
If the displacement of the solid frame and the fluid 

displacement relative to the solid frame are denoted by 
ui and wi (i=x, y), respectively, the constitutive relations 
of a homogeneous poroelastic medium can be expressed 
as (Biot, 1941)  

 2   , ,ij ij ij ije p i j x yσ με λδ αδ= + − = , (1) 

 , ,i i i ip Mu Mwα= − − , (2) 

in which, σij is total stress component of the bulk mate-
rial, εij and e are strain components and dilatation of the 
solid frame, respectively; λ and μ are Lame constants of 
the bulk material, p is pore pressure, δij is Kronecker 
delta, α and M are Biot’s parameters describing com-
pressibility of the two-phased material, and 0≤ α ≤1 and 
0≤ M <∞. 

The equations of motion of a homogeneous poro-        
elastic medium can be expressed in terms of displace-

ments ui and wi as (Biot, 1962) 

 2
, , , f( )i jj j ji j ji i iu M u Mw u wμ λ α μ α ρ ρ+ + + + = +&& &&  (3) 

and 

 , , f ,j ji j ji i i iMu Mw u mw bwα ρ+ = + +&& && &  (4) 

where ρ = (1−n)ρs+nρf, ρs and ρf are mass density of the 
solid grain and the pore fluid, respectively, n is porosity 
of the solid frame; b is a parameter accounting for the 
internal friction due to the relative motion between the 
solid frame and the pore fluid, and b=0 if the internal 
friction is neglected; m is a density-like parameter de-
pending on ρf and geometry of the pores. 

Based on Biot’s theory, there exist two compres-
sional (P) waves and one shear (S) wave in poroelastic 
medium. Let kα1, kα2 and kβ denote the wave numbers 
for these waves, respectively, then for steady state re-
sponse, the two P wave potentials φ1 and φ2 and the S 
wave potential ψ for the solid frame satisfy the follow-
ing equations: 

 2 2
1 1 1 0,kαφ φ∇ + =    (4a) 

 2 2
2 2 2 0kαφ φ∇ + =   (4b) 

and  

 2 2 0,kβψ ψ∇ + =   (4c) 

where ∇2 is the Laplace operator defined by 
2

2 2 .
x y
∂ ∂∇ = +

∂ ∂
 

Based on Helmholtz representation, the displace-
ments of the solid frame and the fluid displacements 
relative to the solid frame for plane strain problem can 
be expressed as 

 1 2 ,xu
x x y
φ φ ψ∂ ∂ ∂= + +

∂ ∂ ∂
  1 2 ,yu

y y x
φ φ ψ∂ ∂ ∂= + −

∂ ∂ ∂
 (5a) 

 ,xw
x y
Φ Ψ∂ ∂= +

∂ ∂
  ,yw

y x
Φ Ψ∂ ∂= −

∂ ∂
 (5b) 

where Φ and Ψ are the potentials for the pore fluid, and 
they satisfy the following equations: 

 1 1 2 2 ,Φ χ φ χ φ= +   3Ψ χ ψ=  (6) 

and the parameters χ1, χ2 and χ3 are given by 
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 (7) 

where λc=λ+α2M, ω is the frequency of motion, and cα1 
and cα2 are the velocities for the two P waves, which are 
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determined by 
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and the velocity for the S waves is cβ =μ/(ρ +ρfχ3)1/2. 
2.2 Green’s functions of compressional and shear 
wave sources buried in poroelastic half-space 

To solve the problem, the Green’s functions of 
compressional (P) and shear (SV) wave sources buried 
in half-space are needed. The Green’s functions for the 
half-space can be obtained by the superposition of the 
potentials in full-space and by the satisfaction of bound-
ary conditions at the surface of the poroelastic half-space 
(Lamb, 1904). This paper derives the Green’s functions 
of compressional waves and shear wave buried in 
poroelastic half-space based on Biot’s theory. 

The boundary condition at the surface of the 
poroelastic half-space can be expressed as 

 
),casedrainedfor()0(

0,0,0
=

===

y

pyxyy σσ
 

(9) 

 
).caseundrainedfor()0(

0,0,0
=

===

y

wyyxyy σσ
 

(10)
 

The potentials for two P waves and SV wave due to 
the first P wave source at point (0, f ) can be expressed 
as  

 
1
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(11)
 

 2 i
2

2i( , ) e e d ,
π

y xx y B γ ξφ ξ
∞ −

−∞
= ∫      (12) 

 3 i2i( , ) e e d
π

y xx y C γ ξψ ξ
∞ −

−∞
= ∫ ,     (13) 

where 
(2)
0 1 1H ( )k rα  is the Hankel function of the second  

kind and of zero order; r1=[x2+( y−f )2]1/2, r2=[x2+( y+f )2]1/2, 
2 2 ( 1, 2);i ik iαγ ξ= − =  2 2

3 .kβγ ξ= −  It is easy to 

verify that the potentials φ1(x, y), φ2(x, y) and ψ(x, y) 
satisfy the equations (4a)−(4c) of wave motion. 

The following integral representations (Lamb, 1904) 

for the Hankel functions are needed: 
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Define the dimensionless poroelastic parameters λ∗, 
M∗, ρ∗, m∗ and b∗: 

 

f, , ,
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From the relations between the displacements and 
the potentials and from the boundary conditions the fol-
lowing equations in wave number (ξ ) domain can be 
obtained for the drained case: 

 

2 * 2 *
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(16a)
 

 2 2
1 22i 2i (2 ) 0,A B k Cβξγ ξγ ξ+ − − =   (16b) 

and 

 * 2 * 2
1 1 2 2( ) ( 1) ( ) 0.M k A M k Bα αα χ α χ+ + + + =  (16c) 

For the undrained case, only equation (16c) is replaced 
by  

 1 1 2 2 3i 0.A B Cχ γ χ γ ξχ+ + =    (17) 

The unknowns A, B and C in the wave number domain 
can be resolved by the above equations, and the dis-
placements and stresses can be obtained through Fourier 
transform. 

The Green’s functions of the second P wave and 
SV wave source at a point can be obtained in the same 
ways, and the detailed displacement and stress expres-
sions for the Green’s functions can be found in the ref-
erence (Liang and Liu, 2009b). 
2.3 Wave fields 

Based on Biot’s theory, there exist two P waves and 
one SV wave in poroelastic medium. Suppose the first P 
wave is the incident wave, and the same below.  

A plane first P wave with circular frequency ω and 
incident angle θα1 can be expressed as 
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 (i)
1 1 1( , ) exp[ i ( sin cos )]x y k x yα α αφ θ θ= − − , (18) 

where the time factor exp(iωt) is omitted here and 
thereafter. 

In the absence of a canyon, the first P wave inci-
dent on the surface of the poroelastic half-space will 
generate one reflected first P wave, one reflected second 
P wave and one reflected SV wave, which can be ex-
pressed as (Lin et al, 2005)  

 (r)
1 1 1 1 1( , ) exp[ i ( sin cos )],x y a k x yα α αφ θ θ= − +  (19)  

 (r)
2 2 2 2 2( , ) exp[ i ( sin cos )]x y a k x yα α αφ θ θ= − +  (20)  

and 

 (r) ( , ) exp[ i ( sin cos )],x y b k x yβ β βψ θ θ= − +  (21)     

in which, a1, a2 and b are reflection coefficients. The 
stress f ,ijσ  solid frame displacement f ,iu  fluid relative 

displacement f ,iw  and pore pressure pf of the free field 
can be obtained, which can be found in the reference 
(Lin et al, 2005).  

In the presence of a canyon, scattered waves are 
generated. In this paper, the scattered waves are con-
structed by fictitious wave sources placed close to the 
boundary of the canyon, and the displacements and 
stresses due to the scattered field can be expressed as  
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2 ,1 2 2 ,2 2
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u u
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u x b x x x c x x x
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= + +∫  
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σ σ
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(23)

   

 
s ( ) ( )

2 ,1 2 2 ,2 2
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2 ,3 2 2

( ) [ ( )G ( , ) ( )G ( , )

( )G ( , )]d ,

w w
i i ib

w
i

w x b x x x c x x x

d x x x S

= + +∫  
(24) 

 
s ( ) ( )

2 1 2 2 2 2

( )
2 3 2 2

( ) [ ( )T ( , ) ( )T ( , )

d( )T ( , )]d ,

p p

b

p

p x b x x x c x x x

x x x S

= + +∫  
(25)

 

in which, b(x2), c(x2) and d(x2) are amplitudes for the two 
P waves and the SV wave at position x2 in fictitious line 
S2; 

( )
, 2G ( , ),u

i l x x  
( )
, 2G ( , ),w

i l x x  ,

( )
2T ( , )

ij l
x xσ

 and ( )
2T ( , )p

l x x  

are the Green’s functions for solid frame displacement, 
fluid relative displacement, stress and pore pressure 
(subscript l =1, 2, 3 for first P wave, second P wave and 
SV wave sources, respectively).  

Then the displacement field and stress field can be 
obtained by  

 f s( ) ( ) ( ),i i iu x u x u x= +   (26a) 

 f s( ) ( ) ( ),ij ij ijx x xσ σ σ= +   (26b) 

 f s( ) ( ) ( ),i i iw x w x w x= +  (26c) 

 f s( ) ( ) ( ).p x p x p x= +  (26d)  

2.4 Numerical solution 
Because the Green’s functions are for poroelastic 

half-space, the boundary conditions at the surface of the 
half-space are satisfied already, and only the boundary 
conditions at the surface of the canyon need to be con-
sidered. The boundary conditions at the surface of the 
canyon are   

 ),casedrainedfor(0,0,0 === pntnn σσ  (27) 

 ).caseundrainedfor(0,0,0 === nntnn wσσ  (28) 

To obtain the numerical solution, it is necessary to 
discretize the boundary of the canyon, which is shown 
in Figure 1. If the number of the discrete boundary and 
that of the wave sources are N1 and N2 (N1≥N2), the dis-
placement and stress of the scattered field can be written 
as 

 
s ( ) ( )

1 2 ,1 1 2 2 ,2 1 2

( )
2 ,3 1 2

( ) G ( , ) G ( , )

G ( , ) ,

u u
i n n i n n n i n n

u
n i n n

u x b x x c x x

d x x

= + +
 

(29)
 

 
s ( ) ( )

1 2 ,1 1 2 1 ,2 1 2

( )
1 ,3 1 2

( ) G ( , ) G ( , )

G ( , ) ,

w w
i n n i n n n i n n

w
n i n n

w x b x x c x x

d x x

= + +
 

(30)
  

 
s ( ) ( )

1 2 ,1 1 2 2 ,2 1 2

( )
2 ,3 1 2

( ) T ( , ) T ( , )

T ( , ) ,
ij n n ij n n n ij n n

n ij n n

x b x x c x x

d x x

σ σ

σ

σ = + +
 

(31)
 

 
s ( ) ( )

1 2 1 1 2 2 2 1 2

( )
3 3 1 2

( ) T ( , ) T ( , )

T ( , ) ,

p p
n n n n n n n

p
n n n

p x b x x c x x

d x x

= + +
 

(32)
 

in which, xn1∈S1, xn2∈S2; n1=1, 2, ⋅⋅⋅, N1; n2=1, 2, ⋅⋅⋅, N2; 
bn2, cn2 and dn2 are the amplitude of the first P wave, the 
second P wave and the SV wave at n2-th source, respec-
tively. 

It should be noted that the displacement and stress 
Green’s functions above are derived in x-y coordinate 
system, and for canyon boundary of arbitrary shape it is 
necessary to make transformation. If the components of 
the unit normal vector at one discrete point of the can-
yon boundary are (l, m), the normal stress and tangent 
stress are  

 2 2 2 ,nn xx yy xyl m lmσ σ σ σ= + +  (33) 
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 2 2( ) ( ),nt xx yy xylm l mσ σ σ σ= − + + −  (34) 

respectively, and the normal displacement of fluid is 

 .n x yw w l w m= +  (35) 

Then from the boundary conditions (27), the following 
equations for the drained case are obtained  

 
( ) ( )

2 ,1 1 2 2 ,2 1 2

( ) f
2 ,3 1 2 1

T ( , ) T ( , )

T ( , ) ( ) ,
n nn n n n nn n n

n nn n n nn n

b x x c x x

d x x x

σ σ

σ σ

+ +

= −
   

(36a)
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b x x c x x
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σ σ
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(36b)
 

 
( ) ( )

2 1 1 2 2 2 1 2

( ) f
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T ( , ) T ( , )
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p p
n n n n n n

p
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b x x c x x
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(36c)
 

where xn1∈S1, xn2∈S2; n1=1, 2, ⋅⋅⋅, N1; n2=1, 2, ⋅⋅⋅, N2. 
And for the undrained case, only equation (36c) is re-
placed by  

 
( ) ( )

2 ,1 1 2 2 ,2 1 2

( ) f
2 ,3 1 2 1

G ( , ) G ( , )

G ( , ) ( ).

w w
n n n n n n n n

w
n n n n n n

b x x c x x

d x x w x

+ +

= −
 

(37)
 

It should be noted that relevant Green’s functions should 
be chosen for different drainage conditions. 

Finally, the above equations can be written as 
 ,FHY −=  (38) 

in which, H(3N1, 3N2) is the matrix of Green’s function, 
Y(3N2) is the vector to be solved, and F(3N1) is the vec-
tor of free field. By using least-squares method the solu-
tion can be obtained by 

 ),(][ *1* FHHHY −= −    (39)   

in which, superscript * indicates the complex conjugate 
transpose.  

If define residual 

 )()( *2 FHYFHY ++=E  (40) 

and it is easy to know that the smaller the residual is, the 
better the boundary conditions satisfy. 

After the amplitudes of the wave sources are re-
solved, the total response in frequency domain can be 
obtained, the time-domain response can be calculated by 
Fourier transform then. 

3 Numerical implementation 
Similar to single-phased medium, there exist sin-

gular integration points in wave number domain of the 
Green’s functions of poroelastic half-space. When the 

internal friction parameter b≠0 or material damping of 
the medium is considered, the singular points will van-
ish. To consider the material damping, linear complex 
hysteretic damping is introduced by (1 2 i)λ λ ζ= +  and 

(1 2 i)μ μ ζ= + , in which, ζ is the damping ratio. After 
the material damping is taken into account, the upper 
limit of the integration can be much smaller. The Gaus-
sion integration is used in this paper, in which, different 
integration intervals are used for different wave numbers. 

Generally speaking, singularity appears if wave 
sources act on the canyon boundary. However, in this 
study the singularity is avoided because the wave 
sources are located at the fictitious line S2 (close to but 
not on the canyon boundary S1). Numerical experiments 
show that for incident frequencies η ≤2.0 (η is the di-
mensionless frequency defined later) the wave sources 
should better be placed at the positions within 0.4−0.6 
times of the relevant radii of the canyon, and the number 
of the wave sources can approximately take half of that 
of discrete points of canyon boundary; however, for 
higher incident frequency η>2.0 the wave sources 
should be placed within 0.7−0.9 times of the relevant 
radii of the canyon, and the number of the wave sources 
can approximately take 0.8 times of that of discrete 
points of canyon boundary.  

4 Verification of accuracy 
Accuracy of numerical results is verified for the 

case of a semi-circular canyon. Because there is no exact 
solution for the diffraction of plane waves by canyons in 
poroelastic half-space up to now, the verification is per-
formed by three steps: the check of satisfaction extent of 
boundary conditions, the comparison between the de-
generated solutions of single-phased half-space and the 
well-known solutions, and the numerical stability of the 
method. 

Define the dimensionless incident frequency 
2/1

s )/(π/ ρμωη a= , where a is radius of the canyon. 
The check of boundary conditions shows that the 

stress residuals gradually decrease as the numbers of 
discrete points of the canyon boundary increase. Even 
for high incident frequency η =5.0, the normalized stress 
residual (normalized by the stress intensity of the inci-
dent P waves) can reach to a level of 10−3 for N1=81 and 
N2=61, and to a level of 10−4 for N1=121 and N2=101. 

Figures 2 and 3 show the degenerated frequency 
responses around the canyon compared with the well 



220 Earthq Sci (2009)22: 215−222 

known results of single-phased elastic half-space by 
Wong (1982) and Sanchez-Sesma and Campillo (1991) 
for incident frequency η=1.0 and 2.0, respectively. For 
the above degenerated solution, other parameters are 
taken as: porosity n =0.001, damping ratio ζ =0.001, and 
Poisson’s ratio ν =1/3. Figures 4 and 5 show the degen-
erated time responses around the canyon for incident 
wave of Ricker wavelet (Ricker, 1977) 

)exp()12()( 22
c

222
c

2 τττ ffu π−−π=  
with the characteristic frequency fc =ω a / 2π ( μ/ρs )1/2

 = 1.0 
and the dimensionless time defined as τ = t ( μ/ρs )1/2/a, 
for incident angle θα1=0° and 30°, respectively, com-
pared with the results of single-phased elastic half-space 

 

Figure 2 Degenerated frequency solution compared 
with those of Wong (1982). 

 
Figure 3 Degenerated frequency solution compared 
with those of Sanchez-Sesma and Campillo (1991). 

 
Figure 4 Degenerated time solution for incident angle of 
0° compared with those of Kawase (1988). (a) This paper; 
(b) Kawase’s results. 

 

 

Figure 5 Degenerated time solution for incident angle 
of 30° compared with those of Kawase (1988). (a) This 
paper; (b) Kawase’s results. 

by Kawase (1988). Calculated frequencies are 100 in 
total, ranging from 0 to 3.0. Observation points are dis-
tributed at nearly equal intervals measured along the 
surface both inside and outside the canyon, and other 
parameters are taken for the degenerated solutions: po-
rosity n =0.001, damping ratio ζ=0.001, and Poisson’s 
ratio ν =1/3. It is shown that the results of this study are 
in excellent agreement with those in the references. 

For numerical stability of the method, Table 1 gives 
the horizontal and vertical surface displacement ampli-
tudes around the canyon versus the increase of the dis-
crete points for incident frequency η =5.0. Other poro-       
elastic parameters are λ∗=1.0, M∗=1.64, ρ∗=0.46, 
m∗=3.35, α =0.83, n =0.3, ν =0.25, and the numbers of 
the discrete points are taken as N1=61, 81, 101, 121 and 
N2=51, 61, 91, 101. From Table 1 it can be found that 
the surface displacement amplitudes converge very well 
as the increase on discrete points, which indicates the 
method has very good numerical stability even for very 
high incident frequency. 

5 Conclusions 
Based on Biot’s theory, this paper derives the 

Green’s functions of compressional and shear wave 
source in poroelastic half-space, and presents an indirect 
boundary integration equation method for diffraction of 
plane P waves by a two-dimensional canyon of arbitrary 
shape in poroelastic half-space. The precision of the 
method is verified by the check of boundary conditions, 
by the comparison between the degenerated solution and 
the well-known solutions, and by the numerical stability 
of the method. This method can also take into account  
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Table 1 Numerical stability of displacement amplitudes for η =5.0 
N1=61, N2=51  N1=81, N2=61 N1=101, N2=91  N1=121, N2=101 

x/a 
|Ux|/|AP| |Uy|/|AP|  |Ux|/|AP| |Uy|/|AP| |Ux|/|AP| |Uy|/|AP|  |Ux|/|AP| |Uy|/|AP| 

4.0 0.382 8 2.210 5 0.380 8 2.201 6 0.381 1 2.201 0 0.381 1 2.200 8 
3.6 0.191 2 2.502 8 0.185 8 2.495 8 0.184 5 2.495 6 0.184 1 2.495 3 
3.2 0.555 8 2.422 0 0.553 6 2.420 9 0.554 0 2.420 8 0.554 1 2.421 0 
2.8 0.254 8 2.618 3 0.248 4 2.619 1 0.246 5 2.618 3 0.245 8 2.618 4 
2.4 0.794 4 2.461 7 0.788 9 2.465 8 0.790 0 2.466 5 0.790 3 2.467 1 
2.0 0.394 1 2.209 8 0.382 1 2.211 8 0.379 6 2.209 1 0.378 8 2.209 2 
1.6 1.052 8 2.122 6 1.045 6 2.138 4 1.048 8 2.141 3 1.049 6 2.142 2 
1.2 0.572 3 1.040 9 0.562 8 1.052 6 0.562 8 1.045 6 0.563 2 1.046 0 
0.8 0.879 7 1.657 3 0.895 1 1.653 8 0.902 6 1.650 7 0.903 4 1.650 4 
0.4 0.344 9 1.983 2 0.343 5 1.975 6 0.339 6 1.969 1 0.339 2 1.968 4 
0 0 1.880 9 0 1.877 0 0 1.872 8 0 1.873 2 

 
the effect of the material damping. This study can be 
extended to layered poroelastic half-space if the relevant 
Green’s functions of layered poroelastic half-space are 
used. 
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