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Numerical modeling of wave equation by a trun-
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Abstract  Finite-difference methods with high-order accuracy have been utilized to improve the precision of numerical 
solution for partial differential equations. However, the computation cost generally increases linearly with increased order of 
accuracy. Upon examination of the finite-difference formulas for the first-order and second-order derivatives, and the stag-
gered finite-difference formulas for the first-order derivative, we examine the variation of finite-difference coefficients with 
accuracy order and note that there exist some very small coefficients. With the order increasing, the number of these small 
coefficients increases, however, the values decrease sharply. An error analysis demonstrates that omitting these small coeffi-
cients not only maintain approximately the same level of accuracy of finite difference but also reduce computational cost 
significantly. Moreover, it is easier to truncate for the high-order finite-difference formulas than for the pseudospectral for-
mulas. Thus this study proposes a truncated high-order finite-difference method, and then demonstrates the efficiency and 
applicability of the method with some numerical examples. 
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1 Introduction  

As one of the most popular methods of numerical 
solution for partial differential equations, the finite-  
difference method (FDM) has been widely utilized in 
seismic modeling (Kelly et al, 1976; Dablain, 1986; 
Virieux, 1986; Igel et al, 1995; Etgen and O’Brien, 2007; 
Bansal and Sen, 2008) and migration (Claerbout, 1985; 
Larner and Beasley, 1987; Li, 1991; Ristow and Ruhl, 
1994; Zhang et al, 2000; Fei and Liner, 2008). In order 
to improve the accuracy and stability of a FDM in nu-
merical modeling, many methods have been developed, 
including difference schemes of variable grid (Wang 
and Schuster, 1996; Hayashi and Burns, 1999), irregular 
grid (Opršal and Zahradník, 1999), standard staggered 
grid (Virieux, 1986; Levander, 1988; Robertsson et al, 
1994; Graves, 1996), rotated staggered grid (Gold et al, 
1997; Saenger and Bohlen, 2004; Bohlen and Saenger, 
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2006), variable time step (Tessmer, 2000), and implicit 
methods (Emerman et al, 1982; Zhang and Zhang, 
2007). 

Since the efficiency of an algorithm has to take the 
CPU demands and the memory demands into considera-
tion, a desirable algorithm must balance input/output 
and memory needs. Generally speaking, a lower-order 
finite-difference algorithm uses a shorter operator but 
requires more grid points; while a higher-order finite- 
difference algorithm uses a longer operator but requires 
fewer grids. Dablain (1986) demonstrated the advan-
tages of high-order difference schemes in application to 
the scalar wave equation. One is the economy achieved 
in storage requirements at no extra cost of total compu-
tational time, which make it possible to compute larger 
models or higher frequency solutions within the avail-
able core memory on the computer. Fornberg (1987) 
derived the finite-difference formulas with any-order 
accuracy for the first-order derivative and compared 
high-order finite-difference method with a pseudospec-
tral method for the elastic wave equation. To increase 
efficiency and accuracy of such modeling, Crase (1990) 
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presented an elastic finite-difference scheme with arbi-
trary-order accuracy in both space and time. Liu et al 
(1998) developed finite-difference formulas with any 
even-order accuracy for any order derivative, which 
were used to simulate elastic wave propagation in 
two-phase anisotropic media (Liu et al, 2008). Chen 
(2007) stated some high-order time discretizations in 
seismic modeling. Arbitrary staggered finite-difference 
formulas have also been developed for simulation of 
elastic waves (Dong et al, 2000; Pei, 2004). 

In this paper, we study the characteristics of 
high-order finite-difference coefficients and the errors 
caused by truncation of these coefficients. Then we de-
velop a truncated finite-difference method and demon-
strate its efficiency and applicability with some numeri-
cal results. 

2 Characteristics of finite-difference 
coefficients and error analysis on the 
truncation of the coefficients 
2.1 Even-order finite-difference formulas for the 
first- and second-order derivatives 

Centered finite-difference formulas are usually 
used to numerically solve partial differential equations, 
which generally involve the first- and second-order de-
rivatives. In the following, we introduce centered finite- 
difference formulas with any even-order accuracy for 
the first- and second-order derivatives. And similar 
formulas for the staggered finite difference are also 
given. 

A (2N)th-order finite-difference formula for the 
first-order derivative can be expressed as (Dablain, 
1986) 
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where x is a real variable, p(x) is a function, h is a small 
value, N is a positive integer, the finite-difference coef-
ficient cn is an odd discrete sequence and can be com-
puted by the following formula (Fornberg, 1987; Liu et 
al, 1998, 2008): 
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Thus, there exists a limit at which we can attain infinite 
accuracy theoretically and arrive at the pseudospectral 
method (Fornberg, 1987). 

A (2N)th-order finite-difference formula for the 
second-order derivative can be expressed as  
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where the difference coefficient cn, an even discrete se-
quence, can be computed by the following (Liu et al, 
1998, 2008): 
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When N→∞,  
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A staggered-grid finite-difference formula is de-
fined as follows (Kindelan et al, 1990): 

 
,)]5.0()5.0([1 ∑

−=

+−−−+=

≈
∂
∂

N

Nn
n hnhxphnhxpc

h

x
p

x
p

δ
δ

 
(7) 

where the difference coefficients cn form an odd discrete 
sequence and can be computed by the following formula 
(Pei, 2004): 
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All the expressions for cn given by formulas (2), (5), 
and (8) can be derived from a Taylor series expansion. 
The formulas (1), (4), and (7) indicate that more points 
are required progressively in higher-order finite differ-
ence schemes. 
2.2 Accuracy of finite-difference formula 

To analyze the accuracy of finite-difference for-
mulas, we let 

 kxpp i
0e=  (10a) 

and 
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2
kh=α , (10b) 

where, k is wavenumber, 1i −= , p0 is a constant. 
Substituting equations (10a) and (10b) into equations (1), 
(4), and (7), we have 

 ∑
=

≈
N

n
n nc

1

)2sin( αα , (11) 

 ∑
=

−−≈
N

n
n ncc

1
0

2 )2cos(2
1

4
1 αα ,  (12) 

and 

 ∑
=

−≈
N

n
n nc

1

])12sin[( αα . (13) 

Since the requirement of finite-difference coeffi-
cients is to satisfy equations (11), (12) and (13), we 
examine the following functions to test the accuracy of 
these formulas: 
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The finite-difference coefficients cn are obtained 
from equations (2), (5), and (8). The calculated f1(α), 
f2(α), and fs(α) are compared with α for different orders 
(Figure 1), which clearly reveals that the accuracy in-
creases with increase of order.  
2.3 Characteristics of finite-difference coefficients 

Since more points are involved in the higher order 
finite difference, computation cost increases. Next, we 
will study the characteristics of finite-difference coeffi-
cients and investigate ways to save computation time. 

The variation of finite-difference (FD) coefficients 
with different accuracy orders (from 4 to 50) is shown in 
Figure 2, where the FD coefficients are calculated using 
equations (2), (5), and (8). It can be seen from the figure 
that the absolute values of the coefficients cn decrease 
with increasing n. The degree of decrease is larger for 
higher-order FD, for example, cn approaches zero when 
n>10 for a 50th-order FD.  
2.4 Accuracy analysis on variation of error with 
truncation number 

As mentioned above, cn approaches zero for large n 
in higher order FD, therefore, these cn may be omitted. 

Next we will quantify the error caused by the truncation 
of cn. As an example, the analysis is performed for the 
staggered grid FD formulas. 

According to equation (16), the truncation function 
for testing the accuracy is defined as follows: 
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This formula reduces to the conventional function (16) 
when M=N. 

To quantitatively evaluate the accuracy of equation 
(17), the following error function is introduced, 
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εN is the error of the conventional finite difference and 
less than εM for M<N. K=int[π/(2Δα)], is a function to 
get the integer part of a value. To magnify the error εM, 
we calculate the relative error lg|(εM−εN)/εN| for different 
M. In the following calculation, N=21, Δα =0.001 and 
K=1 570. Figure 3a shows the variation of the relative 
error lg|(εM−εN)/εN| with the truncation number M, which 
demonstrates that the relative error between εM and εN 
sharply decreases with increasing M. For instance, the 
relative error is around 10−6 when M=14, and only 10−10 
when M=18. Therefore, it is possible to omit some cn for 
large n. 

To support the truncated method further, we calcu-
late the variation of fM(α) for different truncation num-
ber M with α, shown in Figure 3b. The curves from the 
truncated method (M=6, 8, 10) are very close to the con-
ventional method (M=N=21). The variation of the error 
fM(α)−α for different truncation number M with α is 
shown in Figure 3c. We can see that the error is small 
when M is taken as 10, which is closer to the conven-
tional error (M=N=21). If this error can be accepted, we 
can choose M=10 to replace M=21 and thus to save the 
computational time. Figure 3d illustrates the variation of 
lg|cn/c1| with n. c10 is approximately equal to 10−5c1, 
while cn (n>10) is very small and has a little effect on 
the calculation of finite difference. 
2.5 Comparison of coefficients of the finite-difference 
and pseudospectral methods 

Since some of the high-order finite-difference co-
efficients can be omitted, the truncation may also be 
proposed to the pseudospectral methods whose coeffi-
cients are given by equations (3), (6), and (9). Figure 4 
shows the variation of lg|cn/c1| with n for the 60th-order 
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finite-difference method. Figure 5 illustrates the varia-
tion of lg|cn/c1| with n for the pseudospectral method. 
These figures demonstrate that the coefficients in the 
high-order finite-difference methods decrease sharply, 
but those in the pseudospectral methods decrease 

smoothly. Therefore, it is easier to truncate the coeffi-
cients in the high-order finite-difference methods than 
those used in pseudospectral method. If the truncation is 
employed in the pseudospectral method at all, a window 
function will be necessary. 

  

Figure 1 Plot of the exact α (α = kh/2), f1(α), f2(α), fs(α) for 
different accuracy orders from 4 to 50. (a) Finite-difference 
for the first-order derivative; (b) Finite-difference for the 
second-order derivative; (c) Staggered finite-difference for 
the first-order derivative.  

Figure 2 Variation of finite-difference coefficient cn with 
different accuracy orders from 4 to 50. (a) Finite-difference co-
efficients for the first-order derivative; (b) Finite-difference 
coefficients for the second-order derivative; (c) Staggered fi-
nite-difference coefficients for the first-order derivative. 
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Figure 3 Error analysis of the truncated (2N)th-order staggered finite-difference formula (M is the truncation number, 
and 2M points are used to perform (2N)th-order staggered finite-difference, M<N, N=21). (a) Variation of the relative error 
lg|(εM−εN)/εN| with the truncation number M; (b) Variation of fM(α)with α (α = kh/2); (c) Variation of the error fM(α)−α 
with α (α = kh/2); (d) Variation of lg|cn/c1| with n. 

 

Figure 4 Variation of lg|cn/c1| with n for the 60th-order finite-difference method. (a) For the first-order derivative; 
(b) For the second-order derivative; (c) For the first-order derivative by staggered method. 
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Figure 5 Variation of lg|cn/c1| with n for the limit finite-difference method, which is equivalent to the pseudospectral 
method. (a) For the first-order derivative; (b) For the second-order derivative; (c) For the first-order derivative by 
staggered method. 

3 Truncated high-order finite-difference 
method 

According to the characteristics of finite-difference 
coefficients and error analysis of truncated finite-difference 
formulas, it is feasible to omit some small fi-
nite-difference coefficients. We introduce the following 
formula as the truncation rule for the (2N)th-order fi-
nite-difference method 

 ,||max|| Mmcrc iim ≤≥  (19) 

where r is a ratio, the coefficient whose absolute value is 
less than ||max ii

cr  will be omitted in the truncated 

finite difference, ||max ii
c  is equal to |c(1)| for the 

first-order derivative and |c(0)| for the second-order de-
rivative. If r is zero, there is no truncation, 2N points for 
the first-order derivative and 2N+1 points for the sec-
ond-order derivative will be involved in the conven-
tional finite difference. If r is greater than zero, fewer 
points may be used in the truncated finite difference.  

We obtain a value of M when r=10−5 for the 
(2N)th-order finite-difference formulas. Tables 1 and 2 
list the relationship between 2M or 2M+1 and 2N for the 
first-, second-order derivatives, respectively. Table 3  

Table 1  The used point number 2M in the truncated FDM for the 
first-order derivative  

Order 2N 2M Order 2N 2M 

18 16 40−46 26 
20−22 18 48−52 28 
24−28 20 54−60 30 
30−32 22 62−68 32 
34−38 24   

Note: For (2N)th-order FDM, the conventional uses 2N points and the trun-
cated uses 2M points when r=10−5. 

Table 2 The used point number 2M+1 in the truncated FDM for 
the second-order derivative 

Order 2N 2M+1 Order 2N 2M+1 

16−18 15 40−48 23 
20−24 17 50−58 25 
26−32 19 60−68 27 
34−38 21   

Note: For (2N)th-order FDM, the conventional uses 2N+1 points and the 
truncated uses 2M+1 points when r=10−5. 

Table 3 The used point number 2M in the truncated SFDM for the 
first-order derivative 

Order 2N 2M Order 2N 2M 

16−20 14 44−52 22 
22−26 16 54−62 24 
28−32 18 64−74 26 
34−42 20   

Note: For (2N)th-order SFDM, the conventional uses 2N points and the 
truncated uses 2M points when r=10−5. 
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lists the relationship for the staggered finite difference. 
These tables suggest that computation will be signifi-
cantly decreased by the truncated method for the 
high-order finite difference. For example, the truncated 
62nd-order staggered finite-difference method (SFDM) 
only cost the 40% calculation amount of the conven-
tional 62nd-order SFDM. 

4 Examples of numerical modeling 
The conventional SFDM and the truncated SFDM 

are used to perform numerical modeling of the follow-
ing elastic wave equations,  
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In these equations, (vx, vz) is the velocity vector, (τxx, τzz, 
τxz) is the stress tensor, λ(x, z) and μ(x, z) are Lamé co-
efficients, b(x, z) is the inverse of density. We perform 
the modeling on staggered grids (Virieux, 1986). In the 
modeling, the first-order space derivatives are calculated 
by the conventional SFDM and the truncated SFDM, 
respectively; the second time derivatives are computed 
by the second-order finite difference. 
4.1 Numerical modeling for a homogeneous elastic 
model 

A model is used in numerical modeling here and 
the parameters are listed in Table 4. Snapshots at 200 ms 
computed by the conventional SFDM and the truncated 
SFDM are shown in Figure 6. CPU time needed to 
compute Figures 6a and 6b is 26.1 s and 20.2 s on the 
same computational condition by a conventional 
42nd-order SFDM and a truncated 42nd-order SFDM, 
respectively. The two figures are nearly the same, dem-
onstrating that the truncation is indeed feasible for nu-
merical modeling. The truncated 42nd-order SFDM 
provides higher precision than a conventional 20th-order 
SFDM (Figures 6b and 6c), and costs the same compu-
tation time as a conventional 20th-order SFDM because 

both the methods use 20 points to calculate space de-
rivatives. Therefore, a truncated high-order SFDM is 
effective and may be used to reduce computation cost. 

Table 4 Homogeneous elastic model and its modeling parameters 
Parameter Value 
Model size/m2 1 000×1 000 
Model P wave velocity/km⋅s−1 2 
Model S wave velocity/km⋅s−1 1 
Model density/kg⋅m−3 1 000 
Grid size/m2 10×10 
Time step/ms 1 
P-wave source function Sine signal of 50 Hz with one period 

length 
Source location In the middle of the model 

 

Figure 6 Snapshot comparisons of the conventional SFDM 
and the truncated SFDM. (a) The conventional 42nd-order 
SFDM with 42 points (2M=42); (b) The truncated 42nd-order 
SFDM with 20 points (r=10−5, 2M=20); (c) The conventional 
20th-order SFDM with 20 points (2M=20). 

4.2 Numerical modeling for SEG/EAEG salt model 
Here, we will show results from numerical modeling 

of the elastic wave equations, by the conventional SFDM 
and the truncated SFDM, basing on the SEG/ EAEG salt 
model. For the two methods with accuracy orders of 20 
and 42 respectively, 20 points are used to calculate 
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Figure 7 Numerical modeling results of SEG/EAEG salt model respectively by the conventional 20th-order SFDM and 
the truncated 42nd-order SFDM, both methods use 20 points to calculate derivatives and cost the same computation time. (a) 
SEG/EAEG salt model of P-wave velocity (S-wave velocity and density, having the similar variation characteristics to 
P-wave velocity, are not shown); (b) Snapshots of x- and z-components at t = 1 600 ms by the conventional SFDM; (c) 
Snapshots of x- and z-components at t=1 600 ms by the truncated SFDM; (d) OBC gather of x- and z-components by the 
conventional SFDM; (e) OBC gather of x- and z-components by the truncated SFDM. 

 
the derivatives and the same computation time are re-
quired. Figure 7a shows the model and Table 5 lists its 
simulation parameters. Snapshots and shot gathers are 
shown in Figures 7b, 7c, 7d and 7e, and Figure 8 shows a 
zoomed section of x-component of Figure 7. From these 
figures, we can see that the dispersion of the truncated  

 

Figure 8 Zoom of x components in Figure 7. Subfigure a, b, 
c and d are zoom of Figure 7b, 7c, 7d and 7e, respectively. 

Table 5 SEG/EAEG salt model and its simulating parameters 
Parameters Values 
Model size/m2 12 000×4 000 
Model first layer Ocean water 
Grid size/m2 20×20 
Time step/ms 1 
P-wave source function Sine signal of 25Hz with one period length 
Source location/m x0=6000, z0=20 
Receiver location Ocean bottom 
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method is obviously less than that of the conventional  
method. Therefore, the accuracy of the truncated method 
is higher than that of the conventional method under the 
same level of computation. 

5 Conclusions 
A conventional high-order finite-difference method 
provides higher accuracy but costs more computation 
time. Our analysis shows that the high-order finite- 
difference coefficients cn decrease sharply with an 
increase of n, and omitting some small coefficients has a 
little effect on the accuracy of finite difference but it can 
reduce the computation amount significantly. Numerical 
modeling results demonstrate the validity of a truncated 
finite-difference method. 
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