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2.5D scattering of incident plane SH waves by  
a canyon in layered half-space∗ 
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Abstract  This paper presents 2.5D scattering of incident plane SH waves by a canyon in layered half-space by the indirect 
boundary element method (IBEM). The free field response is carried out to give the displacements and stresses on the line 
which forms boundary of the canyon. The fictitious uniform moving loads are applied to the same line to calculate the Green’s 
functions for the displacements and stresses. The amplitudes of the loads are determined by the boundary conditions. The dis-
placements due to the free field and from the fictitious uniform moving loads have to be added to obtain the whole motion. The 
numerical results are carried out for the cases of a canyon in homogenous and in one layer over bedrock. The results show that 
the 2.5D wave scattering problem is essentially different from the 2D case, and there exist distinct differences between the 
wave amplification by a canyon in layered half-space and that in homogeneous half-space. The reasons for the distinct differ-
ence are explored, and the effects of the thickness and stiffness of the layer on the amplification are discussed. 
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1 Introduction  

The effect of canyon on seismic wave propagation 
is a fundamental subject in seismology and earthquake 
engineering. The problem can be studied by analytical 
methods (Trifunac, 1973; Wong and Trifunac, 1974; 
Liang et al, 2002; Yuan and Liao, 1995) or numerical 
methods (Vogt et al, 1988; Wong, 1982; Sanchez-Sesma 
and Campillo, 1991; Kawase, 1988; Liao, 2002). Ana-
lytical methods are essential for exploring the physical 
nature of particular problem; however, numerical meth-
ods have advantages in solving problems with complex 
boundary conditions.  

It should be noted that the above studies (Trifunac, 
1973; Wong and Trifunac, 1974; Liang et al, 2002; 
Yuan and Liao, 1995; Vogt et al, 1988; Wong, 1982; 
Sanchez-Sesma and Campillo, 1991; Kawase, 1988; 
Liao, 2002) are limited to 2D problems. While for more 
general cases, the direction of incident wave has an an-
gle with the axis of the canyon, and it is actually a 3D 
scattering problem of 2D structure, and it is often called 
2.5D problem. Luco et al (1990) derived dynamic 
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Green’s functions of point force embedded in layered 
half-space and studied 2.5D scattering problems of can-
yon in a layered half-space using the wave source 
method. Zhang and Chopra (1991) and Stamos and 
Beskos (1996) used the direct boundary element method 
to study 2.5D scattering problems by canyon in homo-
geneous half-space. Pedersen et al (1994) presented the 
indirect boundary element method using full-space 
Green’s functions to simulate 2.5D scattering problem 
by canyon structures. Papageorgiou and Pei (1998) also 
studied 2.5D problems.  

In this paper, the indirect boundary element method 
is used to study the 2.5D scattering of a canyon in lay-
ered half-space for incident plane SH waves based on 
the exact dynamic stiffness of layered site (Liang and Ba, 
2007) and the dynamic Green’s functions of moving 
load acting on an inclined line (Ba, 2008). The accuracy 
of the method is verified by comparison with related 
solutions, and numerical results are carried out for a 
canyon in layered half-space, and the effects of the 
stiffness and thickness of the layer on the amplification 
are discussed. 

2 Method 
For a 2.5D canyon problem, the wave fields at two 

different cross sections perpendicular to the canyon axis 
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are identical but shifted with time, therefore, the wave 
field can be represented by moving loads acting on an 
inclined line (the moving velocity is equal to the appar-
ent velocity), and we can use only one cross section of 
the canyon for calculation. The dynamic response by the 
moving loads is called 2.5D Green’s functions or 
Green’s functions of moving loads. 

The model is an infinite long, uniform canyon of 
arbitrary cross section in a horizontally layered half- 
space (Figure 1). Figure 1a is a top view of free field in 
plane x-y, and the projection on the horizontal plane 
normal to the wavefront forms the angle θh with the axis 
of the canyon. Figure 1b is the cross section of free field 
in plane y′-z, and the normal to the wavefront forms the 
angle θv with the vertical axis. Figure 1c is the cross 
section of the canyon embedded in layered half-space 
formed by n soil layers and the bedrock.  

We use the IBEM to determine the wave scattering 
around a canyon in a horizontally layered half-space 
(Figure 1). We begin with the calculation of the free field 
response, which can determine the three-dimensional 
response at the surface of the half-space and of the can-
yon. Then moving distributed fictitious loads are applied 
to the surface of the canyon discretized by lines, and the 
dynamic responses at the surface of the half-space and 

of the canyon are determined. The fictitious loads densi-
ties are determined by boundary conditions. Finally we 
obtain the solution by adding the responses of the free 
field and the responses of the fictitious loads. 
2.1 Free field response 

The apparent velocity along x-axis is R
Sc /(sinθhcosθv), 

along y-axis R
Sc /(cosθhsinθv) and along z axis R

Sc /sinθv 

from Figures 1a and 1b, and the apparent velocities 
along x, y and z are R

Sc /mx, R
Sc /my, and R

Sc /mz, respec-
tively. Then mx=sinθhcosθv, my= cosθhcosθv and mz=sinθv, 
where 

R
Sc  is the S-waves velocity and the terms mx, my 

and mz are the direct cosines of incidence SH waves. 
Once mx, my and mz are obtained, the amplitudes 

R
PB , 

R
SVB  and 

R
SHB  of the reflected waves can be expressed by 

the amplitudes 

R
PA , 

R
SVA  and 

R
SHA  of the incident waves 

by introducing the zero-stress conditions of the free sur-
face of the layered soil from equation (10) in Liang and 
Ba (2007), and the relations between u0, v0, w0 and 

R
PA , 

R
SVA , 

R
SHA  are established. For incident SH waves, 

R
SHA = 1 

and 
R
PA = R

SVA =0 is introduced. For a layered half-space, 
if we take the bedrock outcrop as the control point and 
let u0, v0, w0 as the input motion, the last three elements 
in the vector Q can be obtained by equation (1), while 
the other elements of the vector Q are zero, and the dis-
placements of each layer can be solved using the direct 
stiffness method from equation (2). 
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 P SV SH− − =U QS  (2) 

From equation (2) the displacements at each layer’s 
upper and bottom interfaces can be determined, and then 
the amplitude coefficients of the up-going waves and 
down-going waves can be obtained. Finally we get the 
displacements and stresses at any point in the layered 
half-space. 

In order to facilitate the solution, the stresses at the 
inclined line element are decomposed into the three co-
ordinate directions as follows: 

 f f f f ,x x x y xy z xzt n n nσ τ τ= + +  (3a) 

 f f f f ,y x yx y y z yzt n n nτ σ τ= + +  (3b) 

 

Figure 1 The model. (a) Top view of free field; (b) cross 
section of free field; (c) cross section of the model.  
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 f f f f ,z x zx y zy z zt n n nτ τ σ= + +  (3c) 

where 
f
xt , 

f
yt  and 

f
zt  are stresses along the three coordi-

nate directions, 
f
xσ , 

f
yσ , 

f
zσ , 

f
xyτ , 

f
xzτ  and 

f
yzτ  are the 

stress tensors, with the superscript “f ” indicating the 
variables in the free field response. (nx, ny, nz) is the 
normal direction of the inclined line element and ny=0 if 
the inclined line in the x-z plane. 
2.2 Dynamic Green’s functions  

The dynamic Green’s functions of moving loads 
acting on inclined lines in a half-space can be solved in 
the following way. Firstly, the 3D dynamic Green’s 
functions of distributed loads acting on inclined lines in 
a layered half-space is deduced, and then by integrating 
the Green’s functions along the moving direction (the 
moving direction is the y-axis and the moving velocity is 

R
Sc /(cosθhcosθv) from Figure 1), the dynamic Green’s 

functions of moving loads acting on an inclined line are 
obtained. More details can be found in Ba (2008). 

Let gu(x) and gs(x) be Green’s functions of dis-
placements and stresses due to moving loads, the dis-
placements and stresses at any point in the elastic lay-
ered half-space can be expressed as 
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where up, vp, wp and 
p
xσ , p

yσ , p
zσ , p

xyτ , p
zxτ , p

zyτ  are the 

displacements and stress tensors, arising form the mov-
ing loads, and px, py and pz are densities of the moving 
loads.  

Also in order to facilitate solution, the stresses at 
the inclined line element are decomposed into x, y and z 
directions as  

    ,p p p p
x x x y xy z xzt n n nσ τ τ= + +    (6a) 

    ,p p p p
y x yx y y z yzt n n nτ σ τ= + +    (6b) 

and 

    .p p p p
z x zx y zy z zt n n nτ τ σ= + +    (6c) 

Substituting equation (5) into (6) gives 
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where 
p
xt , 

p
yt  and 

p
zt  are stresses along x, y and z direc-

tions, gt(x, y, z) is the transformed Green’s functions of 
stresses. 
2.3 Boundary conditions  

The boundary condition of the canyon can be ex-
pressed as 
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where W(s) is the weighting function, which can be 
taken as a unit matrix, so the integral can be evaluated 
over each element separately. Substituting equations (3) 
and (7) into (8) gives 
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with 
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Combining the equations (9) and (4), the displace-
ments in any point of the layered half-space can be ex-
pressed as 
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where uf, vf, and wf are displacements along the three 
coordinate directions. 
2.4 Verification 

To verify our results, we compare the present re-
sults with the 2.5D results (Luco et al, 1990) in a ho-
mogenous half-space. The parameters are as follows. 
Poisson’s ratio ν = 1/3, damping ratio ζ = 0.01, dimen-
sionless incident frequency η = 2a/λβ = 0.5, 1.0 and 2.0, 
respectively and the incident angle θh=θv=45°. Figure 2 
shows that the present results agree very well with those 
from Luco et al (1990).  
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Figure 2 Comparison with 2.5D results in the case of θh
 = 45°, θv = 45°,ν = 1/3 and ζ = 0.01. 

3 Numerical results and discussion 
At first, we study a semi-circular canyon in a ho-

mogenous half-space, and surface displacements around 

the canyon are shown for different incident angles in 
Figure 3. The parameters are as follows. Poisson’s ratio 
ν =1/3, damping ratio ζ = 0.001, dimensionless frequency 

 
Figure 3 Surface displacements around a canyon in homogenous half-space for different incident horizontal angles. 
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η = 2a/λβ with η = 0.5 and 1.0, the vertical incident angle 
θv =45° and 90°, horizontal incident angle θh =0°, 30°, 
60° and 90°. u, v and w are the displacements in x, y and 
z directions, respectively; ASH is the amplitude of the 
incident SH waves. 

It is shown that the horizontal incident angle has an 
important effect on the amplitudes of the surface dis-
placements. When the incident waves are perpendicular 
to the axis of the canyon (θh=90°), there are only the 
out-of-plane displacements (along y direction) and the 
in-plane displacements (along x and z directions) do not 
exist, and the horizontal and vertical displacements are 
symmetric about the axis of the canyon ( y-axis) under 
θh=0°. The surface displacements become more complex 
as the incident frequency increases and the barrier effect 
is more significant for the two horizontal displacements 
than for the vertical displacement. As the horizontal in-
cident angle θh increases, the horizontal displacements 
along x-axis increase gradually, while the horizontal 
displacements along y-axis and the vertical displace-
ments decrease gradually, which is because as the hori-
zontal incident angle θh increases, the incident direction 
moves to the x direction gradually and the incident SH 
waves produce out-of-plane vibration. The spatial distri-
bution of the surface displacements become independent 
of the horizontal incident angle θh when θv=90°, but the 
horizontal displacements along x-axis are dependent on 
sinθh, and the horizontal displacements along y-axis are 
dependent on cosθh. 

Next, we study a semi-circular canyon in one soil 
layer over bedrock, in which, R

SC  and ρ R are the shear 

velocity and material density of the bedrock; L
SC  and ρ L 

are the shear velocity and material density of the soil 
layer; ζ R and ζ L are the damping ratio of the bedrock 
and of the soil layer; ν R and ν L are the Poisson’s ratio 
of the bedrock and of the soil layer; H is the thickness of 
the soil layer. The dimensionless frequency is defined as 
η = 2a/λL, where λL is the wavelength of the soil layer. 
The parameters are defined as follows. The ratio of the 
soil layer thickness to the semi-circular canyon radius is 
H/a=2.0; the material density ratio of the bedrock to the 
soil layer is ρ R/ρ L=1.0; the damping ratios of the soil 
layer and of the bedrock are ζ L=0.05 and ζ R=0.02, re-
spectively; both the Poisson’s ratios of the soil layer and 
of the bedrock are ν L=ν R=1/3; the horizontal incident 
angle is θh=45°; the vertical incident angles are θv=5°, 
30°, 60° and 90°; the dimensionless frequencies are η = 

0.25, 0.75 and 1.25; the ratios of shear wave velocity of 
the bedrock to the soil layer are 

R L
S S/C C =2.0, 5.0 and ∞. 

For comparison, Figure 4 shows the surface dis-
placement of the free field. The two horizontal free field 
displacements are relatively large when the dimen-
sionless frequency η are at 0.25, 0.75 and 1.25 (first 
three resonance frequencies), and the maximum ampli-
tudes of the two horizontal surface displacements in x 
and y directions are 5.12 and 5.7, while the free field 
displacements both are 5.07, as η = 0.25, θv

 = 90° and the 
shear wave velocity ratio of the bedrock and the soil 
layer is 

R L
S S/C C =5.0. This is because there are resonance 

frequencies as the SH waves incident vertically from the 
bedrock to the soil layer (Wolf, 1985). 

 
L
S2 1 1, 2, 3,

2i
Ci i
H

ω −= π = L  (13) 

 

Figure 4 Surface displacements of free field for dif-
ferent shear wave velocity ratios of bedrock to soil layer 
in the case of H/a=2.0, θh

 = 45°, ζ R = 0.02 and ζ L = 0.05. 

(a) θv
 = 90°; (b) R L

S S/C C =∞. 

Considering the natural vibration characteristics is 
one of the significant features of the present model 
compared with the model of a canyon in a homogenous 
half-space. 

It is shown that in Figure 5 that when the shear 
wave velocity ratio is relatively small ( R L

S S/C C =2.0), the 
displacements are more complex in the incident side 
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than those in the other side due to the barrier effect of 
the canyon, which is the same as those of the homoge-

nous half-space. It is also shown in these figures that the 
surface displacements around the canyon in one soil layer 

 

 

Figure 5 Surface displacements of a canyon in one soil layer over bedrock for different shear wave velocity ratios of 
bedrock to soil layer in the case of H/a=2.0, θh

 = 45°, ζ R=0.02 and ζ L =0.05. (a) η = 0.25; (b) η = 0.75; (c) η = 1.25. 
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Figure 5 Surface displacements of a canyon in one soil layer over bedrock for different shear wave velocity ratios of 
bedrock to soil layer in the case of H/a=2.0, θh

 = 45°, ζ R=0.02 and ζ L =0.05. (a) η = 0.25; (b) η = 0.75; (c) η = 1.25. 

over bedrock are relatively small at the vertical incident 
angle θv=5°, which is just in contrary with those of the 
canyon in a homogenous half-space (the surface dis-
placements around the canyon in a homogenous 
half-space are relatively large at the small vertical angle). 
The barrier effect becomes insignificant with the in-
crease of the shear wave velocity ratio of the bedrock to 
the soil layer ( R L

S S/C C =5.0), and the surface displace-
ment amplitudes around the canyon become symmetry 
about the axis of the canyon at the non-vertical angles, 
and the displacements amplitude are independent of the 
vertical incident angle for 

R L
S S/C C = ∞ . This is because 

that the incident SH waves are out-of-plane waves the 
input motion at the bedrock only have the out-of-plane 
component, and in the case, if the shear wave velocity 
ratio of the bedrock to the soil layer become infinity, the 
input motion are the same in any point with no phase 
difference, so the input motion of the non-vertical inci-
dent angle are the same with those of the vertical inci-
dent angle (Figure 4b). 

The surface displacement amplitudes become much 
larger as the shear wave velocity ratio of the bedrock to 
the soil layer increases, the reason for which is that the 

radiation damping of the site decreases gradually as the 
shear stiffness increases. For example, the maximum 
surface vertical displacements are 2.65, 2.76 and 2.84 at 
η = 0.25, θv =90° for R L

S S/C C =2.0, 5.0 and ∞, respec-
tively. 

Figure 6 illustrates the surface displacements am-
plitudes around the canyon for different soil layer 
thickness H/a =1.0 and 4.0, respectively. The shear wave 
velocity ratio 

R L
S S/C C =5.0, the other parameters are the 

same with those in Figure 5 and η = 0.25, 0.75 and 1.25. 
Comparison of Figure 6 with Figure 5 shows that 

the spatial displacement distributions are very different 
for different soil layer thickness, which is due to the 
change of the resonance frequencies. For H/a = 1.0, the 
vertical resonance frequencies are η = 0.5 and 1.0 from 
equation (13), while for H/a = 4.0, the vertical resonance 
frequencies are η = 0.125 and 0.375. Therefore, the dy-
namic characteristics of the site has important effect on 
the displacements around the canyon and must be paid 
enough attention; the spatial distribution of the surface 
displacements become more complex with the increase 
of the layer thickness for the same incident frequency;  



32 Earthq Sci (2010)23: 25−33 

 

Figure 6 Surface displacements of a canyon in one soil layer over bedrock for different soil layer thicknesses in the 

case of θh
 = 45°, ζ R=0.02, ζ L =0.05 and R L

S S/C C =5.0. (a) η = 0.25; (b) η = 0.75; (c) η = 1.25. 

the attenuation of the surface displacements looks more 
obvious with the increase of the layer depth for rela-

tively high incident frequency (η =1.25). This is because 
we have considered the material damping and the con-
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trol point is chosen at the bedrock. The SH waves do not 
“feel” the soil layer and the canyon for thinner soil layer 
(H/a = 1.0) and lower incidence frequency (η = 0.25) and 
the same phenomenon can also be found in the two di-
mensional case. For this case, the surface displacements 
are very close to the free field surface displacements and 
the two horizontal surface displacements are almost the 
same not only in the spatial distribution but also in the 
amplitude.  

4 Conclusions  
The 2.5D scattering of incident plane SH waves by 

a canyon in a layered half-space is presented by using 
the indirect boundary element method (IBEM) and the 
dynamic Green’s functions of moving loads acting on an 
inclined line in a layered half-space. The present method 
has two advantages. Firstly, there is no singularity due to 
the Green’s functions of uniform loads acting on an in-
clined line in a layered half-space. Secondly, the pre-
sented method is particularly appropriate to elastic wave 
problems in a layered medium. The accuracy of the 
method is verified by comparison with the related solu-
tions. The numerical results are carried out for the cases 
of a canyon in homogenous and in one layer over bed-
rock. Some conclusions are obtained.  

The 2.5D wave scattering problem is essentially 
different from the 2D case, and the horizontal incident 
angle has an important effect on the surface displacement 
amplitudes. There exist distinct differences between the 
wave amplification by a canyon in layered half-space 
and that in homogeneous half-space. The dynamic char-
acteristics of the soil layer have significant effect on 
both the amplitudes and frequency spectrum of the sur-
face displacements, which must be paid enough atten-
tion. 

It should be noted that this study can be used for 
the wave scattering of a canyon of arbitrary shape, al-
though a semi-circular canyon in one soil layer over 
bedrock is studied in the paper. 
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