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Abstract  Chen’s technique of computing synthetic seismograms, which decomposes every vector with a set of basis of or-
thogonality and completeness before applying the Luco-Apsel-Chen (LAC) generalized reflection and transmission coefficients 
method, is confirmed to be efficient in dealing with elastic waves in multi-layered media and accurate in any frequency range. In 
this article, we extend Chen’s technique to the computation of coupled seismic and electromagnetic (EM) waves in layered porous 
media. Expanding the involved mechanical and electromagnetic fields by a set of scalar and vector wave-function basis, we obtain 
the fundamental equations which are subsequently solved by using a recently developed version of the LAC generalized reflection 
and transmission coefficients method. Our approach and corresponding program is validated by reciprocity tests. We also show a 
numerical example of a two-layer model with an explosion source. The P-to-EM conversion waves radiated from the interface 
may have potential application. 
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1 Introduction   

Blau and Statham (1936) and Thompson (1936) 
were the first to report experimental results on the seis-
moelectric phenomenon, which means the variation of 
Earth resistivity with elastic deformation, called the 
I-effect. Ivanov (1939) discovered another seismoelec-
tric phenomenon, called the E-effect, by measuring 
electric fields generated by seismic waves without ap-
plying any external voltage to the ground. In order to 
explain the above phenomena, Frenkel (1944) used the 
concept of electric double layer to develop a complete 
set of equations describing the electrokinetic effect in 
isotropic porous media. Later, Biot (1962) derived the 
theory of elastic waves’ propagation in porous media.  

Martner and Sparks (1959) reported a systematic 
study of electroseismic coupling using explosive sources 
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placed at different depths. Their results were the first to 
show conversions of seismic to electromagnetic (EM) 
energy at depth, measured at the Earth’s surface with 
antennas. Thompson and Gist (1993) conducted field 
experiments, demonstrating that seismic waves can in-
duce EM disturbances in water-saturated near-surface 
sediments in the Earth, and that the induced EM distur-
bances can be recorded at the Earth’s surface. Recent 
field tests by Thompson et al (2007) showed the possi-
bility of detecting hydrocarbon reservoirs at depths even 
up to 1000 m using EM-to-seismic conversion. Besides 
field experiments, there are also some laboratory ex-
perimental studies on seismoelectric effects. Zhu et al 
(2000) experimentally confirmed that the coupling be-
tween the seismic wave and EM field in the kilohertz 
range is electrokinetic in nature. Zhu and Toksöz (1999, 
2003) performed laboratory experiments in borehole 
models with fractures to investigate seismoelectric con-
versions and confirmed EM radiation at the fractures. 

Pride (1994) derived a set of macroscopic equa-
tions governing the coupled seismic and EM waves in 
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fluid-saturated porous media. The properties of the cou-
pled seismic and EM field in a fluid-saturated porous 
medium were discussed (Pride and Haartsen, 1996). 
There are two kinds of coupling: SHTE and PSVTM. In 
the SHTE case, SH waves generate electrical currents in 
the SH particle motion plane that couple to the 
EM-wavefield components with transverse electric (TE) 
polarization. In the PSVTM case, the PSV waves gener-
ate electrical currents in the PSV particle motion plane 
coupling to the EM-wavefield components with trans-
verse magnetic (TM) polarization. Based on the gov-
erning equations, Haartsen and Pride (1997) and 
Garambois and Dietrich (2002) introduced a numerical 
technique modeling the coupled seismic and EM wave 
propagation in a fluid-saturated stratified porous me-
dium. Haartsen and Pride (1997) used the so-called 
global matrix method whereas Garambois and Dietrich 
(2002) proposed an extension of the generalized reflec-
tion and transmission coefficients method (abbreviated 
as generalized R/T coefficients method in the following 
context), which was originally developed by Kennett 
(1983). For well logging exploration case, some ana-
lytical and numerical methods were performed to de-
scribe the electroacoustic waves in borehole in porous 
media (Hu et al, 2003, 2007). The above algorithms 
were implemented in the frequency domain. There are 
also a few numerical simulations in the time domain, 
e.g., Han and Wang (2001) provided a finite element 
algorithm of modeling the seismo-electromagnetic field 
induced by SH waves, Haines and Pride (2006) pre-
sented a finite difference algorithm of modeling seis-
moelectric phenomena and provided a 2D implementa-
tion of this algorithm. Guan and Hu (2008) provided a 
finite-difference time-domain algorithm modeling the 
electroseismic logging in fluid-saturated porous media. 

As mentioned above, the model of Pride (1994) has 
been widely adopted to investigate the coupling of seis-
mic and EM waves in porous media. However, it should 
be also mentioned that Revil and Linde (2006) devel-
oped recently a new and alternative theory of the elec-
trokinetic behavior of consolidated rocks at low fre-
quencies. While this theory was first developed to study 
the electrokinetic properties of clay-rocks (Revil et al, 
2003; Revil and Leroy, 2004), this model also works 
well for high porosity reservoir rocks, soils, and packs 
of glass beads (Bolève et al, 2007a, b). 

Chen (1993) has developed the generalized R/T 

coefficients method, which was originally introduced by 
Luco and Apsel (1983), to the study of computing nor-
mal modes for multilayered half-space. This developed 
method was adopted by Park (1996) and referred as 
LAC R/T scheme in the study of Martin and Thomson 
(1997) who compared this scheme with Kennett R/T 
scheme (Kennett, 1983) and affirmed the priority of 
LAC R/T scheme in numerical calculation stability. 
Chen (1999) developed a method to calculate synthetic 
seismograms for layered media, decomposing every 
vector by using a set of basis of orthogonality and com-
pleteness before applying the LAC generalized R/T co-
efficients method. Chen (2007) extended the LAC gen-
eralized R/T coefficients method to the study of genera-
tion and propagation of seismic SH waves in 
multi-layered media with irregular interfaces. Quite re-
cently, Ge and Chen (2008) further developed the LAC 
generalized R/T coefficients method by introducing a 
more straightforward evaluation of the generalized R/T 
coefficients, which makes this approach more efficient. 

In the present study, we extend the above method 
of calculating seismograms (Chen, 1993, 1999, 2007; 
Ge and Chen, 2008) to the numerical simulation of the 
coupled seismic and EM waves in layered porous media. 
We focus on the saturated porous case and adopt the 
model described by the macroscopic dynamic governing 
equations of Pride (1994). After decomposing each vec-
tor in a cylindrical coordinate system, we obtain the 
fundamental equation corresponding to both PSVTM 
and SHTE models, as well as two additional equations 
related to the vertical component of EM waves. Then we 
use the improved LAC generalized R/T coefficients 
method, in which the straightforward evaluation of the 
generalized R/T coefficients is adopted, to solve the 
fundamental equation. We show that the general recip-
rocity theorem of Green’s tensor is satisfied for our pro-
gram. Then we apply our new technique to a two-layer 
porous media with an explosion source. This work may 
provide an effective way to investigate seismo-electro- 
magnetic effects in porous media, which is useful for 
monitoring the pumping of oil and gas reservoirs 
(Thompson and Gist, 1993; Thompson et al, 2007; Pride 
and Haartsen, 1996; Revil et al, 2003) and the possible 
EM disturbances associated with earthquakes and vol-
cano eruptions (Park et al, 1993; Johnston, 1997; Huang, 
2002; Huang and Liu, 2006; Nagao et al, 2002). 
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2 Methodology 
2.1 Governing equations 

Assuming a time dependence of e−iωt, Pride (1994) 
derived the macroscopic governing equations in fre-
quency domain, which control the propagation of cou-
pled seismic and EM waves in porous media. We 
adopted the following governing equations in our nu-
merical simulations based on the model of Pride (1994) 
and Haartsen and Pride (1997), while the first two equa-
tions were rewritten after taking into account the prob-
lem to be dealt with in this paper. 
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where E is the electric field, H the magnetic field, J the 
electric current, τ the traction acting on the horizontal 
plane at depth z, P the pore-fluid pressure, u the average 
displacement of solid, w the average relative fluid-solid 
displacement multiplied by porosity, ρ the bulk density, 
ρf the fluid density, ε the electrical permittivity, μ the 
magnetic permeability, ω the radial frequency, F and f 
the applied body-force densities acting on the bulk ma-
terial and fluid phases respectively (here a minus sign is 
added to F to let F and f have the consistent physical 
meanings), I the identity matrix, C the applied electric 
current source, M the magnetic current sources, L the 
electrokinetic coupling coefficient, κ the dynamic per-
meability, η the fluid viscosity, KG the Gassmann’s bulk 
modulus, G the shear modulus of the solid frame, C and 
M related to the bulk modulus of the solid and fluid 
phases and the bulk modulus of the drained frame of the 
solid phase. 

2.2 Layered media and general solutions 
The model concerned in this paper is a layered po-

rous media with N homogeneous layers over a 
half-space. The j-th layer is bounded by horizontal flat 
interfaces, z=z( j−1) and z=z( j). The top layer can either be 
a half-space or have a free surface with z=z(0). The 
source is placed in the s-th layer, which is not a 
half-space, i.e., s<N+1 and s>1 while the top layer is a 
half-space.  

The governing equations for the 
seismo-electromagnetic problem, as shown in equations 
(1) to (7), involve both scalar and vector functions. 
These functions are expanded by using a set of scalar 
and vector wave-function basis, whose detailed expres-
sions are described in Appendix A. Thus, we obtained 
two sets of linear ordinary differential equations corre-
sponding to the SHTE model and PSVTM model re-
spectively. Both have the following form 
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where j=1, 2, ⋅⋅⋅, N, and δj,s is Kronecker delta function. 
The y vectors of the two models are written as 
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where uT,m, uS,m, uR,m, wR,m, τT,m, τS,m, τR,m, HT,m, HS,m, 
HR,m [equation (11)], ET,m, ES,m, ER,m [equation (12)], and 
P%  are the corresponding expansion coefficients of un-
known vector functions u, w, τ, H, E and the unknown 
pore-fluid pressure P, respectively. The explicit expres-
sions of A and F are given in Appendix B. 

Two extra equations corresponding to the vertical 
components of EM waves are  

 , , ,i (for SHTE model);R m T m R mH kE Mμω = − +  (11) 

 , , , ,i

(for PSVTM model).

R m S m T m T mkE E H M
z

μω∂= − − +
∂

 (12)
 

Once we have known HT,m ,T mE  and ,S mE
z

∂
∂

, we 

can calculate the vertical components of EM waves, ER,m 
and HR,m. 

The general solution of the equation (8) can be 
written as 
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where j=1, 2, ⋅⋅⋅, N+1. The wave amplitude vector a(
 
j
 
) is 

an unknown constant vector to be determined by 
boundary conditions. Θ( j) and Λ( j)(z) are the matrices 
related to the eigen-vectors and eigen-values of A(
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) as 

follows 
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For SHTE model, n=4, we get two pairs of ei-
gen-values, ±γi with Re{γi}>0 for i=1, 2; For PSVTM 
model, n=8, we get four pairs of eigen-values, ±γi with 
Re{γi}>0 for i=1, 2, 3, 4. 

It should be stressed that a slight modification has 
been applied to solution (13), thus the diagonal matrix 

( ) ( )j zΛ  contains exponential decay terms only. 
2.3 LAC generalized R/T coefficients method 

The general solution can be written in matrix form 
as follows 
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ua  are the corresponding amplitudes of 
these down-going and up-going waves, and bd(z) and 
bu(z) relate to the source as follows 

 ( 1)

( ) 1 ( ) 1
d 11 1

( ) 1
12 2

( ) [ ( )] {[( ) ] ( )

[( ) ] ( )}d ,

s

z
s s

d
z

s

z ξ ξ

ξ ξ
−

− −

−

= +∫b Λ Θ F

Θ F  (18)
 

 ( )

( ) 1 ( ) 1
u 21 1

( ) 1
22 2

( ) [ ( )] {[( ) ] ( )

[( ) ] ( )}d .

s

z
s s

u
z

s

z ξ ξ

ξ ξ

− −

−

= +∫b Λ Θ F

Θ F  (19)
 

where [(Θ(s))−1]11, [(Θ(s))−1]12, [(Θ(s))−1]21, and [(Θ(s))−1]22 
are four sub-matrices of (Θ(s))−1. 

The case of j=1 of equation (18) is correct when the 
top layer has a free surface. However, if the top layer is 
a half-space, there are no down-going waves, thus 
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In the bottom half-space, there are no up-going 
waves, thus 
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Now, in order to determine the unknown 
wave-amplitude vector a(

 
j
 
), we introduce the LAC gen-

eralized R/T coefficients method. 
2.3.1 Straightforward evaluation of generalized R/T 
coefficients 

The generalized R/T coefficients are defined as 
follows 
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According to the continuity condition at the inter-
face, we obtain 
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Obviously, in order to calculate the above coeffi-
cients, we have to get the values of (0)

udR  and ( 1)
du

N +R , 
whose explicit expressions are obtained through two 
boundary conditions. The detailed equations are listed in 
Appendix C. 
2.3.2 Determination of unknown wave-amplitude 
vector 

Since we have now gotten the generalized R/T co-
efficients, we can determine the unknown 
wave-amplitude vector a( j), which is divided into two 
sub-vectors ( )

d
ja  and ( )

u
ja  written as follows, 
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where sd=bd(z(s)) and su=bu(z(s−1)) are source terms cor-
responding to the down-going and up-going waves re-
spectively. 
2.3.3 Vertical components of EM waves  

According to equations (11) and (12), the vertical 
components of EM waves are relative to the horizontal 
components of EM waves and magnetic-current source. 
We can get ET,m from equation (17) for SHTE model, so 
we can compute HR,m according to equation (11). In or-
der to get ER,m according to equation (12), we have to 
know HT,m which is given by equation (17) for PSVTM 

model and ,S mE
z

∂
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 which can be obtained from the 

derivative of equation (17) written as 
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equation (30). 
Having derived the components of every field vec-

tor in the coordinates system with vector basis given by 
equation (A-3), we can now get the components of 
every vector in cylindrical coordinates system according 
to equation (A-4). 
2.3.4 Back in the space-time domain 

Having obtained the displacement-stress-EM wave-
fields in the frequency-wavenumber domain, we now 
consider the transformation back to the space-time do-
main, which can be performed by discrete wave number 
(DWN) method. Bouchon (2003) reviewed the DWN 
method, introduced by Bouchon and Aki (1977) and 
Bouchon (1981), which uses a spatial periodicity of 
sources to discretize the radiated wave fields and relies 
on the Fourier transform in the complex frequency do-
main.  

The integral over the horizontal wave number k can 
be discretely evaluated by introducing an infinite set of 
concentric rings of secondary sources distributed peri-
odically with an equal radial interval, which is required 
to be large enough to make sure that the waves gener-
ated by the additional sources do not enter the time 
window (Bouchon, 1981, 2003). In order to remove the 
singularities from the real k axis, a small constant 
imaginary part is added to the real frequency. The effect 
of the imaginary part frequency can be removed from 
the final time domain in the process of inverse Fourier 
transform (Bouchon and Aki, 1977). 

3 Reciprocity test and one numerical 
example 

In order to test our numerical simulation technique 
and our program, we performed the reciprocity test, 
which is a useful method for checking of numerical 
simulations program. The reciprocity theorem can be 
written as 

 0 0( , ; , ) ( , ; , ),i j
j r s i s rt t t t=G x x G x x  (31) 

where 0( , ; , ) ( 1,3; 1,3)i
j r st t i j= =G x x  represents the 

Green’s tensor along direction i, recorded at (xr, t) which 
are generated by a point source oriented in direction j, 
located at xs and acting at time t0.  

For coupled seismic and EM waves in porous me-
dia, reciprocity can be verified for 1 seismic waves 
generated by seismic point sources, 2 electric waves 
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generated by current sources, and 3 elastic waves gen-
erated by current sources and electric waves generated 
by seismic point sources (Pride and Haartsen, 1996). We 
tested all the above kinds of reciprocity. However, for 
saving space, we only show the results of the third re-
ciprocity test, which is the most interesting case.  

This reciprocity test is carried out with a three- 
layer model, which has a 100-m-thick porous layer (l2) 
sandwiched between two identical half-spaces (l1). The 
properties of layers are listed in Table 1. Two reciprocal 
source-receiver configurations are used. One is the 
down-going configuration and the other is the up-going 
configuration. In the down-going configuration, the 
seismic source is located in the top half-space 100 m 
above first interface while the receiver is located at the 
bottom half-space 100 m below the second interface 
with lateral offsets of  x=50 m and y=100 m. Thus, in 
the up-going configuration, the receiver is located in the 
top half-space while the source is located at the bottom 
half-space. The seismic source is a point single force F 
whose magnitude is 1 N. The current density source D is 
created by a 1-m-long dipole antenna carrying a 1-A 
current. The sources are chosen to be oriented in x, y, or 
z directions. The applied source time function is a 
zero-phase Ricker wavelet with a dominant frequency of 
100 Hz. 

Table 1 Properties of the homogeneous layers used in the nu-
merical calculation 

layre 
Properties 

l1  l2  sand  sandstone

Porosity φ 15% 30% 30% 20% 
DC permeability k0/m2 10−12 10−11 10−11 10−12 
Solid bulk modulus ks/GPa 36 36 35 36 
Fluid bulk modulus kf/GPa 2.2 2.2 2.2 2.2 
Frame bulk modulus kfr/GPa 9.0 7.0 0.4 5.0 
Frame shear modulus Gfr/GPa 7.0 5.0 0.5 7.0 
Fluid viscosity η/Pa⋅s 10−3 10−3 10−3 10−3 
Solid density ρs/kg⋅m−3 2 700 2 700 2 600 2 700 
Fluid density ρf/kg⋅m−3 103 103 103 103 
Salinity C0/mol⋅L−1 10−2 10−4 10−3 10−3 
Temperature T/K 298 298 298 298 
Fluid Permittivity κf 80 80 80 80 
Solid Permittivity κs 4 4 4 4 
Tortuosity α∞ 3 3 3 3 

 
As shown in Figure 1, this reciprocity [deriving 

from Pride and Haartsen (1996)] is verified for different 
combinations of point sources and wave fields, because 
there are no significant differences for each pair of waves. 
We also verified the other two kinds of reciprocity for 
seismic waves generated by seismic point sources and 
electric waves generated by current sources. Thus we 

conclude that our program satisfies the reciprocity test. 
As an example, we applied our numerical tech-

nique to a two-layer model with an explosion source 
near the free surface. For this model, a sand-sandstone 
interface is located at 100 m depth. Receivers are lo-
cated at the free surface. The source time function 
adopted here is Ricker wavelet with a dominant fre-
quency of 100 Hz. We adopted the expression of Haart-
sen and Pride (1997) to calculate the moment M0 gener-
ated by an explosion. The properties of the sand and 
sandstone layers are given in Table 1. 

 

Figure 1 Reciprocity of coupled seismic and EM waves 
generated by different sources.  

In order to show coupled waves clearly, we re-
moved direct waves and free surface reflections, which 
are much more intense. Figure 2 shows none-zero 
field-component of displacement and EM waves at one 
receiver with a horizontal offset 50 m from the source. 
There are obvious electric signals accompanying P 
waves and magnetic signals accompanying S waves. 
Moreover, there are EM signals arriving earlier than P 
waves. They are activated when first P wave arrives at 
the interface and travel at EM wave velocity which is 
much faster than seismic velocity. However, such 
P-to-EM conversion waves are very weak. In Figure 2, 
they are amplified by a factor of 500 to improve the 
visibility. Since the P-to-EM conversion waves are radi-
ated from the interface, if they can be detected in the 
field, they may have potential application in the moni-
toring of oil/gas reservoirs, and the development of 
earthquake early warning system.  



Earthq Sci (2010)23: 167−176 173 

 
Figure 2 Seismograms and electroseismograms of the two-layer model with an explosion source near the free sur-
face. A sand-sandstone interface is located at 100 m depth. The receiver is located at the free surface with a horizontal 
offset 50 m from the source. Direct waves and free surface reflections are omitted in order to show coupled waves 
clearly. The horizontal projection of source-receiver vector is in x-direction and z-direction is vertically downward. 
The P-to-EM conversions are amplified by a factor of 500 to improve the visibility. 

4 Conclusions 
Using a new straightforward evaluation of the gen-

eralized R/T coefficients, we have extended Chen’s 
method of calculating synthetic seismogram to the numeri-
cal simulation of coupled seismic and EM waves in 
multi-layered porous media. We obtain the general solu-
tion of the full components of seismic and EM waves, 
including the vertical components of EM waves. After 
the reciprocity test, we conclude that the new numerical 
simulation technique developed here is reliable for in-
vestigating the coupling of seismic and EM waves in 
multi-layered porous media. We also perform a numeri-
cal example of a two-layer media with an explosion 
source. Besides EM signals accompanying with seismic 
waves, there are also weak P-to-EM conversion waves, 
which are radiated from the interface and travel at EM 
wave velocity. The P-to-EM conversion waves may 
have potential application in monitoring oil/gas reser-
voirs and early warning of earthquakes. 
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Appendix A: Scalar and vector wave-function basis 
For scalar function, we take cylindrical harmonic 

function ( , )m
kY r θ  as basis function with which an arbi-

trary scalar function F(r, θ, z) can be expanded as follows 
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where, fm(k, z) is the expansion coefficient of F(r, θ, z), 
and the function basis ( , )m

kY r θ  has following explicit 
form  
 ( , ) ( ) for =0, 1, 2, ;m im

k mY r J kr e mθθ = ± ± L  (A-2) 

where Jm(kr) is a Bessel function of order m.  
For vector function, we take the following set of 

vector functions as basis,  
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It had been proven that this set of vector basis 
function is orthogonal (e.g. Aki and Richards, 1980) and 
complete (Chen, 1999). Therefore, an arbitrary vector 
function, say A(r, θ, z, ω), can be expanded with the 
above vector basis function as 

{
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where AT,m, AS,m and AR,m are the expansion coefficients of 
A under the vector function basis { ( , )m

k r θT , ( , )m
k r θS , 

( , )}m
k r θR  given by equation (10). If the vector function 

A is known, these expansion coefficients can be evalu-
ated by the following formulae, 

2
*

,
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where, the symbol * indicates the complex conjugate. 

Appendix B: Expressions of A and F 

 

1

2 2 2 3
f f

SHTE
2

2
f

0 0 0

i 0 0 i
,

0 0 i i

0 0 i 0

G

Gk L

kL

κρω ρ ω ρ ω
η

ρ ω σ εω
μω

μω

−⎡ ⎤
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

= ⎢ ⎥
⎢ ⎥− − − +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  (B-1) 

 
SHTE

SHTE 1
SHTE

2

( )
( ) ,

( )
z

z
z

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

F
F

F
 (B-2) 

 
T

SHTE
1 , f ,( ) 0, ( , , ) i ( , , ) ,T m T mz F z k f z kκω ρ ω ω

η
⎡ ⎤= − −⎢ ⎥
⎣ ⎦

F  (B-3) 

 
T

SHTE
2 , , , ,( ) ( , , ) i ( , , ) ( , , ), ( , , )T m R m T m S m

kz Lf z k M z k C z k M z kω ω ω ω
μω

⎡ ⎤= − + − −⎢ ⎥
⎣ ⎦

F , (B-4) 

 

PSVTM

12 14

21 25 26

31 35 36 38

41 45 46 48

52 53 54

62 63 67

71 76 78

83 87

0 0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0

a a
a a a
a a a a
a a a a

a a a
a a a

a a a
a a

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A

, (B-5) 

 
PSVTM

PSVTM 1
PSVTM

2

( )
( )

( )
z

z
z

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

F
F

F
, (B-6) 

 

PSVTM
1 ,

T

, f ,

( ) 0, 0, i ( , , ),

( , , ) i ( , , ) ,

s m

s m s m

kz f z k

F z k f z k

κ ω
ηω

κω ρ ω ω
η

⎡= −⎢
⎣

⎤− − ⎥
⎦

F

 (B-7)
 

,

, ,
PSVTM

2 , ,

, ,

( , , )
( , , ) ( , , )

( ) .( , , ) ( , , )

( , , ) ( , , )

R m

R m R m

s m s m

R m T m

F z k
f z k L C z k

z Lf z k C z k

kC z k M z k

ω
ω χ ω

ω ω
κχ ω ω
η

−⎡ ⎤
⎢ ⎥− +⎢ ⎥

= ⎢ ⎥+
⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦

F  (B-8) 

The elements of APSVTM has explicit expressions as 
follows 
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where,  
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and k is the horizontal wave-number; FT,m, FS,m, FR,m, 
fT,m, fS,m, fR,m, MT,m, MS,m, MR,m, CT,m, CS,m, and CR,m are 
the expansion coefficients of those known mechanical, 
magnetic and electric source vectors F, f, M and C, re-
spectively.  

Appendix C: Determination of (0)
udR  and ( 1)N

du
+R  

In bottom layer, there are no up-going waves i.e., 
( 1)
u 0N + =a . We obtain ( 1)

du 0N + =R . If the top layer is a 

half-space, we have equation (0)
ud 0=R ; if the top layer 

has a free surface, we have (1) (0) (1)
d ud u

ˆ [= +a R a  
(0)

1, u ( )]s zδ b , and two extra boundary conditions. One is 

the traction-free condition, τT,m=0, τS,m=0, τR,m=0, 
0~ =P , for z=z(0). The other is the continuity of the 

horizontal components of the electric and magnetic 
fields (see Pride and Haartsen, 1996) at the free surface.  

Finally, we obtain that, for SHTE model, 
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and for PSVTM model,  
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ud u ( )z= −R ΓΞΛ , (C-2) 
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where (1)
ijΘ  are the elements of the matrix (1)Θ . 
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