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Abstract  The modeling methodologies and calculation of dynamic response of underground structure under Rayleigh 
waves is investigated in this paper. First the free field responses under Rayleigh waves are analyzed and the numerical results 
agree well with the theoretical results. Then, the approximate Rayleigh waves are put forward based on the preliminary re-
search, and Rayleigh wave field is obtained through fast Fourier transform technique. Taking a utility tunnel as an example, 
its dynamic responses under Rayleigh waves is calculated by ABAQUS. The results demonstrate that bending deformation is 
the main component of structural deformation and the deformation at the top of the structure is about twice as much as that at 
bottom of the structure. The effect of soil-structure interface and the buried depth of underground structure are also investi-
gated via parameter analysis. For the shallow buried underground structures, Rayleigh waves can be the key factor to control 
the responses and damage of the structure. 
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1 Introduction  

Underground structures are becoming more and 
more prevalent in the modern world because of the de-
creasing availability of aboveground space and re-
sources due to fast growing population. This investiga-
tion concentrates on utility tunnel, which is a kind of 
underground structure that holds many kinds of lifelines, 
such as wires, conduits and pipes of power, gas water 
supply and communication utility system. The first 
modern utility tunnel is built in Paris. Now Japan is the 
leading country in construction of utility tunnel. In 
China, the first modern utility tunnel was built in Shang-
hai in 1994 and there are two utility tunnels in Shanghai 
now. Figure 1 is the inside view of an as-built utility 
tunnel. 

Due to its remarkable advantages in improving re-
liability, reducing deferred maintenance, utility tunnel is 
tending to be major choice for underground infrastruc-
ture construction in the future, not only for megalopolis 
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but also for small towns. However, there is still limited 
research to date on the seismic response analysis of the 
utility tunnel. Utility tunnel is typically box-shaped and 
shallow-buried concrete structures. Statistical data of 
damage in underground structures under strong seismic 
waves show that shallow tunnels are at higher risk dur-
ing an earthquake than deeper tunnels; roughly 60% of 
the total cases with overburden depth less than 50 m 
suffered certain damages (Wang, 1993). It is thus rea-
sonable to conclude that the utility tunnel may be dam-
aged more severely than deep ones during an earthquake. 
So the shallow-buried underground structure should be 
paid more attention under earthquake excitations. 

Majority of the researches conducted on the dy-
namic response of underground structures concentrates 
on the study of soil-structure interaction. Most of these 
researches assume vertically propagating shear waves 
(S-waves). A comprehensive review on this subject has 
been presented by Hashash et al (2001). This assump-
tion has been employed because of some considerable 
computational difficulties in exact prediction of re-
sponses from a potential earthquake. Moreover, it is 
known that for motions close to the epicenter, continu-
ous transmission of upward propagating S-wave through 
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increasingly soft soil layers gradually changes their di-
rection. Different methods have been used to investigate 
the dynamic soil-structure interaction, such as pseudo- 
static method (Wang, 1993; Penzien and Wu, 1998; Pen-
zien, 2000; Huo, 2005), numerical method (Matsui et al, 
2001; Huo, 2005), and experimental method (Prasad et 
al, 2004).  

 

Figure 1 Photo of an existing utility tunnel. 

Despite of the significant progress in understanding 
behavior of underground structures under seismic excita-
tion, very little is known about their response, especially 
when the soil is excited under Rayleigh waves. Miller 
and Pursey (1955) studied the partition of energy be-
tween elastic waves in a semi-infinite solid, which inves-
tigated the power of three waves contributing to total 
earthquake input respectively; the result revealed that 
Rayleigh wave is 67.3%, the shear wave is 25.8% and 
the compression wave is 6.9%. Furthermore, surface 
waves induce motions and stresses in the soil and struc-
ture which are substantially different from those calcu-
lated based on the assumption of vertical S-waves. Ma-
kris (1994) and Makris and Badoni (1995) studied the 
response of pile during the passage of Rayleigh waves. It 
is well established that surface waves have a significant 
contribution to response of the shallow-buried structures. 
The above reasons motivate the study reported herein. 

This paper studies the dynamic response of utility 
tunnel during the passage of Rayleigh waves. First, the 

free field analysis is conducted using FEM of wave mo-
tion involved in the calculation. The results are com-
pared with analytical solutions. Based on fast Fourier 
transform technique (FFT), approximate Rayleigh wave 
field is obtained. Then the dynamic response of utility 
tunnel during Rayleigh waves is calculated and some 
factors such as interface condition and the buried depth 
are analyzed. 

2 Finite element formulation of wave 
motion 

Based on fundamental theory of finite element 
method, the computational region is defined as a dis-
crete system and the dynamic motion equation can be 
written as 
 ,+ + =&& &Mu Cu Ku P  (1) 

in which M, C and K are mass, damping and stiffness 
matrices, respectively. &&u , &u  and u are acceleration, 
velocity and displacement vectors. P is excitation vector, 
which are deterministic or stochastic. From formula (1), 
we can see that the finite element formulation of wave 
motion is the same as common finite element formula-
tion. The size of element and time increment should be 
controlled in order to reduce the numerical error due to 
the discrete system instead of the continuous one. 

A unique characteristic of finite element simulation 
technique of wave motion is that an artificial boundary 
condition (ABC) should be employed to model the en-
ergy radiation phenomena of the computational region 
in infinite media. Many kinds of ABCs have been put 
forward to reduce spurious energy reflection. Alterman 
and Kara (1968) first put forward the concept of placing 
the artificial truncated boundary far away from the do-
main which we are interested in. The most widely used 
is the viscous boundary (Lysmer and Kuhlemeyer, 1969), 
which replaces the far field with viscous damping. In 
order to simulate the elastic resilience of soil, the vis-
cous-spring boundary, which adds spring at the bound-
ary simultaneously, is also used widely at present. Clay-
ton and Engquist (1977) deduced a paraxial approxima-
tion boundary based on the elastic wave propagation 
equation, which is the remarkable achievement in the 
1970s about the artificial boundary condition. Liao et al 
(1984) proposed a more general used multi-transmitting 
boundary condition from the general wave propagation 
equation. 

The infinite element is also put forward to deal 
with the infinite domain, which uses the concept of the 
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mapping function to model the infinite domain. In 
ABAQUS, first- and second-order infinite elements are 
provided that are based on the work of Zienkiewicz et al 
(1981) for static response and of Lysmer and Kuhle-
meyer (1969) for dynamic response. The elements are 
used in conjunction with traditional finite elements, 
which model the area around the region of interest, with 
the infinite elements modeling the far-field region. The 
dynamic response of the infinite elements is based on 
the consideration of plane body waves traveling or-
thogonally to the boundary. We choose the proper damp-
ing constants dP and dS to eliminate reflection of longi-
tudinal and shear wave energy back into the medium 
respectively, in which dP=ρ cP, dS=ρ cS, ρ is the density 
of the medium and cP, cS are velocity of the longitudinal 
and shear wave respectively. These values of boundary 
damping are added into the infinite elements in 
ABAQUS. It has been verified that the infinite elements 
transmit all normally impinging plane body waves ex-
actly provided that the material behavior close to the 
boundary is linearly elastic.  

General problems involve non plane body waves 
that do not impinge on the boundary from an orthogonal 
direction and may also involve Rayleigh surface waves 
and Love waves. Nevertheless, these “quiet” boundaries 
work quite well even for such general cases, provided 
that they are arranged so that the dominant direction of 
wave propagation is orthogonal to the boundary or, at 
free surfaces and interfaces where Rayleigh or Love 
waves are of concern, they are orthogonal to the surface. 
As the boundaries are “quiet” rather than silent (perfect 
transmitters of all waveforms), and because the bounda-
ries relying on the solution adjacent to them are linearly 
elastic, they should be placed at some reasonable dis-
tance from the region of main interest. Ismail and 
Mullen (2000) and Yue et al (2006) made some com-
parisons about the dashpot boundary and the infinite 
element in ABAQUS. The results showed that the infi-
nite element in ABAQUS have many advantages over 
the dashpot/viscous boundary. 

On the other hand, the discretization of the compu-
tational region will result in some undesirable phenom-
ena, such as dispersion, parasitic oscillation, and anisot-
ropy of wave motion. However, all these numerical 
problems can be limited to an acceptable extent by 
choosing a small discretization mesh size Δx so that the 
frequency range of the traveling waves is much less than 
Nyquist frequency. According to previous researches 
(Liao, 2002; Lysmer and Kuhlemeyer, 1969; Smith, 

1974), the element mesh size Δx should be less than 
1/8–1/12 of the minimum wavelength λmin to guarantee 
the accuracy. Thus, the maximum frequency for a mesh 
discretization scheme is  

 min
max

2 ,
(8 12)

c
x

ω π=
− Δ

 (2) 

in which cmin is the minimum wave velocity corre-
sponding to soil media. In order to increase the maxi-
mum frequency of a computational zone, the mesh size 
should be decreased, but the computational efforts will 
increase. In practical analysis, a trade-off between the 
maximum frequency and the mesh size has to be 
achieved. 

3 Soil displacement due to Rayleigh 
waves 

From the theory of wave propagation, the horizon-
tal displacement ux and the vertical displacement uy, of a 
soil particle during the passage of Rayleigh waves can 
be expressed in the form 
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and 
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If only the real part is considered, we have 

 1( )sin[ ( )],xu f y k x ct= −  (5a) 

 2 ( )cos[ ( )],yu f y k x ct= −  (5b) 

where 
2
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with k being the wave number which can be got from 
the formulation k=ω/c, cP, cS and c being the dilatational 
wave velocity, shear wave velocity, and Rayleigh wave 
velocity, respectively. The parameter c can be got ap-
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proximately from the expression 

R S
0.862 1.14 .

1
c c cμ

μ
+= ≈
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From equation (5), it can be seen that the trajectory 
of the soil particle motion describes a retrograde ellipse. 
The normalized values of horizontal displacement ux/ux0 
and vertical displacement uy/uy0 are plotted versus depth 
in Figure 2. 

 

Figure 2 Rayleigh wave displacement variation with 
depth (μ =0.3). 

4 Approximate Rayleigh wave field 
The above formulas are applied to the steady waves. 

In reality most of the wave types are transient waves, 
such as seismic waves. In the linear medium, transient 
waves can be seen as the superposition of steady waves. 
The approximate seismic waves are put forward to 
simulate Rayleigh wave motion. The method will be 
described in detail as follows. 

Based on the Fourier transform, the approximate 
Rayleigh waves can be expressed as the superimposition 
of the harmonious waves. Assume ux and uy are the 
horizontal and vertical displacement time histories of the 
earthquake respectively. They can be expressed respec-
tively as 
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kn=ωn/c, ωn=πn/T, T represents the period, and An is a 
amplitude parameter, which can be derived from the 
wave motion. The parameters a, b and c can be got from 
the aforementioned formula.  

Assume one of the horizontal earthquake time his-
tories is known as h(t), which can be considered as in-
cident wave at the origin of the coordinate, that is x=0, 
y=0. Substituting x=0, y=0 into equations (8a) and (9a), 
h(t) can be expressed as 

 
2

1

1( ) sin( ).
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Considering the orthogonality of the trigonometric 
functions, the amplitude parameter An can be demon-
strated as 

 2 0

2 2 ( )sin( )d .
1
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Substituting the amplitude parameter An into equa-
tion (9), the two dimensional Rayleigh wave field can be 
obtained. But the calculation will be time consuming 
using the method mentioned above. And the stability of 
numerical integral is not easy to ensure, so the fast Fou-
rier transfer (FFT) method will be a better choice. 

The fast Fourier transform (FFT for short) is a 
computer algorithm for calculating discrete Fourier 
transform. Suppose there exist some discrete series {xk}, 
k = 0, 1, 2, ⋅⋅⋅, N−1. And assume tk is sampling time, 
where tk=kΔ, and Δ is sampling interval. The formal 
definition of the discrete Fourier transform (DFT for 
short) of the series {xk} (k = 0, 1, 2, ⋅⋅⋅, N−1) is  
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The inverse discrete Fourier transform is given by 
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This is usually Fourier transform in the complex domain. 
In this paper, the Fourier in the real domain will be used, 
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that is discrete sinusoidal transfer and discrete cosine 
transfer. 

Considering a discrete signal: 

 ( )k kh h t≡   kt kΔ≡   k = 0, 1, 2, ⋅⋅⋅, N−1, (14) 

where Δ is the sampling interval, tk is the sampling time; 
the corresponding sample frequency is 1/Δ. 

The discrete Fourier transfer can be expressed as 
follows: 
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Accordingly, the discrete sinusoidal transfer can be ex-
pressed as 
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And the discrete cosine transfer is 
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The horizontal earthquake time history h(t) can be 
expressed by equation (14). Substituting it into equation 
(11), the amplitude parameter can be obtained as fol-
lows: 
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According to equation (16), the part in the bracket 
can be obtained using the fast discrete sinusoidal trans-
fer (FDST). Substituting equation (18) into equation (9), 
the functions that describe the variation along the depth 
can be obtained. 
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For the arbitrary node (x, y), the displacement can 
be expressed as  
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and 
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(20b)
 

We continue to consider displacements of the 
whole wave field and proceed to show that, when the 
displacements at the origin of the coordinate x=0 are 
known, we can calculate the wave motion at any time 
under the concept of wave propagation. This can be il-
lustrated as follows: 
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Equation (21a) can be resolved with the inverse 
fast discrete sinusoidal transfer (iFDST) and Equation 
(21b) with the inverse fast discrete cosine transfer 
(iFDCT). The displacement time history of any arbitrary 
node can be obtained using the wave propagation 
method considering time delay. 
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Now we see that the whole Rayleigh wave field has 
been achieved to approximate the earthquake. The pro-
cedure is expressed in Figure 3. As an example, the dis-
placement time history of east-west component of the 
well known El-Centro wave record is shown in Figure 4.  

 

Figure 3 Basic generation procedure of the plane 
Rayleigh wave field. 

 

Figure 4 Displacement time history of east-west 
component of El-Centro wave. 

Using the method mentioned above, the calculated 
vertical displacement time history is depicted in Figure 
5. Equation (6) expresses the variation of the Rayleigh 
amplitude along the soil depth. So the displacement time 
history input can also be gotten at different depths. 

 

Figure 5 Horizontal and vertical displacement time histories 
at the free surface. 

5 Free field analyses during the passage 
of Rayleigh waves 

In order to verify effectiveness and feasibility of 
the proposed Rayleigh wave’s excitation method, sev-
eral numerical examples are analyzed in this section. A 
free field analysis under the Rayleigh waves is consid-
ered. Two dimensional plane strain elements are chosen 
in the finite element analysis. Figure 6 is the sketch of 
the finite element model. Considering the characteristic 
of the finite element formulation of wave motion, the 
mesh size is set as 1 m×1 m. In order to reduce the re-
flection and dispersion of the wave on the boundary, the 
infinite elements at the boundaries are adopted. 

 

Figure 6 Sketch of the analysis model. 

The soil parameters used in calculation are as fol-
lows: mass density is 1.8×103 kg/m3, elastic modulus is 
20 MPa and Poisson’s ratio is 0.3. From the parameters 
above, we can get the Rayleigh wave velocity c=cR= 
0.926, cS = 60.560 4, λR = cR/f =20.186 8 m, a = 0.868 86, 
b=0.377 15, k = 0.311 2. 

The horizontal and vertical displacements of 
Rayleigh wave are input from the left side. The excita-
tion displacement is deduced from equation (5) and the 
content A=1 is assumed. The excitation displacement 
time history is multiplied by a Hanning window func-
tion u(t) in order to express the wave propagation more 
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clearly. 
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After operation, the horizontal and vertical dis-
placement time histories at the free surface are shown in 
Figure 7 respectively.  

It is well known that the passage of the Rayleigh 
waves is the retrograde ellipse. Figure 8 is contour plot 
of von Mises stress of soil during the wave propagation 
at the representative moment. It is obvious that the 
deformation of the soil is just like an adverse ellipse, 
when the waves propagate to the boundary, the wave 
motion is well absorbed. 

 

Figure 7 Input time history at the free surface. 

 

 

Figure 8 Von Mises stress during the passage of Rayleigh waves (scale factor 50) at 3.0 s (a) and 5.2 s (b). 

The analytical solutions are compared with nu-
merical solutions to verify the precision of the simula-
tion. Take the node B as example. The node B is at the 
center of the free surface as shown in Figure 6. Figure 9 
is the displacement comparison between the numerical 

and analytical results of horizontal and vertical dis-
placements. From Figure 9, it can be seen that the ana-
lytical solution and numerical solution agree well. The 
time delay can also be seen in the figure. 
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Figure 9 Horizontal (a) and vertical (b) displacement time histories of the node B in Figure 6. 

6 Utility tunnel response during the 
passage of the Rayleigh waves 

Utility tunnel is typically shallow buried under-
ground structures, and Rayleigh wave has the character 
of large amplitude and much energy near the surface. So 
Rayleigh wave will be the key factor to control the re-
sponse.  

Total size of the calculation model is 60 m×30 m× 
100 m, in which the structure model is of 3 m×3 m×100 
m with 3 m buried depth. The section for structure is 
rectangular, with the wall thickness of the top and side 
slab are 0.3 m and the bottom slab is 0.4 m. Figure 10 is 
the three dimensional finite element model of the 
soil-structure and the infinite elements are added to 
simulate the artificial boundary condition. In order to 
display the model expressly, the infinite elements are 
omitted here.  

The Drucker-Prager model (Huo, 2005) is adopted 
in simulation of the soil. The structure is assumed as 
elastic, which is reasonable for the underground struc-
ture. Table 1 lists the material parameters of soil and 
structure. The slippage and the separation between soil 
and structure are not considered here for the time being. 

 

Figure 10 The finite element model for numerical calculation. 

Table 1 Material parameters of the soil and structure 

 Unit weight 
/kN⋅m−3 μ 

E 
/MPa k 

Soil 19.6 0.30 20 0.8 
Structure 24.0 0.15 26 400  

 Friction angel 
/° 

Dilation angel 
/° 

Yield stress 
/kPa 

 

Soil 30 3 500  
Structure     

Note: k is the ratio of the flow stress in tri-axial tension to the flow stress in 
tri-axial compression, μ is Poisson’s ratio, and E is Elastic modulus. 
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According to the above technique about the gen-
eration of the approximate Rayleigh wave field, the 
horizontal and vertical displacement time histories at the 
top boundary are shown in Figure 11. The input dis-
placement along the depth is obtained according to 
equation (9). The approximate Rayleigh wave excitation 
is input from the left side of the model. 

After calculations using finite element software 
ABAQUS, the results are as follows. Figure 12 is the 
von Mises stress contour during the Rayleigh wave 
propagation in soil. We can see the wave front clearly 
and the waves propagate stably forward. Figure 13 is the 
structural von Mises stress contour at representative 
time, from which we can see the deformation of structure  

is mainly the bending deflection, which will be clearly 
demonstrated from the following strain time history. In 
order to express them clearly, a scale factor of 200 is 
adopted. 

 

Figure 11 Horizontal and vertical Rayleigh wave input 
time histories at the surface of the model. 

 

Figure 12 Wave propagation in soil at representative time. (a) Von Mises stress contour at 0.1 s; (b) Von Mises stress 
contour at 0.3 s; (c) Von Mises stress contour at 0.8 s. 

 

Figure 13 Von Mises stress contour and deformation of structure at 10.8 s (a) and 11.5 s (b) with scale factor of 200. 

The above analysis is from the aspect of the whole 
deformation of the soil and structure. In order to study 

the structural response systematically, the strain time 
history of the utility tunnel is investigated. Figure 14 is 
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the sketch of output points on the utility tunnel. 
The strain time history (Figure 15) of the corre-

sponding top and bottom point of the utility tunnel 
shows that the signal of the strain on the top points and 
the corresponding bottom points are opposite, indicating 
that the structural deformation is mainly the global 
bending deflection. On the other hand, the amplitude of 
the strain on the top of the structure is about twice as 
much as that at bottom, which agrees with the charac-
teristic of the Rayleigh waves. Figure 16 is the stain 
time history of points A1 and A5. Time delay between the 
two points can be clearly observed. As shown in the fig-
ure, the time delay is about 1.15 seconds and the dis-
tance between the points A1 and A5 is 65 meters. So the 

 

Figure 14 Typical output point on the utility tunnel. 

 

Figure 15 Strain time histories of the points A3 and B3. 

 

Figure 16 Strain time histories of the points A1 and A5. 

wave group velocity is about 56.5 m/s. On the other 
hand, from soil parameters, the shear wave velocity can 
be deduced from the formula cS=(G/ρ)1/2 and then using 
the relation between the shear velocity and Rayleigh 
wave velocity, the Rayleigh wave velocity can be ap-
proximately estimated as 60.5 m/s. The two velocities 
are close, which indicates that the wave is stable during 
the propagation. 

In order to further verify the interaction between 
the soil and the structure, the interface between the soil 

and the structure is considered as Coulomb friction, and 
the friction coefficient is μ = 0.4. Figure 17 is compari-
son of the strain time history of the point A1 in the case 
of no sliding and sliding. Table 2 is the strain amplitude 
of different output points. From these results, we can see 
that the strain amplitudes decrease when the sliding is 
considered. This is because that when no sliding is con-
sidered, soil constricts the deformation of the structure. 
So the strain of the structure is increased. 
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Figure 17 Strain time history of point A1 in the case of 
sliding and no sliding between the soil and structure. 

Table 2 Strain amplitude of structure under the different interface 
conditions 

Strain amplitude of structure /10−6 
Output point 

μ = 0.4 μ = ∞ 

A1 −509.97 −638.85 
A2 −791.72 −1 070 
A3 −848.61 −1 200 
A4 −891.26 −1 170 
A5 −641.73 −827.43 

 
From the property of the Rayleigh wave, its ampli-

tude decreases with depth. So the different buried depth 
of the structure is considered here. The results of buried 
depth 9 m and 15 m are presented. Figure 18 is the strain 
time history of the point A3 under different buried depth. 
Table 3 is the strain amplitude of output points. From 
Figure 18 and Table 2, it is obvious that the strain am-
plitude of top plate of the structure decreases with the 
buried depth, which is accord with the property of 
Rayleigh waves; while the strain amplitude of bottom 
plate of the structure increases with buried depth. The 
reason for this is that because the base boundary of the 
model is considered as the base rock, and the artificial 
boundary no considered here. So the wave reflection 
affects the results of the bottom plate and the further 
research is needed. 

 

Figure 18 Strain time history of the point A3 with 
different buried depth (D). 

Table 3 Strain amplitude of structure under different buried 
depth D 

Strain amplitude /10−6 
Output points 

D = 3 m D = 9 m D = 15 m 

A1 641.01 601.60 −533.66 
A2 −1 070 −920.85 −759.58 
A3 −1 200 −1 020 −814.45 
A4 −1 170 −902.21 −914.21 
A5 −827.43 −818.28 −720.81 
B1 245.45 325.53 −408.02 
B2 299.32 445.01 602.92 
B3 −261.93 438.19 656.16 
B4 −379.65 506.12 668.42 
B5 261.38 411.31 511.54 

 

7 Discussion and conclusions 
The effect of surface waves especially the Rayleigh 

waves is of great importance for seismic assessment of 
shallow buried underground structures like utility tunnel. 
Taking utility tunnel as an example, this paper investi-
gates soil displacement caused by the passage of 
Rayleigh waves.  

On the basis of the theory of wave motion, the 
steady Rayleigh waves are studied and the response of 
the free field is examined. From the stress map of soil, 
the adverse ellipse propagating of the soil can be seen 
clearly and the analytical results agree well with the 
numerical ones, which indicates that the proposed wave 
excitation method is proper for Rayleigh wave. The 
wave can propagate steadily in soil. 

The approximate Rayleigh wave is put forward in 
the paper and the Rayleigh wave field is obtained via 
FFT techniques in the real domain. A three dimensional 
finite element model is adopted in this paper to calculate 
the response of the utility tunnel. The results show that 
the deformation of the structure is generally greater un-
der the passage of Rayleigh waves. The bending deflec-
tion is the most common deformation, and the deforma-
tion at the top of the structure is about twice as much as 
that at the bottom, which agrees with the character of the 
Rayleigh waves. The effect of soil-structure interface 
and the buried depth of underground structure are also 
investigated via parameter analysis. The results demon-
strate that the strain amplitude of the structure will be 
decreased when sliding is considered. Moreover, the 
response of the structure will decrease with increasing 
buried depth of the structure.  

In general, the response character of the structure is 
different under Rayleigh waves. And this work just is a 
start. There is still much work to do in the future.  
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