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Diffraction of plane P waves around an alluvial  
valley in poroelastic half-space∗ 
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Abstract  Diffraction of plane P waves around an alluvial valley of arbitrary shape in poroelastic half-space is investigated 
by using an indirect boundary integral equation method. Based on the Green’s functions of line source in poroelastic half-space, 
the scattered waves are constructed using the fictitious wave sources close to the interface of the valley and the density of ficti-
tious wave sources are determined by boundary conditions. The precision of the method is verified by the satisfaction extent of 
boundary conditions, and the comparison between the degenerated solutions and available results in single-phase case. Finally, 
the nature of diffraction of plane P waves around an alluvial valley in poroelastic half-space is investigated in detail through nu-
merical examples. 
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1 Introduction  

It is well known that alluvial valleys may result in 
large amplification of ground motion during earthquakes. 
In the early 1970s, Trifunac (1971) developed an exact 
solution for diffraction of plane SH waves around a 
semi-cylindrical alluvial valley. Then many studies have 
been made on this topic. In these studies there are ana-
lytical solutions (e.g., Wong and Trifunac, 1974; To-
dorovska and Lee, 1991; Yuan and Liao, 1995) and nu-
merical solutions (e.g., Boore et al, 1971; Kawase and 
Aki, 1989; Du et al, 1993; Sanchez-Sesma et al, 1993; 
Liao, 2002; Zhou and Chen, 2008). The analytical 
method is often referred to as wave function expansion 
method, and the numerical method includes finite dif-
ference method, finite element method, boundary ele-
ment method, discrete wave number method, wave 
source method, etc. 

It should be noted that soil media are often satu-
rated in reality, especially in coastal region. Li et al 
(2005) and Zhou et al (2008) studied diffraction of elas-
tic waves around a valley in poroelastic half-space using 
wave function expansion method and complex function 
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method, respectively. However, in these studies there 
exists an approximation to some extent by introducing a 
very big circular-arc to imitate the surface of half-space 
(Lee and Liang, 2008). 

In recent years, a special indirect boundary integral 
equation method (IBIEM) has been applied to the field 
of diffraction of plane waves in elastic media (Wong, 
1982; Dravinski and Mossessian, 1987; de Barros and 
Luco, 1995), and has been extended to the case of 
poroelastic media by Liang and Liu (2009a, 2009b). It is 
illustrated that this method has several advantages, such 
as reducing dimensions of problems, automatic satisfac-
tion of radiation condition, and high calculation preci-
sion. Based on Green’s function by Liang and Liu 
(2009b), this method is further extended to the solution 
for diffraction of elastic waves around alluvial valleys in 
poroelastic half-space. The nature of diffraction of plane 
P waves around an alluvial valley is investigated in de-
tail through numerical examples, and some conclusions 
are obtained. 

2 Formulation 
2.1 Model 

The problem to be studied is the 2-D diffraction of 
plane P waves around an alluvial valley of arbitrary 
shape in poroelastic half-space, as shown in Figure 1. 
Both the half-space (D1) and the valley (D2) are assumed 
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to be poroelastic, homogeneous and isotropic. The 
symbol S refers to the interface between the half-space 
and the valley. To construct the diffracted waves in the 
half-space and the valley, fictitious wave sources are 
introduced close to the interface S, forming two ficti-
tious surfaces S1 and S2, inside and outside the valley, 
respectively. 

 

Figure 1 The model. 

2.2 Biot’s theory 
If the displacement of the solid frame and the fluid 

displacement relative to the solid frame are denoted by 
ui and wi (i=x, y), respectively, the constitutive relations 
of a homogeneous poroelastic medium can be expressed 
as (Biot, 1941) 

 2 , ,ij ij ij ije p i j x yσ με λδ αδ= + − = , (1) 

 , ,i i i ip Mu Mwα= − − , (2) 

in which, σij is total stress component of the bulk mate-
rial, εij and e are strain components and dilatation of the 
solid frame, respectively; λ and μ are Lame constants of 
the bulk material, p is pore pressure, δij is Kronecker 
delta, α and M are Biot’s parameters describing com-
pressibility of the two-phase material, and 0≤α≤1 and 
0≤M≤∞. 

The motion equations of a homogeneous poroelas-
tic medium can be expressed in terms of displacements 
ui and wi as (Biot, 1962) 

 2
, , , f( )i jj j ji j ji i iu M u Mw u wμ λ α μ α ρ ρ+ + + + = +&& && , (3) 

 , , fj ji j ji i i iMu Mw u mw bwα ρ+ = + +&& && & , (4) 

where ρ =(1−n)ρs+nρf, ρs and ρf are mass density of the 
solid grain and the pore fluid, respectively, n is porosity 
of the solid frame; b is a parameter accounting for the 
internal friction due to the relative motion between the 
solid frame and the pore fluid, and b=0 if the internal 
friction is neglected; m is a density-like parameter de-
pending on ρf and the geometry of the pores. 

Based on Biot’s theory, there exist two compres-
sional (P) waves and one shear (S) wave in poroelastic 

medium. Let kα1, kα2 and kβ denote the wave numbers 
for these waves, respectively, then for steady-state re-
sponse, the two P wave potentials φ1 and φ2 and the S 
wave potential ψ for the solid frame satisfy the follow-
ing equations:  

 2 2
1 1 1 0,kαφ φ∇ + =  (5a) 

 2 2
2 2 2 0,kαφ φ∇ + =  (5b) 

and 

 2 2 0,kβψ ψ∇ + =  (5c) 

where ∇2 is the Laplace operator defined by 

 2
2 2 .

x y
∂ ∂∇ = +

∂ ∂
  

To clarify the waves in D1 and D2, the wave num-
bers of two P waves and SV wave are represented by 
kα11, kα21 and kβ1 in half-space, respectively, and kα12, 
kα22 and kβ2 for the alluvial valley, correspondingly.  
2.3 Wave fields 
2.3.1 Free field 

Consider a poroelastic half-space subjected to in-
cident plane first P waves, the potentials of incident 
waves can be expressed by 

 (i)
11 1 1( , ) exp[ i ( sin cos )],x y k x yα α αφ θ θ= − −  (6) 

where θα1 represents the incident angle. The time factor 
exp(iω t) is omitted here and thereafter. The first P wave 
incident on the surface of the poroelastic half-space will 
generate one reflected first P wave, one reflected second 
P wave and one reflected SV wave, which can be ex-
pressed as (Lin et al, 2005)  

 (r)
1 1 11 1 1( , ) exp[ i ( sin cos )],x y a k x yα α αφ θ θ= − +  (7) 

 (r)
2 2 21 2 2( , ) exp[ i ( sin cos )],x y a k x yα α αφ θ θ= − +  (8) 

 (r)
1( , ) exp[ i ( sin cos )],x y b k x yβ β βψ θ θ= − +  (9) 

where a1, a2 and b are reflection coefficients. The stress 
f
ijσ , solid frame displacement 

f
iu , fluid relative dis-

placement 
f
iw , and pore pressure pf of the free field can 

be obtained.  
2.3.2 Diffracted waves 

In the presence of the alluvial valley, diffracted 
waves are generated. In this paper, the diffracted waves 
inside and outside the alluvial valley are constructed by 
fictitious wave sources placed on the surfaces S1 and S2, 
respectively. 
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The displacements and stresses in the half-space 
due to the diffracted wave field can be expressed as 

 s (s) (s)
1 ,1 1 1 ,2 1( ) [ ( ) ( , ) ( ) ( , )i i ib

u x b x G x x c x G x x= + +∫  

 (s)
1 ,3 1 1( ) ( , )]d ,id x G x x S  (10) 

 s (s) (s)
1 ,1 1 1 ,2 1( ) [ ( ) ( , ) ( ) ( , )ij ij ijb

x b x T x x c x T x xσ = + +∫  

 (s)
1 ,2 1 1( ) ( , )]d ,ijd x T x x S  (11) 

 s (s) (s)
1 ,1 1 1 ,2 1( ) [ ( ) ( , ) ( ) ( , )i wi wib

w x b x G x x c x G x x= + +∫  

 (s)
1 ,3 1 1( ) ( , )]d ,wid x G x x S  (12) 

 s (s) (s)
1 ,1 1 1 ,2 1( ) [ ( ) ( , ) ( ) ( , )p pb

p x b x T x x c x T x x= + +∫  

 (s)
1 ,3 1 1( ) ( , )]d ,pd x T x x S   (13) 

in which, x∈D1, x1∈S1; b(x1), c(x1) and d(x1) are the am-
plitudes for the two P waves and the SV wave at posi-
tion x1 in the fictitious surface S1; 

(s)
,i lG (x, x1), 

(s)
,wi lG (x, x1), 

(s)
,ij lT (x, x1) and (s)

,p lT (x, x1) are the Green’s functions for 

solid frame displacement, fluid relative displacement, 
stress and pore pressure in the half-space (subscript l=1, 
2, 3 for first P wave, second P wave and SV wave 
sources, respectively). These Green’s functions already 
satisfy the wave motion equation and the boundary con-
dition of free surface. The expression of these Green’s 
functions can be found in paper (Liang and Liu, 2009b). 

Then the displacement field and stress field in the 
half-space can be obtained by  

 f s( ) ( ) ( )i i iu x u x u x= + , (14a) 

 f s( ) ( ) ( )ij ij ijx x xσ σ σ= + , (14b) 

 f s( ) ( ) ( )i i iw x w x w x= + , (14c) 
and 
 f s( ) ( ) ( )p x p x p x= + . (14d) 

In the same way, the displacements and stresses in 
the alluvial valley can be expressed as  

 (v) (v)
2 ,1 2 2 ,2 2( ) [ ( ) ( , ) ( ) ( , )i i ib

u x e x G x x f x G x x= + +∫  

 (v)
2 ,3 2 2( ) ( , )]d ,ig x G x x S  (15) 

 (v) (v)
2 ,1 2 2 ,2 2( ) [ ( ) ( , ) ( ) ( , )ij ij ijb

x e x T x x f x T x xσ = + +∫  

 (v)
2 ,2 2 2( ) ( , )]d ,ijg x T x x S  (16) 

 (v) (v)
2 ,1 2 2 ,2 2( ) [ ( ) ( , ) ( ) ( , )i wi wib

w x e x G x x f x G x x= + +∫   

 (s)
2 ,3 2 2( ) ( , )]d ,wig x G x x S  (17) 

 (v) (v)
2 ,1 2 2 ,2 2( ) [ ( ) ( , ) ( ) ( , )p pb

p x e x T x x f x T x x= + +∫  

 (v)
2 ,3 2 2( ) ( , )]d ,pg x T x x S  (18) 

in which, x∈D2, x2∈S2; e(x2), f (x2) and g(x2) are the am-
plitudes for the two P waves and the SV wave at position 
x2 in the fictitious surface S2; 

(v)
,i lG (x, x2), (v)

,wi lG (x, x2), 
(v)
,ij lT (x, x2) and (v)

,p lT (x, x2) are the Green’s functions for 

solid frame displacement, fluid relative displacement, 
stress and pore pressure in the alluvial valley. 
2.4 Boundary condition 

The boundary conditions of this problem include 
traction free conditions on the surface of the half-space, 
and the continuity conditions along the interface S. Be-
cause the boundary conditions at the surface of the val-
ley and the half-space are satisfied already, only the 
continuity boundary conditions need to be considered. 

The drained and undrained conditions at the inter-
face are usually assumed for such problem (Figures 2a 
and 2c). However, the partially drained condition is 
more common in reality (Figure 2b). Based on the work 
of Deresiewicz (1963), the boundary conditions are de-
fined as 

 s v s v s v ,x x y y n nu u u u w w= = =  (19a) 

 s v s v ,nn nn nt ntσ σ σ σ= =  (19b) 

 s v ,np p kw− = &  (19c) 

where superscript “s” and “v” represent the half-place 
and the alluvial, respectively; the symbol k is a coeffi-
cient of resistance, which represents a measure of re-
striction of the flow across the interface resulting from 
imperfect alignment of the interfacial pores; nw&  is the 
normal component of the relative velocity of liquid with 
respect to solid phase. For two limiting cases, equation 
(19c) can be reduced to  

 s v 0p p− = k =0, drained case (20a) 
or 

 

Figure 2 Drainage conditions at the interface 
(Deresiewicz, 1963). 
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 0nw =& k =∞, undrained case. (20b) 

To obtain the numerical solution, it is necessary to 
discretize the interface S and the wave source surfaces 
S1 and S2, which is shown in Figure 1. If the numbers of 
the discrete points on the surfaces S, S1 and S2 are N, N1 
and N2 (N≥N1, N≥N2), respectively, the displacement and 
stress of the scattered field in the half-space can be 
written as 

s (s) (s)
1 ,1 1 1 ,2 1( ) ( , ) ( , )i n n i n n n i n nu x b G x x c G x x= + +  

 (s)
1 ,3 1( , ),n i n nd G x x  (21) 

 s (s) (s)
1 ,1 1 1 ,2 1( ) ( , ) ( , )i n n wi n n n wi n nw x b G x x c G x x= + +  

 (s)
1 ,3 1( , ),n wi n nd G x x  (22) 

 s (s) (s)
1 ,1 1 1 ,2 1( ) ( , ) ( , )ij n n ij n n n ij n nx b T x x c T x xσ = + +  

 (s)
1 ,3 1( , ),n ij n nd T x x  (23) 

 s (s) (s)
1 ,1 1 1 ,2 1( ) ( , ) ( , )n n p n n n p n np x b T x x c T x x= + +  

 (s)
1 ,3 1( , ),n p n nd T x x  (24) 

where xn∈S, xn1∈S1; n=1, 2, ⋅⋅⋅, N; n1=1, 2, ⋅⋅⋅, N1; bn1, cn1 
and dn1 are the densities of the first P wave, the second P 
wave and the SV wave at n1th source, respectively.  

As for the wave field inside the alluvium, the sur-
face S2 can be discretized in the same way, and the den-
sities of the first P wave, the second P wave and the SV 
wave at n2th source on S2 can be denoted by en2, fn2 and 
gn2. 

Then from the boundary conditions (19), the fol-
lowing equations can be obtained: 
 1 1 2 2= ,+H Y F H Y  (25) 
in which, H1(6N, 3N1), H2(6N, 3N2) are influence matrix 
which corresponds to the displacement and stress due to 
fictitious wave sources on the surface S1, S2, respectively. 
Y1(3N1, 1) and Y2(3N2, 1) are unknown density vector. 
F(6N, 1) is the displacement and stress vector of free 
field. The equation can be solved by using least-squares 
method. Once the unknown wave source density is cal-
culated, the whole wave field can be obtained through 
superposition of diffracted field and free field.  

3 Numerical implementation  
Compared with other boundary integral equation 

methods, one prominent character of this method is that 
the singularity is avoided because the wave sources are 
located at the fictitious surface S1 (close to but not on the 
valley boundary S). The numerical experiments show 

that at least seven discrete points per wave-length are 
required on the boundary. For incident frequency η ≤2.0 
(η is the dimensionless frequency defined later) the 
number of the wave sources can approximately take 
0.5−0.8 times the number of discrete points of valley 
boundary, and the wave sources should better be placed 
within 0.4−0.6 times of the relevant radii of the valley; 
however, for higher incident frequency η >2.0 the wave 
sources should be placed within 0.7−0.9 times of the 
relevant radii of the valley, and the number of the wave 
sources can approximately take 0.8−0.9 times of that of 
discrete points of valley boundary. For convenience, S1 
and S2 follow the shape of S, and the distances between 
S2 and S are identical to those between S1 and S. 

It is worth noting that the Green’s functions of line 
source in poroelastic half-space are computed by Fourier 
transformation in space-wave number domain. To con-
sider the material damping, linear complex hysteretic 
damping is introduced by λ =λ(1+2ζ i) and μ =μ (1+2ζ i), 
in which, ζ is the damping ratio. Then the seven-point 
Gaussian integration is used to compute the Green’s 
function in this paper, in which, different integration 
intervals are used for different incident frequency to 
improve the computation efficiency. It should be noted 
that for η =2 (N=41, N1=25), the computation can be 
completed within 10 minutes on a common personal 
computer with CPU 2.40 GHz and memory 2.0 Gb. 

4 Accuracy verification 
Accuracy of numerical results is verified for the 

case of a semi-circular alluvial valley. Because there is 
no exact solution for the diffraction of plane waves by 
an alluvial valley in poroelastic half-space up to now, 
the verification is performed by the check of satisfaction 
extent of boundary conditions and the comparison be-
tween the degenerated solutions of single-phase half- 
space and the well-known solutions. 

The dimensionless incident frequency is defined as 
η =ω a/πcβ, where a is radius of the valley, cβ is the shear 
wave velocity in half-space. 

The check of boundary conditions shows that the 
stress residuals gradually decrease as the number of dis-
crete points of the interface increases. Even for high 
incident frequency η =3.0, the normalized stress residual 
(normalized by the stress intensity of the incident P 
waves) can reach to a level of 10−3 for N=81 and N1=61. 

For the degenerated solution of single-phase 
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half-space, the following parameters associated with 
poroelasticity are taken: M∗= *

fρ =m∗=α =0, and with the 
shear modular ratio μ∗=1/6, the damping ratio ζ =0.001, 
Poisson’s ratio ν =1/3 and incident frequency η =1.0. 
Figure 3 shows the surface displacement amplitudes of 
the half-space compared with the well-known results of 
single-phase half-space by Dravinski and Mossessian 
(1987) for incident angle θα1=0° and θα1=30°, respec-
tively. It is shown that the results in the present study are 
in excellent agreement with the results of Dravinski and 
Mossessian (1987). 

 
Figure 3 Degenerated frequency solution compared 
with the results of Dravinski and Mossessian (1987). 

5 Numerical results and discussion 
The parameters of saturated poroelastic media in 

the half-space are defined as follows: Poisson’s ratio 

ν = 0.25, porosity ns= 0.3, the bulk modulus of the solid 
grain Kgs=36 GPa, the bulk modulus of fluid Kf =2 GPa, 
the mass density of the solid grain ρs=2.65×103 kg/m3, 
the mass density of fluid ρf = 1.0 ×103 kg/m3. The corre-
sponding parameters are taken: λ*=1.0, M*=1.64, 
ρ*=0.46, m*=3.35, α=0.28. The material parameters of 
saturated poroelastic medium inside the valley are listed 
in Table 1 for different porosities (λ*=λ/μ, M*=M/μ, 
ρ*=ρf/ρ, m*=m/ρ). It should be noted that the bulk 
modulus of the solid grain Kgv=9 GPa, the critical bulk 
modulus of the solid frame Kcr=50 MPa, and the critical 
porosity ncr=0.36. The linear hysteretic damping ratio 
ζ=0.001 is used for the following study.  

Figures 4 to 6 illustrate the horizontal (|Ux|/|AP|) and 
vertical (|Uy|/|AP|) surface displacement amplitudes near 

Table 1 Properties of poroelastic medium inside the valley for 
different porosities 

nv λ* M* ρ* m* α 

0.30 1.00 5.18 0.46 3.35 0.83 
0.34 1.00 12.87 0.48 2.77 0.94 
0.36 1.00 133.1 0.49 2.55 0.99 

Note: nv is porosity, ρf is mass density of the pore fluid, λ and μ are Lame 
constants of the bulk material, ρ is density, M is a Biot’s parameter describ-
ing compressibility of the two-phase material, and m is a density-like pa-
rameter depending on ρf and the geometry of the pores; λ*=λ/μ, M*=M/μ, 
ρ*=ρf/ρ, m*=m/ρ. 

Figure 4 Surface displacement amplitudes of dry 
poroelastic, drained poroelastic, and undrained poro- 
elastic half-spaces (η =0.5, ns=0.3, nv=0.3). 

Figure 5 Surface displacement amplitudes of dry 
poroelastic, drained poroelastic, and undrained poro- 
elastic half-spaces (η =1.0, ns=0.3, nv=0.3). 
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Figure 6 Surface displacement amplitudes of dry 
poroelastic, drained poroelastic, and undrained poroe-
lastic half-spaces (η=2.0, ns=0.3, nv=0.3). 

the valley in a dry poroelastic half-space, drained 
poroelastic half-space and undrained poroelastic 
half-space, respectively, for porosity ns=0.3 and nv=0.3, 
dimensionless incident frequency η=0.5, 1.0, and 2.0, 
and incident angle θα1=0°, 30°, 60° and 85°, respectively. 
The surface displacement amplitudes are normalized by 
the displacement amplitude of the incident P wave. It is 
shown that the surface displacement amplitudes of the 
dry case are significantly different from those of the 
saturated (either drained or undrained) cases, and the 
drainage condition has large effect on the surface dis-
placement amplitude; the displacement amplitudes of 
the dry case are usually larger than that of the undrained 
case, and the displacement amplitudes of the undrained 
case are usually larger than that of the drained case. 
From these figures phase shift can also be easily ob-
served between the dry case and the saturated cases, as 

well as the slightly longer resultant wavelengths for the 
undrained case than those for the drained case and the 
longer resultant wavelengths for the drained case than 
those for the dry case. 

Figures 7 illustrates the horizontal and vertical sur-
face displacement amplitudes near the valley under dif-
ferent drainage condition on interface S (the flat ground 
surface is assumed to be drained), for η =0.5, 1.0 and 2.0, 
and for k =0 (drained), 5, 10, 20, and ∞ (undrained), re-
spectively, in which, the case 0< k <∞ corresponds to the 
condition of partially drained. Other parameters are 
identical to the above examples. As shown in these fig-
ures, with the increase of the resistance coefficient, the 
displacement amplitudes gradually approach to that of 
the undrained case. From these results, it may be sug-
gested that k=5 may be approximately defined as 
semi-drained condition in this study. 

 

Figure 7 Surface displacement amplitude near the valley 
with variation of resistance coefficient k (ns=0.3, nv=0.3).  

Figure 8 illustrates the surface pore pressures along 
the interface between the valley and the half-space 
(undrained conditions at the interface and the ground 
surface), for porosity ns=0.3 and nv=0.3, Poisson’s ratio 
ν=0.25. The surface pore pressures are normalized by the 
stress intensity of the incident P wave. It can be seen from 
Figure 8 that large pore pressures occur along the inter-
face, and the pore pressures depend strongly on the in-
cident angle and the incident frequency. The pore pres-
sures are smooth along the interface for the lower inci-
dent frequency and become more complicated with the 



Earthq Sci (2010)23: 35−43 41 

increase of the incident frequency, which suggests that 
the higher-frequency waves more easily stimulate pore 
pressures of large amplitudes and of rapid oscillations. 

Figures 9 to 11 and Figures 12 to 14 illustrate the 
normalized horizontal and vertical displacement ampli-
tudes around the valley, for drained and undrained 
boundary conditions, respectively. The parameters are 
defined as follows: porosity ns=0.3 and nv=0.3, 0.34 and 
0.36, Poisson’s ratio ν=0.25, dimensionless incident fre-
quency η =0.5, 1.0 and 2.0, and incident angle θα1=0°, 30°, 
60° and 85°, respectively. It can be seen from these fig-
ures that the porosity of the valley has significant effect 
on the surface displacement amplitudes both for the 
drained and undrained cases. As the increase of the  

 

Figure 8 Pore pressure around the interface under different 
incident angles for undrained boundary (ns=0.3, nv=0.3). 

 

Figure 9 Surface displacement amplitude for different 
porosities for drained boundary (η =0.5, ns=0.3). 

 

 

Figure 10 Surface displacement amplitude for different 
porosities for drained boundary (η =1.0, ns=0.3). 

 

Figure 11 Surface displacement amplitude for different 
porosities for drained boundary (η =2.0, ns=0.3). 
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Figure 12 Surface displacement amplitude for different 
porosities for undrained boundary (η =0.5, ns=0.3). 

porosity of the valley, the surface displacement ampli-
tudes increase and the surface displacement amplitude 
gradually become complicated with rapid oscillation, 
especially for the case of critical porosity and for higher 

incident frequency. 

6 Conclusions 
Based on the Green’s functions of line source in 

poroelastic half-space, the diffraction of plane P waves 
around an alluvial valley is solved by the indirect 
boundary integration equation method in this paper. The 
nature of diffraction of plane P waves around an alluvial 
valley was investigated, and the effects of drainage con-
dition, porosity, incident frequency and incident angle 
on the diffraction of waves were studied in detail. Some 
conclusions are obtained. 

Surface displacement amplitudes of the dry case 
are significantly different from those of the saturated 
(either drained or undrained) cases, and the drainage 
condition has large effect on the surface displacement 
amplitude; the displacement amplitudes of the dry case 
are usually larger than that of the undrained case, and 
the displacement amplitudes of the undrained case are 
usually larger than that of the drained case. Phase shift 
can be easily observed between the dry case and the 
saturated cases, as well as the slightly longer resultant 
wavelengths for the undrained case than those for the 
drained case and the longer resultant wavelengths for  

Figure 13 Surface displacement amplitude for different 
porosities for undrained boundary (η =1.0, ns=0.3). 

Figure 14 Surface displacement amplitude for different 
porosities for undrained boundary (η =2.0, ns=0.3). 
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the drained case than those for the dry case. Porosity of 
the valley has significant effect on the surface displace-
ment amplitudes both for the drained and undrained 
cases. As the increase of the porosity of the valley, the 
surface displacement amplitudes increase and the sur-
face displacement amplitude gradually become compli-
cated with rapid oscillation. 

It should be noted that the numerical examples are 
implemented for a semi-circular alluvial valley. However, 
this method can be used for alluvial valley of arbitrary 
shape. Moreover, it is convenient for this method to be 
used for the case of layered half-space with the corre-
sponding dynamic Green’s function. 
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