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Abstract
LetG be a finite group and N a normal subgroup ofG.We prove that the knowledge of
the sizes of the conjugacy classes ofG that are contained in N and of theirmultiplicities
provides information of N in relation to the structure of G. Among other results, we
obtain a criterion to determinewhether a Sylow p-subgroupof N lies in the hypercentre
of G for a fixed prime p, and therefore, whether the whole subgroup N is hypercentral
in G.
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1 Introduction

It is well known that the set of conjugacy class sizes of a finite group may provide
structural information of it. There exist multiple relevant results that endorse it, for
instance, Itô’s theorem about the nilpotency of groups having exactly two class sizes.
The reader is referred to [3] for a good survey on this widely studied research topic.
But the knowledge of only the class sizes of a group may result quite restrictive to
get to know certain properties of it. In fact, the order of the group is unbounded, and
its nilpotency or solvability cannot be determined either ([4] and [10], respectively).
Nevertheless, when the multiplicities of the class sizes are provided as well, it seems
that further information of the group could be obtained. Indeed, a reference work by
Cossey, Hawkes and Mann [5] establishes that nilpotency can be read off from the
knowledge of the class sizes and their multiplicities, however, recognising solvability
and supersolvability of a group still continue to be open problems.
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Let G be a finite group and N � G. Instead of looking into all conjugacy classes
of G, we restrict ourselves to the conjugacy classes of G contained in N , which are
called G-classes of N . There also exist research works (see [1] or [2] for instance)
showing that a limited set of G-class sizes of N may exert a strong influence on the
structure of N . Our aim in this paper is to investigate which properties of N can be
extracted from the G-class sizes together with their multiplicities. For this purpose,
inspired by the class size frequency function introduced in [5], we define the G-class
size frequency function of N , wG

N : N −→ N, as follows:

wG
N (n) = 1

n
|{g ∈ N : |gG | = n}|,

that is, for every n ∈ N, wG
N (n) is the number of G-classes contained in N that have

cardinality n. This function trivially provides arithmetical properties of N ; its order
and hence, the order of its Sylow subgroups, as well as the number of elements of N
that are central in G. No information of G, whenever N < G, seems to be able to be
recovered. Even though the G-class sizes and their multiplicities may involve primes
that do not divide the order of N , we show, however, that the G-class size frequency
function of N can still provide properties of N with regard to its immersion in G. Our
first result is

Theorem A Let G be a finite group and N a normal subgroup of G. Then the G-class
sizes of N and their multiplicities determine whether N is hypercentral in G.

Byusing properties of the hypercentre of a group, TheoremAyields to the following
corollary, which shows how the G-class size frequency function of a normal subgroup
N gives information about the external behaviour of the prime-power order elements
of N with respect to G.

Corollary B Let G be a finite group, N a normal subgroup and p a prime. Then the
G-class sizes of N and their multiplicities determine whether all p-elements of N
belong to CN (Op(G)).

Inspired by [9], we obtain the next result relative to commutativity in G of certain
prime-power order elements of N .

Theorem C Suppose that G is a finite group and N is a normal subgroup of G. Then
the G-class sizes of N and their multiplicities determine whether all elements of N
lying in the centre of some Sylow subgroup of G belong to Z(G).

We will show by an example that the G-class size frequency function of a normal
subgroup does not detect whether such subgroup is abelian, nor the derived length
when the normal subgroup is solvable or the nilpotency class when it is nilpotent.
We have been unable to decide, however, whether nilpotency can be recognised. Of
course, determining solvability or supersolvability, as happens with class sizes and
their multiplicities in a group, are likewise open problems. We encourage the reader
to continue with this research.
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2 Notation and preliminaries

Let G be a finite group and N a normal subgroup. For our convenience, if π is a set
of primes, we will write SG

π (N ) to denote the subset of elements of N whose G-class
has cardinality a π -number. The cardinality of this set is easily computed from the
G-class size frequency function of N , wG

N , defined in the Introduction, by the formula

|SG
π (N )| =

∑

nπ ′=1

wG
N (n) · n,

where nπ ′ denotes the π ′-part of n ∈ N. We will specially focus on the cases π =
{p} and π = {p}′ with p prime, and will write SG

p (N ) and SG
p′(N ) to denote the

corresponding sets.
We recall the definition of the hypercentre of a group [8, p. 7, 8]. Let G be a finite

group and 1 ≤ Z1(G) ≤ Z2(G) ≤ . . . be a series of subgroups of G, where Z1(G) is
the centre of G and Zi+1(G) for i ≥ 1 is defined by Zi+1(G)/Zi (G) = Z(G/Zi (G)).
Then the hypercentre of G, Z∞(G), is the last term of this series, and is nilpotent and
characteristic in G. A group G is nilpotent if and only if G = Z∞(G).

Before giving the proofs of our results, we need to state and develop several basic
lemmas about hypercentres and normal subgroups. The first property is renowned and
the second, which originally appeared in a slightly modified form in [11, Lemma 2],
is a consequence of it, which is often more convenient to apply.

Lemma 2.1 (p. 739, [7]) Let G be a finite group. A normal p-subgroup N of G lies
in Z∞(G) if and only if G/CG(N ) is a p-group.

Lemma 2.2 (Lemma 2, [5]) A p-element x of a finite group G lies in Z∞(G) if and
only if x commutes with each p′-element of G.

It is well known that the primes dividing |Z∞(G)| are exactly those dividing |Z(G)|.
The same occurs when one intersects with any normal subgroup of G.

Lemma 2.3 Let G be a finite group and N a normal subgroup of G. If a prime p
divides |N ∩ Z∞(G)|, then p divides |Z(G) ∩ N |.
Proof Suppose that p divides |N ∩ Z∞(G)| and take P0 a Sylow p-subgroup of
N ∩Z∞(G). Since N ∩Z∞(G) is nilpotent and normal in G, we have P0 �G. Now,
if P is a Sylow p-subgroup of G, it is clear that P0 ≤ P , and hence P0 ∩ Z(P) 	= 1.
By applying Lemma (2.1) to P0, we get G = PCG(P0) and this implies that 1 	=
P0 ∩Z(P) ≤ Z(G). Since we also have P0 ∩Z(P) ≤ N , we conclude that p divides
|N ∩ Z(G)|. 
�

3 Proofs

We are ready to prove our results. We remark that our proof of Theorem A, which
we state again in a more convenient form, differs from that originally appeared in [5]
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to demonstrate that the nilpotency of a group can be recognised from the class size
frequency function. We have adapted instead the ideas of [8, Theorem 23.5].

Theorem 3.1 Let G be a finite group and N a normal subgroup of G. Then the G-class
sizes of N and their multiplicities determine whether N is hypercentral in G. Precisely,
if p is a prime number, then

(a) |SG
p (N )|p = |N ∩ Z∞(G)|p, where Z∞(G) is the hypercentre of G.

(b) a Sylow p-subgroup of N is hypercentral in G if and only if |SG
p (N )|p = |N |p.

Proof We proceed by induction on |N | to prove (a). By definition of the set SG
p (N )

we have
|SG

p (N )| ≡ |N ∩ Z(G)| (mod p).

Suppose first that p does not divide |N ∩ Z∞(G)|, so certainly p does not divide
|N ∩ Z(G)| either. In this case the above congruence proves that |SG

p (N )| is a p′-
number. Hence |SG

p (N )|p = 1 = |N ∩ Z∞(G)|p, so (a) is proved.
Henceforth, we will assume that p divides |N ∩Z∞(G)|. By Lemma (2.3), we have

that p divides |N ∩ Z(G)|, so we can take M ≤ N ∩ Z(G) such that |M | = p. We
consider G = G/M with the normal subgroup N = N/M . In the following we will
prove

|SG
p (N )| · p = |SG

p (N )| (3.1)

For every g ∈ N , we have

CG(g)/M ≤ CG(g) = U .

If u ∈ U , then we can write gu = g f (u), with f (u) = [g, u] ∈ M . As M is central
in G, then

f (uv) = [g, uv] = [g, v][g, u]v = [g, u][g, v] = f (u) f (v),

for all v ∈ U . Thus, f is a group homomorphism from U to M , and its kernel is
exactly CG(g). Consequently, |U/CG(g)| divides |M | = p.

Take now g ∈ SG
p (N ), that is, take g ∈ N satisfying |gG | = pi for some i ∈ N.

By the above paragraph we know that either U = CG(g) or |U | = p|CG(g)|. In the
former case we have

|gG | = |G : CG(g)| = |G : CG(g)| = pi ,

and in the latter,

|gG | = |G : CG(g)| = p|G : U | = p|G : CG(g)| = pi+1.

We consider the set of G-classes of N of cardinality pi , whose number is given
by the G-class frequency function, wG

N
(pi ), and the correspondence, by taking bars,
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between G-classes of N and G-classes of N . Next we see that every G-class of N ,
with regard to pre-images, gives rise to G-classes of N in two different ways.

Write M = 〈z〉 (with z of order p) and let g ∈ SG
p (N ). We have seen above that

either |gG | = |gG | or p|gG | = |gG |. In the first case, CG(g) = CG(g), and this
easily leads to that gG , (gz)G , . . ., (gz p−1)G are p distinct G-classes of N that are
pre-images of gG , with the same cardinality as gG . If p|gG | = |gG |, then the inverse
image of gG is exactly the G-class of N , gG , with cardinality p|gG |.

Accordingly, for every i ≥ 0, we can decompose wG
N
(pi ) into two summands

wG
N
(pi ) = w1(p

i ) + w2(p
i ),

wherew1(pi ) andw2(pi ) denote the number ofG-classes of N corresponding to each
one of both types of classes. Therefore

|SG
p (N )| =

∞∑

i=1

piw1(p
i−1) +

∞∑

i=0

pi pw2(p
i )

=
∞∑

i=1

piw1(p
i−1) +

∞∑

i=1

piw2(p
i−1)

= p

( ∞∑

i=1

(pi−1w1(p
i−1) + pi−1w2(p

i−1)

)

= p
∞∑

i=1

pi−1wG
N
(pi−1) = p|SG

p (N )|,

so Eq. (3.1) is proved.
As M ≤ Z(G), then the definition of the hypercentre implies that Z∞(G) =

Z∞(G). Hence Z∞(G) ∩ N = (Z∞(G) ∩ N )/M . Then, we utilize the inductive
hypothesis and Eq. (3.1) to get

|Z∞(G) ∩ N |p = p|Z∞(G) ∩ N |p = p|SG
p (N )|p = |SG

p (N )|p,

and the proof of (a) is finished.
For proving (b), notice first that |SG

p (N )|p = |N |p implies by (a) that |Z∞(G) ∩
N |p = |N |p. Then, it trivially follows that a Sylow p-subgroup of N is hypercentral
in G. Conversely, if a Sylow p-subgroup P of N lies in Z∞(G), then

|P| = |N |p ≤ |Z∞(G) ∩ N |p,

so |N |p = |Z∞(G)∩ N |p. By applying (a) we obtain the equality |SG
p (N )|p = |N |p,

so (b) is proved.
Now, N is hypercentral inG if andonly if everySylowsubgroupof N is hypercentral

in G, and this can be established by (b) because |SG
p (N )|p and |N |p are given by the
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G-class size frequency function of N . Therefore, the first assertion of the theorem is
proved. 
�
Remark. Observe that |N ∩ Z(G)| = wG

N (1) and likewise, by Theorem 3.1(a), |N ∩
Z∞(G)| can be retrieved from the G-class frequency function of N . We stress that,
however, it is not possible in general to compute the intermediate terms |N ∩ Zi (G)|
when i > 1. This follows straightforwardly from [5, Example 1]. Nonetheless, we
will give an easier example at the end of this section. On the other hand, we note that
Theorem 3.1(a) shows that a Sylow p-subgroup of N is hypercentral in G if and only
if |SG

p (N )|p is as large as possible.
Proof of Corollary B ByTheorem3.1(b), we know that theG-class size frequency func-
tion of N determines whether the Sylow p-subgroups of N lie inZ∞(G). In fact, when
this occurs then N has only one Sylow p-subgroup. Thus, by Lemma (2.2), this func-
tion detectswhether all p-elements of N centralize each p′-element ofG. SinceOp(G)

is generated by all p′-elements of G, the result follows. 
�
We state again Theorem C in a more convenient manner.

Theorem 3.2 Suppose that G is a finite group and N is a normal subgroup of G. Then
the G-class sizes of N and their multiplicities determine whether all elements of N
lying in the centre of some Sylow subgroup of G belong to Z(G). More precisely, if p
is a prime number, then

(a) |N ∩ Z(G)| divides |SG
p′(N )|.

(b) |CN (Op′
(G))| divides |SG

p′(N )|.
(c) |SG

p′(N )|p = |N ∩Z(G)|p if and only if Z(P)∩ N ≤ Z(G), where P is any Sylow
p-subgroup of G.

Proof To prove (a), we notice that an element x ∈ N has G-class size a p′-number if
and only if CG(x) contains a Sylow p-subgroup of G. Thus,

SG
p′(N ) =

⋃

P∈Sylp(G)

CN (P).

Since N ∩ Z(G) ⊆ CN (P) for every P ∈ Sylp(G), we conclude that SG
p′(N ) is a

union of cosets of N ∩ Z(G), whence we deduce (a).
As Op′

(G) coincides with the subgroup of G generated by all Sylow p-subgroups
of G, we have

CN (Op′
(G)) =

⋂

P∈Sylp(G)

CN (P) ⊆ SG
p′(N ).

It follows that SG
p′(N ) is a union of cosets of CN (Op′

(G)), and this proves (b).
For proving (c), we fix a Sylow p-subgroup P of G and put Z := P ∩ N ∩ Z(G),

which is a Sylow p-subgroup of N ∩ Z(G) and normal in G. Next, we claim that
if n ∈ SG

p′(N ) then CG/Z (nZ) = CG(n)/Z . Set U/Z := CG/Z (nZ). It is clear
that CG(n) ≤ U . Furthermore, if u ∈ U , then we can write nu = n f (u) for some
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f (u) ∈ Z . Since Z ≤ Z(G), identically as in the proof of Theorem 3.1, it follows
that f is a group homomorphism from U to Z , whose kernel is exactly CG(n). As a
consequence, U/CG(n) is isomorphic to a subgroup of Z . However, Z is a p-group
whereas |U/CG(n)| divides |nG |, which is a p′-number. This forces U = CG(n), so
the claim is proved.

We observe now that SG
p′(N ) is also a union of cosets of Z and consider the set S̄

of such cosets and the group P/Z acting by conjugation on S̄. By using the claim it
easily follows that a coset nZ ∈ S̄ is fixed by P/Z if and only if n is fixed by P , or
equivalently, nZ ∈ CN (P)/Z . Now, by applying the orbit formula to this action we
get

|S̄| = |SG
p′(N )|/|Z | ≡ |CN (P)|/|Z | (mod p).

On the other hand, since |Z | = |N ∩ Z(G)|p we have that the equality |SG
p′(N )|p =

|Z | = |N ∩ Z(G)|p holds if and only if |SG
p′(N )|/|Z | is a p′-number, and this is

equivalent to |CN (P)|/|Z | being a p′-number. Now, as Z(P) is a Sylow p-subgroup
of CG(P), then Z(P) ∩ N is a Sylow p-subgroup of CN (P). Thus, we deduce that
|CN (P)|/|Z | is a p′-number if and only if Z = Z(P) ∩ N . Now it is easily seen that
this condition is equivalent to the fact that Z(P)∩N ≤ Z(G), and therefore, the proof
of (c) is finished.

Now, since for every prime p, the numbers |SG
p′(N )|p and |N∩Z(G)|p are provided

by the G-class size frequency function of N , the first assertion of the theorem follows.

�

Example An easy example illustrates that, as indicated in the Introduction, the fact that
a normal subgroup is abelian cannot be read off from the set of itsG-class sizes and their
multiplicities. Indeed the same groupmay possess two normal subgroups showing this.
Let D16 = 〈x, y|x8 = y2 = 1, x y = x−1〉 and D8 be the dihedral groups of order 16
and 8 respectively. Set G = D16 × D8, or equivalently G = SmallGroup(128, 2011)
in the library of small groups within GAP [6], and let us consider its normal subgroups
〈x〉 and D8. The set of G-class sizes of both subgroups, counting multiplicities, is
{1, 1, 2, 2, 2}, whilst 〈x〉 is abelian and D8 is not. This example also serves to show, as
pointed out in the Remark, that from the G-class size frequency function of a normal
subgroup N we cannot compute the sizes of all the terms N ∩ Zi (G) for every i .
Indeed, Z2(G) = 〈x2〉 × D8, so |〈x〉 ∩ Z2(G)| = 4 and |D8 ∩ Z2(G)| = 8.

In view of the above example, we can affirm that the derived length of a solvable
normal subgroup as well as the nilpotency class of a nilpotent one are not determined
from the G-class size frequency function.
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