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Abstract

The definitions of temporal instability and of spatial instability in a flow system are
comparatively surveyed. The simple model of one-dimensional Burgers’ flow is taken
as the scenario where such different conceptions of instability are described. The tem-
poral analysis of instability stems from Lyapunov’s theory, while the spatial analysis
of instability interchanges time and space in defining the evolution variable. Thus, the
growth rate parameter for temporally unstable perturbations of a basic flow state is to
be replaced by a spatial growth rate when a coordinate assumes the role of evolution
variable. Finally, the idea of spatial instability is applied to a Rayleigh-Bénard system
given by a fluid-saturated horizontal porous layer with an anisotropic permeability
and impermeable boundaries kept at different uniform temperatures.

Keywords Temporal instability - Spatial instability - Flow system - Porous medium -
Anisotropy
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1 Introduction

The instability for a stationary solution of the local balance equations which govern
the fluid flow is a cornerstone topic of the research in fluid mechanics over the last
century. Its intrinsic importance is due to the close connection with the analysis of
transitional flow and, ultimately, with turbulence. There is also a fundamental area of
research where fluid mechanics is interrelated to heat transfer and convection. Within
this area, the instability of a flow system pinpoints the conditions for the onset of
convective cellular patterns as those identified in Bénard experiments [1] and modelled
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by Lord Rayleigh [2]. The typical setup, well-known as the Rayleigh-Bénard system,
is a horizontal layer of fluid or fluid-saturated porous medium where the horizontal
boundaries are kept isothermal with heating from below [3-6].

The classical strategy for the flow stability analysis is an implementation of
Lyapunov’s idea of instability for a mechanical system. In fact, as is well-known,
Lyapunov’s concept of stability or instability for an equilibrium state of a mechanical
system is based on the analysis of the time evolution undergone by the system as a
consequence of a slight initial perturbation. The instability occurs when the perturba-
tion of the equilibrium state is amplified in the time evolution, while stability is found
when the initial perturbation is damped at later times and eventually dies off. In fluid
mechanics, such an approach is termed temporal analysis of the flow instability as
opposed to the spatial analysis. The concept behind the spatial instability analysis is
monitoring the evolution in space, typically in the streamwise direction, of a persis-
tent perturbation signal localised at a given spatial position along the flow direction.
Stated in these terms, the spatial instability interchanges the roles of space and time
relatively to the temporal instability. The practical interest of the spatial instability
analysis stems from the aerodynamics of jets in the pioneering papers by Betchov and
Criminale Jr [7] and by Keller et al. [8]. In this field, the more recent papers by Alves
et al. [9] and by Afzaal et al. [10] made significant contributions. An outlook into
the research carried out in the area of spatially-developing instability can be found in
textbooks such as Schmid and Henningson [11].

The aim of this paper is to survey the comparison between the temporal instability
and the spatial instability by providing a simple example where such concepts are
exploited: the one-dimensional Burgers’ equation with a driving linear force. The
framework of spatial instability is applied to a real-world system made of a horizontal
fluid-saturated porous layer with an anisotropic permeability bounded by impermeable
horizontal walls kept at different uniform temperatures. This Rayleigh-Bénard system
is studied along the steps illustrated in previous papers [12, 13] where the special case
of an isotropic saturated porous layer has been analysed.

2 From the temporal analysis to the spatial analysis

The classical approach to the study of the linear instability in fluid mechanics, viz.
the instability to small-amplitude perturbations of a given flow, consists in a direct
application of Lyapunov’s idea: testing the instability of an equilibrium state, i.e., of
a stationary solution of the governing equations of fluid flow means slightly altering
the initial condition at time + = 0 and monitoring how this change modifies the
system evolution at ¢ > 0. In this framework, instability means a gradually amplifying
discrepancy from the original stationary solution as time evolves. Furthermore, in this
well-established approach, a perturbation is a disturbance of the initial condition at
t = 0 with the boundary conditions for the system left unchanged.

Another approach to instability in fluid mechanics, the spatial analysis, marks a
sharp difference with respect to the temporal analysis of time-evolving perturbations.
In fact, the spatial analysis does not rely on Lyapunov’s idea of instability as a way
to test the altered time evolution of a system as a consequence of a small change in
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Linear stability analysis
of a flow system

Time-evolving perturbations:
e modal analysis — Convective Instability
e wavepacket analysis — Absolute Instability

Space-evolving perturbations:
e modal analysis — Spatial Instability

Fig. 1 The temporal analysis of instability versus the spatial analysis as a comparison between the effects
of a time-evolving perturbation and the effects of a space-evolving perturbation (color figure online)

the initial condition. If we imagine a flow system with a streamwise coordinate x, the
spatial analysis is meant to test the development along the x direction of a perturbed
boundary, or inlet, condition at x = 0. Then, the aim of the spatial analysis of instability
is the determination of the effects produced downstream or upstream of a time-periodic
perturbation signal, viz. a Fourier mode, set at a given position, conventionally at
x = 0. A schematic illustration of the comparison between the analysis of time-
evolving perturbations and the analysis of space-evolving perturbations is provided in
Fig. 1.

There are two ways, traditionally employed, for the implementation of the temporal
stability analysis and, hence, of the study of time-evolving perturbations: the modal
analysis and the wavepacket analysis. The difference relies in the specification of the
initial condition set at t+ = 0. The modal analysis arises from an initial perturbation
expressed as a plane wave with wavenumber k along the x direction, namely a single
Fourier mode. On the other hand, the wavepacket analysis is developed by assuming an
initial perturbation given by a wavepacket, namely an envelope of infinite plane waves
with all possible wavenumbers or, stated differently, a Fourier integral. A scheme of
the two approaches to the temporal analysis is shown in Fig. 2. We mention that the
wavepacket analysis leads to the definition of a parametric regime called absolute
instability diverse from the convective instability defined via the modal analysis [14].

A sketch illustrating the spatial approach to instability and, hence, the study of
space-evolving perturbations is displayed in Fig. 3. This figure shows the key point of
the spatial instability where the response of the flow system is monitored downstream
or upstream of a persistent time-periodic perturbation set up at a given spatial position,
x = 0. The time-periodic signal at x = 0 is, in fact, a Fourier mode having an angular
frequency w. In Fig. 3, the already mentioned departure of the spatial instability concept
from Lyapunov’s idea of instability is also highlighted.
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Time-evolving perturbations:
e modal analysis — Convective Instability
e wavepacket analysis — Absolute Instability
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Fig.2 The temporal analysis of instability through its two-fold implementation: the convective instability
and the absolute instability (color figure online)
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Fig.3 The spatial analysis of instability (color figure online)
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Hereafter, we will focus on the comparison between the temporal analysis and the
spatial analysis of instability in their modal formulations. In other terms, the focus will
be on convective instability versus spatial instability. On the other hand, no further
discussion of the wavepacket dynamics and the absolute instability will be provided
here as this topic has been extensively presented in a recent book [14].

3 One-dimensional Burgers’ flow

Let us consider a flow system whose dynamics is governed by a one-dimensional
Burgers’ equation with a driving linear force, namely

ow + w il +y (W=—a), (x,t)eR? 1)
- = —a), (x, ;
ot ox  ox2 'V

where y and a are two real constants with a # 0. The assumption a > 0 is not
restrictive as one can always recover the behaviour for a negative a by applying to
Eq. (1) the transformation W — —W with x — —x. Hence, in the following, we
will implicitly consider a > 0. Although Burgers’ equation is a partial differential
equation originally formulated as a toy model for developing turbulence [15], we will
not mind about its physical meaning and just use it as an arena for the implementation
of the temporal and spatial stability analysis.
Equation (1) admits a simple constant solution,

Wx,t) =a, 2)

whose linear instability can be investigated by employing either the temporal analysis
or the spatial analysis. In both cases, the starting point is the definition of a small-
amplitude perturbation of the equilibrium solution given by Eq. (2), namely

Wi(x,t) =a+¢cw(x,t), 3)

where ¢ is a perturbation amplitude parameter. Hence, one can substitute Eq. (3)
into Eq. (1) and neglect terms 0(82), so that we obtain

Jw ow 92w n @
—ta—=— w.
ot Yax T a2 7Y

3.1 Temporal analysis

One may employ an x-based Fourier transform to solve Eq. (4), namely

o0
Wk, 1) = — wx, e *Fdx, wix, 1) =

T w(k, e  dk, (5)
—0o0

7=l
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where k has the meaning of a wavenumber. Due to the properties of the Fourier
transform for derivatives with respect to x, Egs. (4) and (5) yield

v
3—12’ — Ay, for A(k) = y — k* — ika. (6)

Here, the polynomial expression of A(k) is the stability dispersion relation. Fur-
thermore, from Eq. (6), we determine the Fourier transform of the perturbation w,
namely

w(k, 1) = w(k, 0)e*®r. @)

The analysis of convective instability is modal, which means that the growth or
decay in time of the perturbation is assessed for the single Fourier mode which is peri-
odic in the x coordinate with wavelength 25 /k, as sketched in Fig. 2. The exponential
growth or decay of w(k, t) is evidently regulated by the real part of A(k), so that one
predicts convective instability, on the basis of Eq. (6), for

y > k% )

This condition is evidently independent of the constant a, while this constant deter-
mines the angular frequency w of the perturbation wave. In fact, by substituting the
expression of A(k) given by Eq. (6) into Eq. (7), each single Fourier mode in Eq. (5)
contains the exponential with imaginary argument

=D for @ = ka.

Deciding whether the Fourier integral expressing w(x, t) unboundedly grows for large
times ¢, at a fixed position x, is a different matter which does rely on the steepest-
descent approximation of the integral [14]. The answer to this question leads to the
condition of absolute instability. We refer the reader to Barletta [14] for details on this
point. We just mention that satisfying Eq. (8) means having an unbounded growth of
some Fourier modes, i.e. those with |k| < ,/y, but this does not imply in general an
unbounded growth at large times of the Fourier integral, Eq. (5), expressing w(x, f).

3.2 Spatial analysis

One can use a ¢t-based Fourier transform to solve Eq. (4), namely

W(x, w) = w(x, Ne'dr, wix, 1) = W(x, we " dw. (9)

1 > 1 *
On account of the properties of the Fourier transform for the derivative with respect
to t, Egs. (4) and (9) yield

i o +(y+io)yw=0 (10)
— —a— iw)w =0.
dx2 dx Y
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The solution of the linear ordinary differential equation at constant coefficients,
Eq. (10), is given by

W(x, ) = cp (@)™ D 4 c_(w)e @, (1D

where ¢4 (w) and c_ (w) are integration constants determined by the inlet conditions
prescribed at x = 0, while 14 (w) and n_ (w) are the roots of the quadratic equation

n”?—an+y+iw=0. (12)
Let us denote with s and k the real and the imaginary parts of 1, respectively,
n=s—+ik. (13)

Thus, each Fourier mode in the integral representation of w(x, ), Eq. (9), contains
the product of two exponential factors

esxei(kx—wl) . (14)

In fact, the product given by Eq. (14) involves an amplifying/damping factor, e**.
Along the positive x direction, we get amplification when s > 0 and damping when
s < 0. The other factor in the product given by Eq. (14) is the same as that encountered
on carrying out the temporal analysis. It defines a travelling wave along the x direction
with phase velocity w/k. Hence, the sign of w/k serves to determine whether the wave
travels in the positive (w/k > 0) or in the negative (w/k < 0) direction of the x axis.
The difference with respect to the convective instability is apparent. In the temporal
framework, we have a one way evolution along the positive direction of 7, due to the
causality principle. In the spatial framework, the evolution can be in the positive x
direction or in the negative x direction. Therefore, to assess the spatial instability of
a Fourier mode, the sign of the spatial growth rate s is not sufficient, as we also need
to know the direction of the x axis where the wave is heading and, hence, the sign of
w/k. One can define the spatial instability by checking if a given Fourier mode grows
or decays in the direction of the x axis where this wave is travelling.

Definition 1 A Fourier mode with angular frequency w and k # 0 is spatially unstable
when

- >0 15)

where s and k are real solutions of

2_ 12 _ _
{s k*—as+y =0 (16)

2ks —ak+w =0

It must be noted that Eq. (16) is obtained by substituting Eq. (13) into Eq. (12).
Moreover, for every w, there are two pairs (s, k) satisfying Eq. (16) as there are two
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complex roots of Eq. (12), i.e. n4+(w) and n_ (w). We also note that Egs. (15) and (16)
are left invariant by the transformation

(w,s,k) = (—w, s, —k). (17

Hence, the assumption @ > 0 is not restrictive as we can always use Eq. (17) to
extend our considerations to negative angular frequencies. Thus, we can reformulate
the condition for spatial instability expressed by Definition 1. In fact, one may focus on
the case @ > 0 by recognising, from Eq. (13), that Im(n?) = 2sk, where Im denotes
the imaginary part of a complex number.

Remark 1 A Fourier mode with angular frequency @ > 0 is spatially unstable when
Im(»*) > 0, (18)

where 7 is a complex root of Eq. (12).

Figure 4 shows that only the n4 root of Eq. (12) may satisfy the condition for
spatial instability given by Eq. (18). Indeed, zeros of Im(n?) = 2sk are possible for
k = 0 with s # 0, which yields @ = 0 on account of Eq. (16), or for s = 0 with
k # 0. By employing Eq. (16), one may infer that the latter case leads to = ak
and w? = ya?®. Such values of w are denoted with black dots in Fig. 4. Frames (b) in
Fig. 4 just evidence the small-w and small-y parametric region, whereas frames (a)
are relative to a significantly larger parametric region.

An important finding is that s = 0 defines the subset of the spatial Fourier modes
involved in the integral transform given by Eq. (9) that is included in the set of temporal
Fourier modes discussed in Sect.3.1. More precisely, the spatial modes with s = 0
coincide with the neutrally stable temporal modes, i.e. those modes having both a zero
spatial growth rate and a zero temporal growth rate.

Equation (16) is the starting point for determining the parametric condition for the
onset of the spatial instability.

Theorem 1 Spatially unstable modes with w > 0 can exist only if
y > —. (19)
Proof For the sake of brevity, we use the notation
r =Im(n?) = 2sk. (20)

Then, the second Eq. (16) yields

2
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Fig. 4 Burgers’ flow: Im(272)/a2 versus co/a2 for the roots n4+ and n— with different values of y/az: a
ranging from 0 to 100 in steps of 10; b ranging from 0 to 0.5 in steps of 0.05. Both in a and in b, the plot
colour continuously changes from cyan (y / a? = 0) to green. The black dots denote the zeros for w? = ya2
(color figure online)

Substitution into the first Eq. (16) leads to

. atr(r + 2w) + 4(r + w)*
N 4a?(r + w)?

(22)

For every given a and w > 0, the right hand side of Eq. (22) can be considered as
a function of r. Then, we can define

a4r(r +2w) +4(r + a))4

Y = 4a%(r 4+ w)?

, (23)
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whose derivative is given by

a*w? + 4 + w)*
2a%(r + w)3

Y'(r) = (24)

Thus, Eq. (24) allows one to conclude that Y/'(r) > O for every r > —w. As
a consequence, Y (r) is a monotonic increasing function of r for r > 0. Thus, on
account of Eqgs. (22) and (23), we conclude that

2
r>0 — y:Y(r)>Y(O)=—2. (25)
a

O

Theorem 1 reveals that, according to the linear analysis, the spatial instability region
in the (w, y) plane, for w > 0, is equivalent to the temporal instability region in the
(k, y) plane. In fact, the instability region lies in every case above the neutral stability
curve which is equivalently given by y = w?/a® or by y = k2, as a consequence of
the equality w = ak valid for s = 0. However, one must bear in mind that the temporal
instability and the spatial instability manifest themselves in different manners as, in
the former case, the perturbation modes grow exponentially in time and, in the latter
case, the perturbation modes grow exponentially in space along their direction of
propagation.

Frames (b) of Fig. 4 show that, when @ — 0, Im(n?) # 0 only if y > a?/4.
In particular, one has Im(n?) = +a(y — a?/4)V/? with a spatial growth rate s =
a/2. A comment on the possibility to satisfy Eq. (16) with k = 0, which yields
Im(n?) = 0, and w = 0, is definitely important. Indeed, this case identifies a type of
time-independent modes where the spatial growth rate s is a root of

sz—as+y=0. (26)

Real roots of Eq. (26) exist only for y < a®/4,

a+/a?—4y
s=—— (27)

With a positive y < a”/4,bothroots of Eq. (26) are positive. They yield perturbation
modes undergoing a purely exponential growth along the positive x direction. With a
negative y, Eq. (27) yields a positive and a negative s meaning a growing perturbation
mode along the positive x direction and a growing perturbation mode along the negative
x direction. The exponential growth in |x| of such time-independent modes defines a
growing departure from the basic equilibrium state as |x| increases. In this sense, the
spatial modes with k = 0 and @ = 0 can be classified as spatially unstable even if they
do not satisfy Eq. (18), whereas the left hand side of Eq. (15) is actually undefined.
If one accepts this conception of spatial instability, then spatially unstable modes
may exist in a parametric domain (y < 0) where temporal instability is not possible
according to a linear analysis.
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Fig.5 Fluid saturated porous layer: sketch of the coordinate system and boundary conditions (color figure
online)

4 Horizontal anisotropic porous layer

Let us consider a horizontal porous layer with thickness L and infinite horizontal width
saturated by a Newtonian fluid. We assume a two-dimensional flow field in the (x, y)
plane (see Fig. 5) with seepage velocity u = (u,, uy) and temperature 7. Heating is
supplied from below through impermeable and isothermal boundaries kept at different
uniform temperatures, 77 and 7.

The porous material has a uniform, but anisotropic, permeability with the
permeability tensor having principal axes along the x and y directions,

K, O
K=<O Ky). (28)

4.1 The governing equations

The momentum transfer is modelled according to Darcy’s law [3, 6, 16] and the
Boussinesq approximation is claimed in order to model the thermal buoyancy force
induced by the non-uniform temperature field. In a dimensionless formulation, the
system of local mass, momentum and energy balance equations is given by [3, 6, 16],

Ouy  Ouy
ax ay
aux — T% + Rﬂ —
ay ax dx

oT oT oT _ 9*T  9°T

o et . 29
o Tl Ty = a2 oy (29)

=0,

09

where the local momentum balance equation is written in its vorticity formula-
tion, so that the dependence on the pressure field is encompassed. Furthermore, the
permeability ratio T and the Rayleigh number R are defined as

Ky gB(Th — D)KL
T=—, R=——"—"—"".

30
K, va (30)
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Here, o, B and v are the average thermal diffusivity of the saturated porous medium,
the thermal expansion coefficient of the fluid and the kinematic viscosity of the fluid,
respectively. The gravitational acceleration g has a modulus g. Due to their definitions,
both parameters t and R are to be considered as positive.

In order to obtain Eq. (29), we denote with o the ratio between the heat capacity
of the saturated porous medium and that of the fluid, while the governing balance
equations are made dimensionless by employing the constants

o
L, —, —, T\—1, 31
2 1 2 (31)

to scale the coordinates, time, velocity and temperature, respectively. More precisely,
the dimensionless temperature is defined as the ratio between T — T» and the constant
T, — T>.

The dimensionless governing equation (29) can be reformulated by employing the
streamfunction W defined as

Uy = —, Uy =——. 32)

In fact, we have

2w rw aT

W-’-W-I—Ra:
AT oW AT AW aT 9T 9T
Bt Ay ax  axay  ax2 T ay2

T 0,

(33)

The boundary planes y = 0 and y = 1 are considered impermeable and isothermal,
namely

ow

— =0, T=1 for y=0,

ax

ow

— =0, T=0 for y=1. (34)
ox

4.2 Basic solution

A stationary solution of Eqgs. (33) and (34) describing the basic equilibrium state is
given by

W=0, T=1-y. 35)
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4.3 Linearised perturbation dynamics

We define the small-amplitude streamfunction and temperature perturbations of the
stationary solution given by Eq. (35) as

V(x,y,t) =¢e¥(x,y,t), T, y,t)=1—y+eb(x,y,1), (36)

where ¢ is the perturbation amplitude parameter. Linearisation is carried out by
substituting Eq. (36) into Egs. (33) and (34) and neglecting terms O(e?). Thus, we
can write
I*w N GRa\] LrY o
T—+ — — =0,
ax2z  9y? dx
90 dy 9% 9%0
— 4 — = T + T3
ot ax ax ay
oy

—— =0, 6=0 for y=0,1. (37)
ox

Fourier series in y can be employed, so that the solution of Eq. (37) is expressed as

Y(x,y, )=y ®(n x,0)sin(ary), 0(x.y. )=y O(n, x, 1)sin(nry). (38)

n=1 n=1

We can now rewrite Eq. (37) as

32 5 5 30
- - ®+R— =0,
' ox2 " + 0x
930 9D %O
— +— =— —n’7’e. (39)

4.4 Temporal analysis

We use the x-based Fourier transform defined by Eq. (5), so that Eq. (39) is transformed
into

(K*t +n’7n*)® — ikRO =0,
90 - .
5, Tike = —(k*> + n*7%)6. (40)
In particular, Eq. (40) yields

90
ot

+ (K2 +n? 2 KR =0 (41)
S SR ) o
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whose solution is

. . kR
— An k)t _ 2 2_2
@(n,k, t) = @(n,k,O)e n for )\.(n,k) = m —k*—n"m-. (42)

The convective instability arises when the real part of A(n, k) is positive, namely for

2 202y (k2 2.2
R>( r+nnk)2( +n71)‘ 43)

The absolute minimum of R for the onset of the convective instability is obtained
with the n = 1 modes and with the critical values [17-21]

k=ke= 7, R=R,=n*(1+ 1)~ (44)

The neutral stability curve in the (k, R) plane is the plot of the function of k defined
by the right hand side of Eq. (43) with n = 1. As such, it depends on the permeability
ratio t.

4.5 Spatial analysis

The alternative to the temporal analysis is the use of the 7-based Fourier transform
given by Eq. (9). By this method, Eq. (39) is transformed to

32 226 90
- d+R— =0,
t dx2 + dx
L 9d 3?26 .
—i0w® + — = — —n’7%0. (45)
dx 0x2

Equation (45) is a system of ordinary differential equations in the independent
variable x. Its solution can be expressed as

(n,w)x

A m@wﬂ(nwwf
®(n, x,w) = Z 72 —1[nj(n, w)?

@WLM=ZQWMWWW, (46)
j=1
where n;(n, w), with j = 1, ..., 4, coincides with a root n of the fourth-degree
equation
n*7? — ) (nP7? — n* —iw) + Ry> =0, (47)

while Cj(n, ) are coefficients to be determined on the basis of the conditions
prescribed at x = 0 for the perturbations i and 6.
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Fig. 6 Porous medium with t = 1: lm(nz) versus w for the roots n%_ and n2_ with different values of R
ranging from 0 to 50 in steps of 5 with the plot colour continuously changing from cyan (R = 0) to green
(color figure online)

The modal stability analysis can be scaled down to the case n = 1 by recognising
that the transformation defined by

n w R
-0, 5 oo, —2—>R, (48)
n n n
maps Eq. (47) into its n = 1 version, namely
(72— (x> = n? —iw) + Ry> = 0. (49)

Hence, our forthcoming discussion will rely on Eq. (49).

We note that Eq. (49) is endowed with the same invariance defined, for Burger’s
flow, by Eq. (17). This means that we can just focus on positive values of w, exactly
as for Burger’s flow.

Figures 6, 7 and 8 display plots of Im(?) versus e for the two roots of Eq. (49)
and several values of R. These figures are relative to different anisotropy ratios t,
with Fig. 6 describing the isotropy limiting case (r = 1). The isotropic medium is a
special case already investigated by Barletta [12]. Figure 7 is for r = 2/3, a case where
the porous medium is more permeable in the vertical direction than in the horizontal
direction. Figure 8 is for t = 3/2, i.e. the porous medium is more permeable in the
horizontal direction than in the vertical direction. In Figs. 6, 7 and 8, the cyan curves
denote the limiting case where R — 0. As it is easily gathered from Eq. (49), there
are two possible roots for R — 0: one is n> = 72/t leading to Im(n%) = 0, the
other root yields Im(5?) = —w. The former root is not acceptable as it would lead to
a vanishing denominator in Eq. (46). Then, the corresponding plot is reported just as
a reference case in Figs. 6, 7 and 8.

The most important information disclosed by Figs. 6, 7 and 8 is that, in every case,
spatially unstable modes exist for every R > 0. In fact, as pointed out in Remark 1,
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Fig.7 Porous medium with t = 2/3: Im(nz) versus w for the roots n%_ and 7)3 with different values of R
ranging from O to 50 in steps of 5 with the plot colour continuously changing from cyan (R = 0) to green
(color figure online)
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Fig.8 Porous medium with v = 3/2: Im(nz) versus w for the roots n%_ and 7)3 with different values of R
ranging from 0 to 50 in steps of 5 with the plot colour continuously changing from cyan (R = 0) to green
(color figure online)

spatially unstable modes are identified by the condition Im (%) > 0. Having in mind
Eqgs. (43) and (44), which provide a statement of the condition for temporal instability
and reveal that such a condition is allowed only when R > R. = 72(1 + /7)?,
Figs. 6, 7 and 8 show that one may have Im(nz) > O also for 0 < R < R.. We have
reached the conclusion that the spatial instability is not equivalent to the temporal
instability.

The analysis carried out so far revealed that every setup having R > 0, may display
modes satisfying the condition Im(nz) > 0 with w > 0 and, hence, the condition of
spatial instability is satisfied for every case with heating from below, no matter how
small is R. We also observed that R = 0 yields either Im(nz) =0or Im(nz) = —w
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Fig. 9 Porous medium with t = 1: Im(nz) versus w for the roots n%_ and n2_ with different values of R
ranging from 0 to —50 in steps of —5 with the plot colour continuously changing from cyan (R = 0) to
green (color figure online)
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Fig. 10 Porous medium with v = 2/3: Im(nz) versus w for the roots ni and n2_ with different values of
R ranging from 0 to —50 in steps of —5 with the plot colour continuously changing from cyan (R = 0) to
green (color figure online)

and, thus, it does not show up any spatial instability. Heating from above, i.e. R < 0,
is a parametric condition explicitly excluded in our initial description as we claimed
T1 > T (see Fig. 5), but considering R < 0 may offer some further insights anyway.
In fact, Figs. 9, 10 and 11 display the plots of Im(5?) versus w for R < 0 ranging
from 0 to —50. These figures are relative to the isotropic case T = 1 (Fig.9), t = 2/3
(Fig. 10) and v = 3/2 (Fig. 11). Exactly as for Figs. 6-8, all Figs. 9-11 contain two
frames: one for each root, either ni or nz_, of Eq. (49). For all the three cases, T = 1,
T = 2/3 and T = 3/2, devised in Figs. 9, 10 and 11, we have always Im(nz) <0
suggesting that no spatial instability is possible. However, as pointed out in Sect.3
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Fig. 11 Porous medium with v = 3/2: Im(nz) versus w for the roots ni and 17% with different values of
R ranging from 0 to —50 in steps of —5 with the plot colour continuously changing from cyan (R = 0) to
green (color figure online)
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Fig. 12 Porous medium: instability diagram in the (z, R) parametric plane (color figure online)
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for the analysis of Burgers’ flow, one has to be quite careful in the evaluation of the
limiting case of stationary modes, @ — 0.

It must be emphasised that, on account of Eq. (49), the limit for @ — 0 of Im(5?)
can be nonzero only if

(1= VT)? < R < (1 +7)%, (50)

where the upper bound of the interval is precisely the critical value R, given by
Eq. (44). Consistently with Eq. (50), Fig. 6 displays Im(n>) — 0 when @ — 0 only
for R = 0 and R > R, =~ 39.5, namely for R = 0, 40, 45 and 50. Similarly, Fig. 7
displays Im(nz) — Oonly for R =0and R > R, ~ 32.6, namely for R = 0, 35, 40,
45 and 50, while Fig. 8 displays Im(n?) = 0 only for R = 0 and R > R, ~ 48.8, that
is for R = 0 and 50. On the other hand, for all cases reported in Figs. 9, 10 and 11
relative to R < 0, one has Im(nz) — 0 when w — 0. This is expected as a negative
R always lies outside the interval defined by Eq. (50). Following the same reasoning
presented for the analysis of Burgers’ flow, we may consider the cases where the limit
w — 0 leads to k = 0, being s and k the real part and the imaginary part of 7, as
reported in Eq. (13). This situation undoubtedly means that the limit @ — 0 yields
Im(n?) = 2ks — 0. Hence, spatial modes with both @ = 0 and k = 0 exist only
when R is outside the interval defined by Eq. (50). By employing Eq. (47), one can
determine s for such modes as

_ 2 72 2 _ 4
2 _TIR n(l+r)]i¢£1: 72(1+ 0P — 4 1)

The right hand side of Eq. (51) is real and non-negative, with both 4 and —, provided
that

R <721 — J7)2 (52)

Therefore, we can have spatial modes with @ = 0 and k = 0 with either a positive or a
negative s whenever Eq. (52) is satisfied. Such modes are stationary, have Im(n?) = 0,
but they display an exponential growth in space either in the positive or in the negative x
direction. Exactly as for Burgers’ flow, we can consider these modes as a manifestation
of spatial instability. The important point is that they do exist also for conditions of
heating from above (R < 0). Figure 12 displays a scheme of the different instability
types in the (z, R) parametric plane. The parametric region where growing spatial
modes with @ = 0 and k = 0 exist alongside spatially unstable modes with @ > 0 and
Im(n%) > 01is labelled as “spatial instability with @ > 0 for brevity. The parametric
region R < 0 where growing spatial modes with @ = 0 and k = 0 exist is labelled as
“spatial instability with w = 0.
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5 The scope of the spatial instability analysis

The study of two test cases, a toy model based on Burgers’ equation and a real-world
system modelled as a fluid saturated porous medium with anisotropic permeabil-
ity, have shown that the linear analysis of the perturbations within either a temporal
instability concept or a spatial instability concept may lead to diverse scenarios. The
temporal instability, in its modal formulation, allows one to evaluate the convective
instability threshold bounding the unstable parametric region through the neutral sta-
bility curve and the critical values of the governing parameters. The spatial analysis,
in its modal formulation, revealed conditions of linear instability for cases where the
temporal analysis predicts linear stability. In the examples discussed so far, we found
that the spatial instability may always exist either with the Fourier spatial modes hav-
ing @ # 0 or, at the very least, with the stationary spatial modes obtained in the limit
w — 0. Then, a question arises: does the linear analysis of spatial perturbation modes
always lead to the prediction of instability no matter which values are prescribed for
the parameters governing the system? The answer is negative. In fact, a neat example
is provided by the one-dimensional diffusion equation,

ou 9%u

An equilibrium state, u = uo, is any stationary solution of Eq. (53) and, hence, any lin-
ear function of x. If we introduce a perturbation of the equilibrium state, u = ug+¢eU,
the linear nature of Eq. (53) leads to a governing equation for the perturbation func-
tion U which coincides with Eq. (53) where u is now replaced by U. The convective
instability analysis, carried out following the steps and the notations introduced in
Sect. 3.1, leads us to the temporal dispersion relation,

rk) = —k%. (54)

The well-known conclusion is utterly evident: every equilibrium state u is stable
as the real part of A, and hence the time growth-rate, is negative for every k # O.
The spatial instability analysis can be developed according to the steps and notations
introduced in Sect. 3.2, leading us to the spatial dispersion relation,

()] = —iw. (55)

We have Im(5?) = —w < 0 for @ > 0 so that, by adopting the criterion defined
in Remark 1, again we reach the conclusion that every equilibrium state u is stable.
Extending the spatial instability analysis to the limit of stationary modes, @ — O,
does not lead to any further insights. In fact, in this limit, Eq. (55) just yields k = 0
and s = 0.

The diffusion equation example provides an illustration of the selective nature of the
spatial instability analysis. Despite what we concluded for the two test cases developed
in Sects. 3 and 4, the spatial instability condition is not satisfied in every case.
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6 Conclusions and final remarks

The onset of the linear instability in a flow system has been outlined by focussing on
two diverse schemes termed temporal instability and spatial instability. If the former
scheme is an exploitation of Lyapunov’s idea of instability in a mechanical system, the
latter scheme is a an utterly different approach where the roles of space and time are
interchanged on defining the evolution variable for the development of the instability.
Indeed, Lyapunov’s or temporal instability can be described as the amplification in
time of an initial perturbation superposed at ¢+ = 0 to the equilibrium state. Spatial
instability can be described as the amplification in the x spatial direction of an inlet
perturbation localised at x = 0. Within a modal approach, the temporal instability
analysis tests the reaction of the system to space-periodic perturbations with a given
wavenumber k, while spatial instability analysis tests the reaction of the system to
time-periodic perturbations with a given angular frequency w.

The comparison between the temporal instability analysis and the spatial instability
analysis has been introduced via a simple flow system governed by a one-dimensional
Burgers’ equation with a driving linear force. The condition of spatial instability has
been formulated through an inequality where the imaginary part of the square complex
growth rate n must be positive for positive values of w. Such an inequality reflects the
condition of spatial instability as a spatial amplitude growth of the modal perturbation
along the direction where the perturbation wave propagates. The study of Burger’s flow
leads to the conclusion that the domains of temporal instability and spatial instability
are parametrically equivalent.

It has been demonstrated that the equivalence between temporal instability and
spatial instability is rather an exception than the rule, by developing the analysis of
a Rayleigh-Bénard system where an anisotropic porous layer saturated by a fluid is
heated from below. A permeability anisotropy ratio 7 and the Rayleigh number R
are the governing parameters for this flow system. It has been shown that, while the
temporal instability can be started up only if the Rayleigh number exceeds its 7-
dependent critical value R, the spatial instability may exist not only when R > R,
but also when 0 < R < R,. This conclusion rules out, in this case, the equivalence
between temporal instability and spatial instability proved for the case of Burgers’
flow.

The special case where the Fourier modes employed for the spatial stability analysis
have both a zero angular frequency and a zero wavenumber has been considered. Such
modes are time-independent with an undefined direction of propagation. For the simple
example of Burgers’ flow, it has been shown that this class of modes may involve a
nonzero spatial growth rate even in a parametric domain where the equilibrium solution
is both temporally and spatially stable. However, these modes actually display an
exponential growth in the positive or in the negative spatial direction. Such a growth
can be intended as a form of spatial instability even if not associated to any direction
of propagation. The same conclusion has been found also for the Rayleigh-Bénard
system in a saturated anisotropic porous layer. In the study of the saturated porous
layer, these stationary Fourier modes with zero wavenumber yet growing in space exist
also when the Rayleigh number is negative, i.e. for conditions of heating from above.
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The temporal instability may be studied in a non-modal formulation by testing
the time evolution of a perturbation wavepacket expressed via a Fourier integral.
This variant of the temporal analysis leads to the definition of a typically supercritical
condition called absolute instability [14]. In principle, a similar non-modal conception
could be conceived also for the spatial instability. Bringing the spatial instability
beyond the purely modal analysis, as well as beyond the merely linear formulation,
could offer interesting opportunities for future research in the fluid mechanics of
saturated porous media.
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