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Abstract
The aim of this paper is to investigate the effect of a vertical constant throughflow
on convective instabilities in a horizontal layer of fluid-saturated bi-disperse porous
medium heated from below. Via linear instability and nonlinear stability analyses
of the throughflow solution, the linear and nonlinear critical Rayleigh numbers for
convective instabilities have been determined and studied as functions of the strength
of the throughflow.

Keywords Bi-disperse porous media · Throughflow · Instability analysis · Nonlinear
stability
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1 Introduction

Bi-disperse convection is the analysis of the onset of convection in dual porosity
materials, called bi-disperse porous media. A bi-disperse porous medium (BDPM)
is a material characterized by two types of pores called macropores—with porosity

Florinda Capone, Roberta De Luca and Giuliana Massa have equally contributed to this work.

This paper is in memory of Prof. Salvatore Rionero. F. Capone and R. De Luca dedicate this paper to their
beloved Mentor Prof. Rionero, remembering him both for his human and scientific qualities and thanking
him for all his teachings they will never forget. “Rare are those people who use the mind, few use the heart
and really unique are those who use both” (R. Levi-Montalcini).

B Florinda Capone
fcapone@unina.it

Roberta De Luca
roberta.deluca@unina.it

Giuliana Massa
giuliana.massa@unina.it

1 Dipartimento di Matematica e Applicazioni ’R.Caccioppoli’, Universitá degli Studi di Napoli
Federico II, Via Cintia, Monte S.Angelo, Naples 80126, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11587-023-00811-y&domain=pdf
http://orcid.org/0000-0002-0672-999X
http://orcid.org/0000-0002-2109-7564
http://orcid.org/0000-0002-8401-9176


S68 F. Capone et al.

φ—and micropores—with porosity ε. Therefore, (1 − φ)ε is the fraction of volume
occupied by the micropores, φ + (1 − φ)ε is the fraction of volume occupied by
the fluid, (1 − ε)(1 − φ) is the fraction of volume occupied by the solid skeleton.
In particular, the macropores are referred to as f-phase (fractured phase), while the
remainder of the structure is referred to as p-phase (porous phase). The first refined
mathematical model describing the onset of bi-disperse convection was proposed by
Nield and Kuznetsov in [1–3], where the authors analysed the onset of convection in a
horizontal layer of BDPM saturated by a non-isothermal incompressible fluid heated
from below, proposing a model with two seepage velocities v f and vp, two pressures
p f and pp and two temperature fields T f and T p. Nield and Kuznetsov proved that
the critical Rayleigh number for the onset of bi-disperse convection is higher with
respect to the critical Rayleigh number for the single porosity case, therefore dual
porosity materials are better suited for insulation problems and thermal management
problems. Hence, bi-disperse porous materials offer much more possibilities to design
man-made materials for heat transfer problems and for this reason the onset of bi-
disperse convection has recently attracted the attention of many researchers [4–6]. In
this paper, we will focus the attention on single-temperature bi-disperse porous media
(i.e. T f = T p), since a single-temperature model may suffice to represent many real
situations and the resulting mathematical model is consistent with experiments related
to heat transfer and thermal dispersion in bi-disperse porous media [7, 8].

The relevance of the analysis of non-isothermal steady flow of fluids through porous
materials called throughflow is due to the effect that such flow has on convective insta-
bilities.When a vertical netmass flow (throughflow) is present across a horizontal layer
heated from below, the problem to determine until this motion is stable is of funda-
mental importance, due to the possibility of controlling the convective instabilities by
adjusting the strength of the throughflow, especially in applications involving cloud
physics, hydrological/geophysical studies, seabed hydrodynamics, subterranean pol-
lution, andmany industrial and technological processes [9–11]. Keeping in mind these
applications, the use of dual porosity materials for thermal management problems and
the relevance of regulating convective instabilities for thermal and engineering sci-
ences, in this paper the onset of convective instability in a fluid-saturated bi-disperse
porous layer heated from below is analysed, assuming that there is a vertical net mass
flow across the layer. The paper is organized as follows. In Sect. 2 the mathematical
model is presented, along with the equations governing the evolutionary behaviour of
the perturbation to the throughflow solution. In Sect. 3 the linear instability analysis of
the throughflow solution is performed, in order to find the instability threshold for the
onset of convective instabilities and the effect of the vertical constant throughflow on
the instability threshold is numerically analysed. In Sect. 4, the nonlinear stability anal-
ysis of the throughflow solution is performed via the differential constraints approach
and the weighted energy method in order to catch the method that better describes the
physics of the problem. Via numerical simulations, the stability thresholds are com-
pared to the instability ones and analysed as functions of the Peclet number. Section5
is a concluding section that recaps the obtained results.
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2 Mathematical model

Introducing a reference frame Oxyz with fundamental unit vectors i, j,k (k pointing
vertically upward), let us consider a plane layer L = R

2 ×[0, d] of bi-disperse porous
medium saturated by a non-isothermal fluid and uniformly heated from below. Let
us employ a single temperature bi-disperse porous medium, i.e. T f = T p = T .
A Oberbeck-Boussinesq approximation is assumed: the fluid density ρ is constant
in all terms of the governing equations, except in the body force term (due to the
gravity g = −gk), where we choose a linear dependence on temperature, i.e. ρ =
ρ0[1−α(T −T0)], α being the thermal expansion coefficient and ρ0 being the constant
fluid density at the reference temperature T0. Let us underline that this assumption is

experimentally and thermodynamically consistent if p � pCR = cpρ0
α

, p being

the pressure field, while cp is the specific heat at constant pressure. In particular, in
[12] the authors proved that if p � pCR , the Oberbeck-Boussinesq approximation is
compatible with the entropy principle. Therefore, the governing equations, according
to the Darcy’s model, are, cf. [8],

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− μ

K f
v f − ζ(v f −vp)−∇ p f +ρ0αgTk = 0,

− μ

Kp
vp − ζ(vp−v f )−∇ pp+ρ0αgTk = 0,

∇ · v f = 0,

∇ · vp = 0,

(ρc)m
∂T

∂t
+ (ρc) f (v f + vp) · ∇T = km�T ,

(1)

where x = (x, y, z), T is the temperature field, ps and vs are pressure field and
seepage velocity for s = { f , p}, respectively, ζ is the interaction coefficient between
the f-phase and the p-phase, μ is the fluid viscosity, Ks are the permeabilities for
s = { f , p}, km is the thermal conductivity, respectively. Moreover, (ρc)m = (1 −
φ)(1 − ε)(ρc)sol + φ(ρc) f + ε(1 − φ)(ρc)p, km = (1 − φ)(1 − ε)ksol + φk f +
ε(1−φ)kp (the subscript sol is referred to the solid skeleton). Since we are confining
ourselves in the case of a single temperature BDPM and macropores and micropores
are saturated by the same fluid, we expect (ρc) f and (ρc)p to be the same, hence
(ρc)m = (1 − φ)(1 − ε)(ρc)sol + [φ + ε(1 − φ)](ρc) f , see [13].

We are interested in the stability analysis of a vertical throughflow present across
the layer L , therefore to (1) we append the following boundary conditions

vs =Qsk, on z=0, d for s={ f , p}, T =TL on z=0, T =TU on z=d (2)

where TL > TU , since the layer is heated from below, and Qs are constants (s =
{ f , p}).

The steady constant non-isothermal fluidflowsolution to (1)–(2) called throughflow
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is given by

v̄ f = Q f k, v̄p = Qpk, T̄ = TU − TLeQ̄d/k + (TL − TU )eQ̄z/k

1 − eQ̄d/k
(3)

where Q̄ = Q f + Qp, while k = km
(ρc) f

is the thermal diffusivity. Let us introduce a

generic perturbation {u f ,up, θ, γ, π f , π p} to the throughflow solution, with u f =
(u f , v f , w f ) and up = (u p, v p, w p). The equations describing the behaviour of the
perturbations fields are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− μ

K f
u f − ζ(u f − up) − ∇π f + ρ0αgθk = 0,

− μ

Kp
up − ζ(up − u f ) − ∇π p + ρ0αgθk = 0,

∇ · u f = 0,

∇ · up = 0,

(ρc)m
∂θ

∂t
+ (ρc) f (u f +up) · ∇θ=−(ρc) f (w

f + w p)
∂ T̄

∂z
−(ρc) f Q̄

∂θ

∂z
+km�θ,

(4)

under the boundary conditions

w f = w p = θ = 0, on z = 0, d. (5)

To derive the dimensionless perturbation equations, we introduce the following non-
dimensional parameters:

x∗ = x
d

, t∗ = t

t#
, θ∗ = θ

T # , γ1 = μ

K f ζ
, γ2 = μ

Kpζ
, us∗ = us

U
, π s∗ = π s

P# , for s = { f , p}

with the following scales

U = ζkm
(ρc) f d

, t# = d2(ρc)m
km

, P# = kmζ

(ρc) f
, T # =

√
βkmζ

(ρc) f ρ0αg
,

and define the Darcy-Rayleigh number R and the Peclet number Pe as

R =
√

βd2(ρc) f ρ0αg

ζkm
, Pe = Q̄d

k
.
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The dimensionless equations governing the perturbation fields, dropping the asterisks,
are

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−γ1u f − (u f − up) − ∇π f + Rθk = 0,
−γ2up − (up − u f ) − ∇π p + Rθk = 0,
∇ · u f = 0,

∇ · up = 0,
∂θ

∂t
+ (u f + up) · ∇θ = −R f (z)(w f + w p) − Pe

∂θ

∂z
+ �θ,

(6)

where

f (z) = Pe ePez

1 − ePe

is the dimensionless basic temperature gradient.

Remark 1 Due to the specific non-dimensionalization we used, as Pe → 0 (which is
equivalent to consider the conduction solution in a bi-disperse layer), all singularities
are removable, allowing (6) to tend to the standard system where no throughflow is
present (see [8]). This follows as, utilizing De L’Hospital’s rule, one gets

lim
Pe→0

f (z) = −1.

The initial conditions and the boundary conditions appended to system (6) are

us(x, 0) = us0(x), π s(x, 0) = π s
0(x), θ(x, 0) = θ0(x),

with ∇ · us0 = 0, for s = { f , p}, and

w f = w p = θ = 0 on z = 0, 1, (7)

respectively. According to experimental results, we will assume that us, θ ∈
W 1,2(V ), ∀t ∈ R

+, with s = { f , p}, are periodic functions in the (x, y) direc-

tions of period 2π/l and 2π/m, V =
[
0, 2π

l

]
×

[
0, 2π

m

]
×[0, 1] being the periodicity

cell.
Let us consider the third components of the double curl of the momentum equations

(6)1 and (6)2, hence the linear and the nonlinear stability analyses of the throughflow
solution will be performed on the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1 + γ1)�w f − �w p − R�1θ = 0,

−�w f + (1 + γ2)�w p − R�1θ = 0,

∇ · u f = 0,

∇ · up = 0,
∂θ

∂t
+ (u f + up) · ∇θ = −R f (z)(w f + w p) − Pe

∂θ

∂z
+ �θ,

(8)
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where �1 = ∂2/∂x2 + ∂2/∂ y2 is the horizontal Laplacian.

3 Linear instability analysis

Since system (6) is autonomous, let us seek for perturbed solutions with exponential
time dependence (i.e. eσ t , σ ∈ C being the growth rate of the system) in the linearised
perturbations system. Therefore, the linear instability threshold is to recover from the
analysis of the linearised version of system (8), i.e.

⎧
⎪⎪⎨

⎪⎪⎩

(1 + γ1)�w f − �w p − R�1θ = 0,

−�w f + (1 + γ2)�w p − R�1θ = 0,

σθ = −R f (z)(w f + w p) − Pe
∂θ

∂z
+ �θ,

(9)

under the boundary conditions w f = w p = θ = 0 on z = 0, 1. System (9) is
equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�w f = 2 + γ2

γ1 + γ2 + γ1γ2
R�1θ,

�w p = 2 + γ1

γ1 + γ2 + γ1γ2
R�1θ,

σθ = −R f (z)(w f + w p) − Pe
∂θ

∂z
+ �θ.

(10)

Let us denote by < ·, · >, ‖ · ‖ and ∗, inner product and norm on the Hilbert space
L2(V ) and the complex conjugate of a field, respectively.

Theorem 1 The principle of exchange of stabilities holds for system (7)–(10), therefore
convective instabilities can arise only through steady motions.

Proof Let us employ the following transformation

θ = e
Pe
2 z� (11)

in system (10), which becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�w f = R c1e
Pe
2 z�1�,

�w p = R c2e
Pe
2 z�1�,

σe
Pe
2 z� = −R f (z)(w f + w p) − Pe2

4
e

Pe
2 z� + e

Pe
2 z��,

(12)

where we set c1 = 2 + γ2

γ1 + γ2 + γ1γ2
and c2 = 2 + γ1

γ1 + γ2 + γ1γ2
. Employing the period-

icity of the perturbation fields in the horizontal directions x and y and according to the
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boundary conditions (7), we can assume the solutions be two-dimensional periodic
waves of assigned wavenumber:

φ(x, y, z) = φ̄(z)ei(lx+my) ∀φ ∈ {w f , w p,�}. (13)

Since f (z) = Pe ePez

1 − ePe
, by virtue of (13), we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(D2 − a2)w̄ f = −c1R a2e
Pe
2 z�̄,

(D2 − a2)w̄ p = −c2R a2e
Pe
2 z�̄,

σe
Pe
2 z�̄ = −R Pe

1 − ePe
ePez(w̄ f + w̄ p) − Pe2

4
e

Pe
2 z�̄ + e

Pe
2 z(D2 − a2)�̄,

(14)

where D = d
dz , while a

2 = l2 + m2 is the overall wavenumber. Multiplying (14)3 by

e− Pe
2 z , we get

σ�̄ = −R Pe

1 − ePe
e

Pe
2 z(w̄ f + w̄ p) − Pe2

4
�̄ + (D2 − a2)�̄. (15)

Let us multiply (14)1 by w̄ f ∗, (14)2 by w̄ p∗, (15) by �̄∗ and let us integrate the
resulting equations over [0, 1], hence we obtain

1

c1

(
‖Dw̄ f ‖2L2(0,1) + a2‖w̄ f ‖2L2(0,1)

)
=R a2

∫ 1

0
e

Pe
2 z�̄w̄ f ∗ dz,

1

c2

(
‖Dw̄ p‖2L2(0,1) + a2‖w̄ p‖2L2(0,1)

)
=R a2

∫ 1

0
e

Pe
2 z�̄w̄ p∗ dz,

σ‖�̄‖2L2(0,1) = − R Pe

1 − ePe

∫ 1

0
e

Pe
2 z�̄∗(w̄ f + w̄ p) dz

− Pe2

4
‖�̄‖2L2(0,1)

− (‖D�̄‖2L2(0,1) + a2‖�̄‖2L2(0,1)).

(16)

By virtue of (16)1,2 one has that
∫ 1
0 e

Pe
2 z�̄∗(w̄ f + w̄ p) dz ∈ R, therefore from (16)3

it follows Im(σ )‖�̄‖2
L2(0,1)

= 0 ⇒ Im(σ ) = 0, i.e. σ ∈ R. 
�

Let us assume σ = 0 in (10). Using solutions (13) in system (10), one obtains

⎧
⎪⎨

⎪⎩

D2w̄ f = a2w̄ f − c1R a2θ̄ ,

D2w̄ p = a2w̄ p − c2R a2θ̄ ,

D2θ̄ = a2θ̄ + Pe Dθ̄ + R f (z)(w̄ f + w̄ p).

(17)
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Fig. 1 γ1 = 2, γ2 = 0.2. Stationary instability threshold as function of the Peclet number Pe
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Fig. 2 γ1 = 2, γ2 = 0.2 a Stationary instability thresholds for positive quoted values of the Peclet number
Pe. b Stationary instability thresholds for negative quoted values of the Peclet number Pe

In order to find the instability threshold for the onset of steady convective instabilities,
that is

RL = min
a2∈R+

{R2(a2)|R2 verifies (17)},

system (17) needs to be solved. Let us underline that (7)–(17) is a boundary value
problem of second order ODEs in the variable z and it has been numerically solved
via MatLab software, employing a user-written code based on a combination of the
Shooting Method and the Newton–Raphson Method.

The overall behaviour of the steady instability threshold as function of the Peclet
number is shown in Fig. 1. Solving the boundary value problem (7)–(17) for quoted
values of the Peclet number, we obtain the thresholds depicted in Fig. 2: in Fig. 2a the
thresholds are plotted for Pe > 0 and it is shown the stabilizing effect of a vertical
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Fig. 3 γ1 = 2, γ2 = 0.2 Convective rolls and isotherms for quoted value of the Peclet number

constant upward throughflow on system dynamics, while the thresholds in Fig. 2b are
depicted for Pe < 0 and show that a vertical constant downward throughflow has a
destabilizing effect on system dynamics.

Finally, in Fig. 3 the convective rolls and the isotherms are plotted for quoted value
of the Peclet number. As |Pe| increases, the convective rolls lose the symmetry that
characterizes the limit case Pe → 0. In particular, for high positive Peclet numbers,
we can observe a progressive detachment of the kinematic and temperature fields from
the lower surface, hence the convective motion is confined near the surface toward
which the throughflow is directed. Similarly, for high negative Peclet numbers, there
is a detachment of the kinematic and temperature fields from the upper surface.

4 Nonlinear stability analysis

The aim of this Section is to analyse the stability of the throughflow solution (3)
considering the full nonlinear system (8).

123



S76 F. Capone et al.

4.1 Differential constraint approach

In the present Section the differential constraint approach (see [14]) will be applied to
system (8). Therefore, retaining (8)1,2 as constraints, let us define

Ê = 1

2
‖θ‖2,

Î = − < f (z)(w f + w p), θ >, D̂ = ‖∇θ‖2,
(18)

therefore, multiplying (8)5 by θ and integrating over the periodicity cell V , we get

d Ê

dt
= R Î − D̂ ≤ −D̂

(

1 − R
RN

)

, (19)

where

1

RN
= max

H∗
Î

D̂
(20)

and

H∗ = {(w f , w p, θ) ∈ (H1)3|w f = w p = θ = 0 on z = 0, 1; periodic in x, y

with periods 2π/l, 2π/m; D̂ < ∞; verifying (8)1,2}.

Remark 2 Let us observe that the boundedness of Î
D̂
in H∗ is guaranteed by (8)1 and

(8)2. In fact, multiplying (8)1 and (8)2 by w f and w p, respectively, integrating over
the periodicity cell and adding the resulting equations, we get

cP
(
γ1‖w f ‖2 + γ2‖w p‖2

)
≤ R2

( 1

γ1
+ 1

γ2

)
‖θ‖2, (21)

where the arithmetic–geometricmean, theCauchy-Schwartz and the Poincaré inequal-
ities were used, and where cP (V ) is the Poincaré constant. Accounting for the
definitions of Î and D̂ and since f (z) is bounded in [0, 1], by virtue of (21) it imme-

diately follows that the ratio Î
D̂
is bounded inH∗.

The variational problem (20) is actually equivalent to

1

RN
= max

H
Î + ∫

V λ
′
f1 dV + ∫

V λ
′′
f2 dV

D̂
, (22)

where λ
′
(x) and λ

′′
(x) are suitable Lagrange multipliers and

f1 = (1 + γ1)�w f − �w p − R�1θ, f2 = −�w f + (1 + γ2)�w p − R�1θ,
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H = {(w f , w p, θ) ∈ (H1)3|w f = w p = θ = 0 on z = 0, 1; periodic in x, y

with periods 2π/l, 2π/m, respectively; D̂ < ∞}.

Theorem 2 Condition R < RN guarantees the global, nonlinear, asymptotic, expo-
nential stability in the Ê-norm of the throughflow solution (3).

Proof Applying the Poincaré inequality one obtains that D̂ ≥ π2‖θ‖2, hence from
the energy equation (19) it follows that the condition R < RN implies Ê(t) → 0
at least exponentially. Moreover, multiplying the momentum equations (6)1 and (6)2
by the kinematic fields u f and up, integrating over the periodicity cell and adding
the resulting equations, by virtue of the arithmetic–geometric mean inequality and
Cauchy-Schwartz inequality we get

γ1‖u f ‖2 + γ2‖up‖2 ≤ R2
( 1

γ1
+ 1

γ2

)
‖θ‖2. (23)

Therefore, by virtue of estimate (23), we can conclude that condition R < RN

guarantees the exponential stability of the throughflow solution with respect to the
Ê-norm. 
�

The Euler-Lagrange equations associated to the maximum problem (22) are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 + γ1)�w f − �w p − RN�1θ = 0,

−�w f + (1 + γ2)�w p − RN�1θ = 0,

−RN f (z)(w f + w p) − R2
N�1(λ

′ + λ
′′
) + 2�θ = 0,

− f (z)θ + (1 + γ1)�λ
′ − �λ

′′ = 0,

− f (z)θ − �λ
′ + (1 + γ2)�λ

′′ = 0.

(24)

Assuming solutions (13) in (24), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2w̄ f = a2w̄ f − c1RNa2θ̄ ,

D2w̄ p = a2w̄ p − c2RNa2θ̄ ,

D2θ̄ = a2θ̄ + RN

2
f (z)(w̄ f + w̄ p) − R2

N

2
a2(λ̄

′ + λ̄
′′
),

D2λ̄
′ = a2λ̄

′ + c1 f (z)θ̄ ,

D2λ̄
′′ = a2λ̄

′′ + c2 f (z)θ̄ .

(25)

The critical nonlinear threshold RN has been numerically found solving the bound-
ary value problem (7)–(25), employing the same technique described in the previous
Section. In the following numerical simulations, our results were tested for the dimen-
sionless physical parameters γ1 = 2 and γ2 = 0.2 (see [15, 16]). In Fig. 4 the linear
instability thresholdRL and the nonlinear stability threshold with respect to Ê-norm
RN are depicted for quoted values of the Peclet number (for Pe → 0 in 4a and for
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Fig. 4 aRL andRN for Pe = 0 and γ1 = 2, γ2 = 0.2. bRL andRN for Pe = 3 and γ1 = 2, γ2 = 0.2
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Fig. 5 Linear instability threshold RL , nonlinear stability threshold RN as function of the Peclet number
Pe, for γ1 = 2, γ2 = 0.2

Pe = 3 in 4b). For Pe → 0 the coincidence between RL and RN is recovered, but
as |Pe| increases, the gap between the linear threshold and the nonlinear threshold
increases, as clearly depicted in Fig. 5, where the instability threshold RL and the
nonlinear stability threshold RN are plotted as functions of the Peclet number Pe.

Remark 3 In [8], the onset of convection for a single temperature bi-disperse porous
medium was analysed, the instability threshold is:

Rc = min
n,a2

(n2π2 + a2)2

a2
γ1γ2 + γ1 + γ2

γ1 + γ2 + 4
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Let us underline that if the throughflow is not considered (i.e. Pe → 0), we found
Rc = RL = RN = 16.5555 (with γ1 = 2, γ2 = 0.2), hence the stability results
found in [8] are recovered.

4.2 Weighted energymethod

In this Section, we will perform the nonlinear stability analysis applying the weighted
energy method to the nonlinear boundary value problem (8)1, (8)2, (8)5 in w f , w p, θ ,
i.e.

⎧
⎪⎪⎨

⎪⎪⎩

(1 + γ1)�w f − �w p − R�1θ = 0,

−�w f + (1 + γ2)�w p − R�1θ = 0,
∂θ

∂t
+ (u f + up) · ∇θ = −R f (z)(w f + w p) − Pe

∂θ

∂z
+ �θ,

w f = w p = θ = 0 on z = 0, 1.

(26)

The following result holds true.

Theorem 3 (Weighted Poincaré Inequality) If � ∈ H, with

H = {φ ∈ H1(V )|φ = 0 on z = 0, 1; periodic in x, y with periods 2π/l, 2π/m,

respectively} ,

then

〈
ePez,�2

〉
≤ 4

4π2 + Pe2

〈
ePez, |∇�|2

〉
. (27)

Proof Since θ = e
Pe
2 z� is periodic on the x and y directions and vanishes on z = 0, 1,

one gets (see [17–19])

∫

V

(
e

Pe
2 z�

)2
dV ≤ 1

π2

∫

V

[
∂

∂z

(
e

Pe
2 z�

)]2

dV . (28)

In view of the identity

∫

V

[
∂

∂z

(
e

Pe
2 z�

)]2

dV = − Pe2

4

∫

V
ePez�2dV +

∫

V
ePez

(
∂�

∂z

)2

dV , (29)

from (28), it follows

(

1 + Pe2

4π2

) ∫

V
ePez�2dV ≤ 1

π2

∫

V
ePez |∇�|2dV , (30)

therefore, one obtains (27). 
�

123



S80 F. Capone et al.

Now, considering the transformation (11), (26) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 + γ1)�w f − �w p − R e
Pe
2 z�1� = 0,

−�w f + (1 + γ2)�w p − R e
Pe
2 z�1� = 0,

e
Pe
2 z ∂�

∂t
+(u f +up) · ∇

(
e
Pe
2 z�

)
= −R f (z)(w f +w p) − Pe2

4 e
Pe
2 z�+e

Pe
2 z��,

w f = w p = � = 0 on z = 0, 1.

(31)

Let us multiply (31)1 by w f , (31)2 by w p and (31)3 by e
Pe
2 z�, integrating each

equation over the periodicity cell V and adding the resulting equations one obtains

dE
dt

= RI − D + Pe2

2
E, (32)

where

E = μ

2

〈
ePez,�2

〉
,

I = −
〈
e

Pe
2 z�1�,w f + w p

〉
− μ

〈
e

Pe
2 z f (z)�,w f + w p

〉
,

D = γ1‖∇w f ‖2 + γ2‖∇w p‖2 + ‖∇w f − ∇w p‖2 + μ
〈
ePez, |∇�|2

〉
,

(33)

and μ a positive coupling parameter to be suitably chosen later. Setting

1

RW
= max

H
I
D , (34)

the following theorem holds.

Theorem 4 Let us set

E1 = e− Pe2
2 tE, (35)

then the condition

R < RW (36)

guarantees the global, nonlinear, asymptotic, exponential stability of the throughflow
solution (3) with respect to the E1-norm.

Proof By virtue of (35), from (32) one obtains

dE1
dt

= D
(

R I
D − 1

)

e− Pe2
2 t , (37)
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where by virtue of (27)

D ≥ 4π2 + Pe2

2
E . (38)

Moreover, accounting for (34) and (36), from (37) it follows that

dE1
dt

≤ 4π2 + Pe2

2

( R
RW

− 1

)

E1, (39)

hence, integrating with respect to time t , one gets

E1(t) ≤ E1(0) exp
[
(4π2 + Pe2)(R − RW )

2RW
t

]

, ∀ t ≥ 0 (40)

and hence the global, nonlinear, asymptotic, exponential stability of the throughflow
solution (3) with respect to the E1-norm is obtained. 
�
Remark 4 Let us underline that in the limit case Pe → 0, from (35) we get that
E1 = E coincides with Ê defined in (18) choosing μ = 1. Therefore, in the limit case
for vanishing throughflow, one has to refer to the stability results obtained in [8] (as
stated in Remark 3).

The Euler-Lagrange equations associated to the maximum problem (34), assuming
solutions (13), are:

⎧
⎪⎨

⎪⎩

D2w̄ f = a2w̄ f + c1
2 RWe

Pe
2 z[μ f (z) − a2]�̄,

D2w̄ p = a2w̄ p + c2
2 RWe

Pe
2 z[μ f (z) − a2]�̄,

D2�̄ = a2�̄ − Pe D�̄ + 1
2μe

− Pe
2 zRW [μ f (z) − a2](w̄ f + w̄ p).

(41)

We numerically solved (41) under the boundary conditions w̄ f = w̄ p = �̄ = 0 on
z = 0, 1, in order to determine the critical threshold

RW = max
μ

min
a2

{R2(a2, μ)|R2 verifies (41)}.

In Fig. 6 all the stability thresholds we found are depicted as functions of the Peclet
number Pe. From Fig. 6 we found that, while for Pe → 0 the coincidence between the
thresholds is recovered, for increasing Peclet numbers the weighted energy method
significantly reduces the region of subcritical instabilities.

5 Conclusions

In this paper the effect of a vertical constant steady net mass flow (throughflow) on
the onset of convective instabilities is analysed in a horizontal layer of fluid-saturated
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Fig. 6 Linear instability thresholdRL , nonlinear stability thresholdsRN and RW as function of the Peclet
number Pe, for γ1 = 2, γ2 = 0.2

bi-disperse porous medium heated from below.We proved the validity of the principle
of exchange of stabilities, therefore convective instabilities can arise only via steady
motions. Via linear instability analysis of the throughflow solution, we determined
the critical Rayleigh number for the onset of stationary convective instabilities and
studied the behaviour of the critical Rayleigh number with respect to the Peclet num-
ber, proving that the throughflow has a stabilizing effect on the onset of convective
instabilities when Pe > 0, destabilizing when Pe < 0. By mean of the differential
constraints approach and the weighted energy method, we performed the nonlinear
stability analysis of the throughflow solution, in order to catch the method that better
describes the physics of the problem. We found that there is not coincidence between
the linear and the nonlinear thresholds, therefore a region of subcritical instabilities is
present, but, for increasing Peclet numbers, the thickness of the region of subcritical
instabilities is significantly reduced by the weighted energy method.
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