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Abstract
Let FG denote the group algebra of a locally finite group G over the infinite field
F with char(F) �= 2, and let � : FG → FG denote the involution defined by α =
�αgg �→ α� = �αgσ(g)g∗, whereσ : G → {±1} is a group homomorphism (called
an orientation) and ∗ is an involution of the group G. In this paper we prove, under
some assumptions, that if the �-symmetric units of FG satisfies a group identity then
FG satisfies a polynomial identity, i.e., we give an affirmative answer to a Conjecture
of B. Hartley in this setting. Moreover, in the case when the prime radical η(FG) of
FG is nilpotent we characterize the groups for which the symmetric units U+(FG) do
satisfy a group identity.

Keywords Group algebras · Group identity · Involutions · Symmetric units · Unit
group

Mathematics Subject Classification 16U60 · 16W10 · 16S34 · 16R50

1 Introduction

Let FG denote the group algebra of the group G over the field F. Any involution
∗ : G → G can be extended F-linearly to an algebra involution of FG. Such a map is
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called a group involution ofFG. A natural example is the so-called classical involution,
which is induced from the map g �→ g∗ = g−1, for all g ∈ G.

Let σ : G → {±1} be a non-trivial homomorphism (called an orientation of G). If
∗ : G → G is a group involution, an oriented group involution of FG is defined by

α =
∑

g∈G
αgg �→ α� =

∑

g∈G
αgσ(g)g∗. (1)

Notice that, as σ is non-trivial, char(F) must be different from 2. It is clear that,
α �→ α� is an involution in FG if and only if gg∗ ∈ N = ker(σ ) for all g ∈ G.

In the case when the involution on G is the classical involution, the map � is
precisely the oriented involution introduced by S. P. Novikov, [1], in the context of
K -theory.

We denote with FG+ = {α ∈ FG : α� = α} and FG− = {α ∈ FG : α� = −α}
the sets of symmetric and skew-symmetric elements of FG under � and, writing
U(FG) for the group of units of FG, we let U+(FG) denote the set of symmetric
units, i.e., U+(FG) = {α ∈ U(FG) : α� = α}.

Let 〈x1, x2, . . .〉 be the free group on a countable set of generators. If H is any
subset of a group G, we say that H satisfies a group identity (H ∈ GI or H is GI
for short) if there exists a non-trivial reduced word ω(x1, x2, . . . , xn) ∈ 〈x1, x2, . . .〉
such that ω(h1, h2, . . . , hn) = 1 for all hi ∈ H . For instance, if we write (x1, x2) =
x−1
1 x−1

2 x1x2 and (x1, x2, . . . , xn, xn+1) = ((x1, x2, . . . , xn), xn+1), for all n ≥ 2,
then 〈H〉 is abelian if it satisfies the group identity (x1, x2), nilpotent if it satisfies
(x1, x2, . . . , xn), for some n and n-Engel if it satisfies (x1, x2, x2, . . . , x2︸ ︷︷ ︸

n times

) for some n.

Some time ago and with the idea of establishing a connection between the additive
and multiplicative structure of a group algebra FG, Brian Hartley made the following
famous conjecture:

Conjecture 1.1 (Hartley’s Conjecture) Let G be a torsion group and F a field. If the
unit group U(FG) of FG satisfies a group identity, then FG satisfies a polynomial
identity.

Let R be an F-algebra. Recall that a subset S of R satisfies a polynomial identity
(S ∈ PI or S is PI for short) if there exists a non-zero polynomial f (x1, x2, . . . , xn)
in the free associative algebra F{X} on the countable infinite set of non-commuting
variables X = {x1, x2, . . .} such that f (a1, . . . , an) = 0 for all ai ∈ S. For instance,
R is commutative if it satisfies the polynomial identity f (x1, x2) = x1x2 − x2x1 and,
any finite dimensional associative algebra satisfies the standard polynomial identity
of degree n + 1, where n = dimF R [2, Lemma 5.1.6, p. 173],

Stn+1(x1, x2, . . . , xn+1) =
∑

ρ∈Sn+1

(sgnρ)xρ(1)xρ(2) · · · xρ(n+1).

Group algebrasFG satisfying a PIwere classified in two subsequent papers of Passman
and Isaacs-Passman, see [2, Corollaries 5.3.8 and 5.3.10, p. 196-197].
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Giambruno et al. [3] solved the Hartley’s conjecture for semiprime group rings,
and Giambruno et al. [4] solved it in general for group algebras over infinite fields.
By using the results of [4], Passman [5] gave necessary and sufficient conditions for
U(FG) to satisfy a group identity, when F is infinite. Subsequently, Liu [6] confirmed
that the conjecture also holds for finite fields and Liu and Passman in [7] extended the
results of [5] to this case. The same question for groups with elements of infinite order
was studied by Giambruno et al. in [8]. For further details about these results see Lee
[9, Chapter 1] and the references quoted therein.

Let ∗ be an involution of a group algebra FG induced by an involution of the group
G, the so-called group involution. When ∗ is the classical involution induced from
g �→ g−1, g ∈ G, Giambruno et al. [10] showed that if G is a torsion group, F is
infinite with char(F) �= 2, and U+(FG) satisfies a group identity then FG satisfies a
polynomial identity. They also classified groupsG such that U+(FG) satisfies a group
identity. Sehgal and Valenti [11] extended the results of [10] to non-torsion groups
under the usual restriction for the only if part related to Kaplansky’s Conjecture (the
units of FG are trivial if G is a torsion-free group and F is a field).

Considering group involutions ∗, i.e., ∗ is an involution on G extended F-linearly
to the group algebra FG, Dooms and Ruiz [12] proved the following.

Theorem 1.1 ([12, Theorem 3.1]) Let F be an infinite field with char(F) �= 2 and let G
be a non-abelian group such that FG is regular. Let ∗ be an involution on G. Suppose
one of the following conditions holds:

(i) F is uncountable,
(ii) all finite non-abelian subgroups of G which are ∗-invariant have no simple com-

ponents in their group algebra over F that are non-commutative division algebras
other than quaternion algebras.

Then U+(FG) ∈ GI if and only if G is an SLC-group with canonical involution given
by the expression (2) below. Moreover, in this case FG+ is a ring contained in ζ(FG).

Using the last result and under some assumptions, Dooms and Ruiz proved that if
U+(FG) is GI then FG is PI, giving an affirmative answer to the Hartley’s Conjecture
in this setting. They also characterized, with mild restrictions, the locally finite groups
for which the symmetric unitsU+(FG) satisfy a group identity, when the prime radical
η(FG) of FG is nilpotent. Giambruno et al. [13] completely solved the question for
group algebras of torsion groups, with group involutions such that U+(FG) is GI.

In the classification results on group algebras whose symmetric units with respect
to the classical involution satisfy a group identity in some sense the exceptional cases
turned out to involve Hamiltonian 2-groups, [10, Theorem 7, p. 459], because they are
non-abelian groups such that the symmetric elements in the group algebras commute,
[10, Remark 3, p. 451]. We recall that a non-abelian groupG is a Hamiltonian group if
every subgroup ofG is normal. It is well-known that in this caseG ∼= Q8×E×O , [14,
Theorem 1.8.5, p. 63], where Q8 = 〈x, y : x4 = 1, x2 = y2, y−1xy = x−1〉 is the
quaternion group of order 8, E is an elementary abelian 2-group and O is an abelian
group with every element of odd order. When O = {1}, G is called a Hamiltonian
2-group.
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When one works with linear extensions of arbitrary involutions of the base group
of the group algebra, ∗ : G → G, one finds a larger class of groups such that the
symmetric elements also commute. We recall that a group G is said to be an LC-group
(a group with “limited commutativity” property) if it is non-abelian and for any pair
of elements g, h ∈ G, we have that gh = hg if and only if at least one element of
{g, h, gh} lies in ζ(G), where ζ(G) denotes the center of G. This family of groups
was introduced by Goodaire. From [15, Proposition III.3.6, p. 98], a group G is an
LC-group with a unique non-trivial commutator s (which must have order 2 and be
central) if and only if G/ζ(G) ∼= C2 × C2, where C2 is the cyclic group of order 2.
If G is endowed with an involution ∗, then we say that G is a special LC-group, or
SLC-group, if it is an LC-group, it has a unique non-trivial commutator s and on such
a group, the map ∗ is defined by

g∗ =
{
g, if g is central;
sg, otherwise.

(2)

We refer to this as the canonical involution on an SLC-group. For instance, if ∗
is the classical involution, then from expression (2) all elements have order 1, 2, or
4. Furthermore, if g is a non-central element, then g2 = s and we obtain that every
cyclic subgroup of G is normal, and thus in this case the SLC-groups are precisely the
Hamiltonian 2-groups.

When we consider on FG the oriented group involution
(∑

g∈G αgg
)� =

∑
g∈G αgσ(g)g∗, where G is a group with a non-trivial homomorphism σ : G →

{±1} and an involution ∗, the kernel of σ is a subgroup N inG of index 2. It is clear that
the involution � coincides on the subalgebra FN with the group involution ∗. Also,
we have that the symmetric elements in G, under �, are the symmetric elements in N
regarding ∗. If we denote the sets of symmetric elements in G, under the involutions
� and ∗, by N+ and G+, respectively, then we can write N+ = N ∩ G+. In recent
years, this type of involution has been of interest and some results were obtained in
the study of properties of FG+,FG− and U+(FG), see [16–18]. For instance, the
authors in [18] proved that FG satisfies the �-PI, i.e., FG satisfies a PI where x�

i for
some i’s appear, α�α = αα� if and only if the set FG+ of symmetric elements in
regard to � is commutative. Since [G : N ] = 2, the structure of the group N and the
action of ∗ on N are both known, see [19, Theorem 2.4, p.730] and [18, Theorem 3.1,
p. 4395], then this classification depend on whether N = ker(σ ) is either abelian or
an SLC-group. However, this result does not provide a complete description of G and
the action of � on G. Therefore this is the principal aim in this kind of research.

In this paper, we extend the results obtained by Dooms and Ruiz [12] to the case of
the oriented group involution (1).More precisely, we classify undermiddle hypothesis,
the groups with a regular group algebra over an infinite field F of char(F) �= 2 for
which the �-symmetric units satisfy a GI. Further, we prove that if the �-symmetric
units of FG, where G is a locally finite group, satisfies a group identity then FG
satisfies a polynomial identity, see Theorems 3.1 and 3.2. Moreover, in the case when
the prime radical η(FG) of FG is nilpotent we characterize the groups for which the
symmetric units U+(FG) do satisfy a group identity, see Theorem 3.3.

123



Group identities on symmetric units under oriented…

Throughout this paper F will always denote an infinite field with char(F) �= 2, G a
group, ∗ and σ an involution and a non-trivial orientation of G, respectively. We will
denote with � an oriented group involution of FG given by expression (1), which is
linear extension of the involution ∗ of G, twisted by the homomorphism σ .

2 Preliminaries and notations

Let R be a ringwith involution 	. LetU(R) its group of units andU+(R) = U(R)∩R+
the set of symmetric units. It is well-known that central idempotents are very important
in the study of group identities. Moreover the following fact is proved.

Lemma 2.1 ([10, Theorem 2]) Let R be a semiprime ring with involution 	 such that
U+(R) is GI. Then every symmetric idempotent of R is central.

For a given prime p, an element x ∈ G will be called a p-element if its order is
a power of p and it is called p′-element if its order is finite and, not divisible by p.
Moreover, a torsion subgroup H of G is a p′-subgroup if every element h ∈ H is a
p′-element. We agree that if p = 0 every torsion subgroup is a p′-subgroup.

An immediate consequence in the setting of group algebras of Lemma 2.1 is the
following: Let F be a field with char(F) ≥ 0 andG a group such that FG is semiprime.
If U+(FG) is GI under the classical involution, then every torsion p′-subgroup of G is
normal inG. Indeed to prove this result is important the use of the idempotent element

1

o(g)
ĝ = 1

o(g)
(1 + g + · · · + go(g)),

where g is a p′-element, see the proof in [10, Corollary 2, p. 451]. Note that this
element is symmetric under the classical involution, but it is not when ∗ is a group
involution. This fact, in the former case, gives important information on cyclic sub-
groups. Unfortunately, this property is lost in the case of a group involution ∗.

Semisimple algebras whose units satisfy a GI were widely studied, see for instance
[20, Theorem 1, p. 197], [12, Theorem 2.2, p. 743], [21, Theorem 3.1, p. 1732] and
[13, Lemma 2.1, p. 2803]. The following three lemmas will be needed in the sequel.

Lemma 2.2 ([13, Lemma 2.1]) Let R be a finite dimensional semisimple algebra with
involution 	 over an infinite field K , char(K ) �= 2. Suppose that U+(R) is GI. Then
R is a direct sum of simple algebras of dimension at most four over their centers and
the symmetric elements R+ are central in R, i.e.,

R ∼= D1 ⊕ D2 ⊕ · · · ⊕ Dk ⊕ M2(F1) ⊕ M2(F2) ⊕ · · · ⊕ M2(Fl) and R+ ⊆ ζ(R).

Lemma 2.3 ([12, Theorem 2.2]) Let R be a semisimple K -algebra with involution 	,
where K is an infinite field with char(K ) �= 2. Suppose one of the following conditions
holds:

(i) K is uncountable,
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(ii) R has no simple components that are non-commutative division algebras other
than quaternion algebras.

Then U+(R) ∈ GI if and only if R+ is central in R.

Lemma 2.4 ([9, Lemma 2.3.5]) Suppose that R is an K -algebra with involution 	,
where char(K ) �= 2. Let I be a 	-invariant nil ideal. If U+(R) satisfies the group
identity ω(x1, . . . , xn) = 1, then so does U+(R/I ). Conversely, if p > 0, I is nil of
bounded exponent and U+(R/I ) ∈ GI, then U+(R) ∈ GI.

Remark 1 By [22, Lemma 2.4, p. 891], under the assumptions of Lemma 2.3, it follows
that U+(R) ∈ GI is equivalent to R+ is Lie n-Engel, for some n.

We conclude this section with a result due to Jespers and Ruiz Marín [19], where
the SLC groups arise naturally.

Lemma 2.5 ([19, Theorem 2.4]) Let F be a field with char(F) �= 2 and let G be a
group with an involution ∗ extended F-linearly to FG. Then FG+ is commutative if
and only if G is abelian or an SLC group. In this case, FG+ = ζ(FG).

3 Results

3.1 Regular group algebras

We need the following results about group algebras endowed with an oriented group
involution. We recall that for a fixed orientation σ of G, we denote with N = ker(σ ).

Lemma 3.1 ([16, Lemma1.1])Let R be a commutative ringwith unity of characteristic
different from 2 and let G be a group with a non-trivial orientation σ and an involution
∗. Suppose that RG+ is commutative under oriented group involution and let g ∈
(G\N )\G+, h ∈ G. Then one of the following holds:

(i) gh = hg; or
(ii) char(R) = 4 and gh = g∗h∗ = hg∗ = h∗g.

Furthermore, gg∗ = g∗g.

Lemma 3.2 ([16, Theorem 2.2]) Let R be a commutative ring with unity of character-
istic different from 2 and let G be a non-abelian group with a non-trivial orientation
σ and an involution ∗. Then, RG+ is a commutative ring if and only if one of the
following conditions holds:

(i) N = ker(σ ) is an abelian group and (G \ N ) ⊂ G+;
(ii) G and N have the LC-property, and there exists a unique non-trivial commutator

s such that the involution ∗ is given by

g∗ =
{
g, if g ∈ N ∩ ζ(G) or g ∈ (G \ N ) \ ζ(G);
sg, otherwise.
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(iii) char(R) = 4, G has the LC-property, and there exists a unique non-trivial com-
mutator s such that the involution ∗ is the canonical involution.

Recall that a ring R with identity is said to be (von Neumann) regular if for any
x ∈ R there exists an y ∈ R such that xyx = x . Villamayor [2, Theorem 3.1.5, p. 69]
showed that the group algebra FG is regular if and only if G is locally finite and has
no elements of order p in case F has characteristic p > 0. Note that in this case the
set of p-elements P is trivial and thus FG is semiprime, [2, Theorem 4.2.13, p. 131]
(in case char(F) = 0, we agree that P = {1}).

We are now able to classify the groups with a regular group algebra over an infinite
field F of char(F) �= 2 for which the �-symmetric units satisfy a GI, result which is
the oriented version of Dooms and Ruiz, see Theorem 1.1. Note that in this context
the third condition in Lemma 3.2 will not be considered.

Theorem 3.1 Let F be an infinite field with char(F) �= 2 and let G be a non-abelian
group such that FG is regular. Let σ : G → {±1} be a non-trivial orientation and an
involution ∗ on G. Suppose one of the following conditions holds:

(i) F is uncountable,
(ii) all finite non-abelian subgroups of G which are ∗-invariant have no simple com-

ponents in their group algebra over F that are non-commutative division algebras
other than quaternion algebras.

Then U+(FG) ∈ GI if and only if one of the following conditions holds:

(1) N = ker(σ ) is an abelian group and (G \ N ) ⊂ G+;
(2) G and N have the LC-property, and there exists a unique non-trivial commutator

s such that the involution ∗ is given by

g∗ =
{
g, if g ∈ N ∩ ζ(G) or g ∈ (G \ N ) \ ζ(G);
sg, otherwise.

(3)

Consequently, U+(FG) ∈ GI if and only if U+(FG) is an abelian group.

Proof Assume that U+(FG) ∈ GI and let N = ker(σ ). Then U+(FN ) ∈ GI. Hence,
by Theorem 1.1 and Lemma 2.5, we have two possibilities for N ; either

(A) N is an abelian group; or
(B) N has the LC-property, and there exists a unique non-trivial commutator s such

that the involution ∗ in N , is the canonical involution.

Now, let g, h ∈ G such that gh �= hg. Consider the collection {Hi }i≥1 (possibly
infinite) of all finite subgroups of G which are ∗-invariant and contain g and h. It is
clear that G = ⋃

i Hi and that U+(FHi ) ∈ GI. Since FG is regular, we have that all
FHi are semisimple.

Set σi = σ |Hi and let Ni = ker(σi ). By Lemma 2.3, FH+
i is central in FHi for all

i , and applying the Lemma 3.2, one of the following conditions holds:

(a) Ni is an abelian group and (Hi \ Ni ) ⊂ H+
i ; or
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(b) Hi and Ni have the LC-property, and there exists a unique non-trivial commutator
s such that the involution ∗ is as given in the expression (3).

It is easy to see that, N = ker(σ ) = ⋃
i Ni = ⋃

i ker(σi ) and
⋃

i (Hi\Ni ) = G\N .
Suppose that (A) is true. Then (a) holds for all i and thus (1) follows.

Assume that (B) is true. If there exists j such that (a) holds, then since N j is abelian
and g, h ∈ Hj , at least one of them belong to Hj \ N j . Without loss of generality,
if g ∈ Hj\N j follows that g is symmetric, and as FH+

j is central in FHj , we obtain
gh = hg, which is a contradiction. So (b) holds for all i .

If s is not a unique non-trivial commutator of G, then there exist x, y ∈ G
such that (x, y) �= s. We know that x, y ∈ Hi , for some i , for instance, Hi =
〈x, y, g, h, x∗, y∗, g∗, h∗〉. Therefore (x, y) = (g, h) = s, a contradiction.

Claim: For all i , ζ(Ni ) = Ni ∩ ζ(Hi ). In fact, let x ∈ ζ(Ni ) \ ζ(Hi ). Then, there
exists y ∈ Hi\Ni such that xy �= yx and by the behavior of ∗ on Hi given by (3),
y∗ = y. SinceFN+

i is commutative, we have that x∗ = x . Thus xy ∈ (Hi \Ni )\ζ(Hi )

and by (b) xy ∈ H+
i . Therefore xy = (xy)∗ = y∗x∗ = yx , a contradiction. Hence

ζ(Ni ) = Ni ∩ ζ(Hi ).
Thus for all i , we obtain that H+

i = ζ(Ni ) ∪ [(Hi\Ni )\ζ(Hi )]. Now, it is clear
that ζ(G) ⊆ ⋃

i ζ(Hi ). When x ∈ ⋃
i ζ(Hi ), then x ∈ ζ(Hj ) for some j . By the

construction of Hj , g ∈ Hj and hence xg = gx . Since g is an arbitrary element of
G \ ζ(G), we conclude that x ∈ ζ(G) and ζ(G) = ⋃

i ζ(Hi ). Therefore ∗ : G → G
is given as in the statement, and (2) holds.

The converse is clear, because conditions (1) and (2) by Lemma 3.2 imply that
FG+ is commutative and hence, (u, v) = 1 is a GI for U+(FG).

The last assertion is now clear. ��
We can find group algebras that fulfil the condition (2) in Theorem 3.1, see Remark

in [12, p. 746] and the references quoted therein.

3.2 Non-regular group algebras

Dooms and Ruiz, in [12, Lemma 3.3, p. 747], assuming that F is an infinite field with
char(F) �= 2 and G a locally finite group such that U+(FG) ∈ GI under a group
involution ∗, demonstrated that the set of p-elements of G is a normal subgroup of
G. They obtained a similar result to Theorem 3.1 for non-regular group algebras, see
[12, Theorem 3.4, p. 748].

To handle group algebras which are not necessarily regular, we need the following
two lemmas which are the natural extensions of known results. As usual, for a normal

subgroup H of G we denote by 
(G, H) the kernel of the map FG
�→ F(G/H)

defined by

∑

g∈G
αgg �→

∑

g∈G
αggH

and 
(G,G) = 
(G) is the augmentation ideal.
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Lemma 3.3 Let G be a locally finite group and char(F) = p �= 2. If U+(FG) ∈ GI,
then the set P of p-elements of G is a subgroup.

Proof Let g, h ∈ P and let H = 〈g, h, g∗, h∗〉. Since G is locally finite, then H is
finite.Moreover, H is∗-invariant and H ⊂ N = ker(σ ) (every element x ∈ H has odd
order). Since FH is a finite dimensional algebra the Jacobson radical J is nilpotent.
Let R = FH/J . Then R is semisimple and, by Lemma 2.4, U+(R) satisfies a group
identity. Hence by Lemma 2.2, R is a direct sum of simple algebras of dimension at
most four over their centers. Finally, by [22, Lemma 2.6, p. 892] we get that P is a
subgroup. ��
Lemma 3.4 Let F be a field with char(F) = p > 2 and G a group such that U+(FG)

satisfies a GI ω(x1, ..., xn) = 1, under an oriented group involution �. If H is a
normal ∗-invariant p-subgroup of G, and either H is finite or G is locally finite, then
U+(F(G/H)) satisfies ω(x1, ..., xn) = 1.

Proof Since H is a p-subgroup, then H ⊂ N and hence H is �-invariant.
If H is finite, then by [9, Lemma 1.1.1, p. 1], 
(G, H) is nilpotent and the statement
follows from Lemma 2.4.

Now assume thatG is locally finite. LetG = G/H and takeα1, . . . , αn ∈ U+(FG).
Since the map FG → FG is an epimorphism we have that FG

+
is the image of FG+,

thus we may lift these elements up to α1, α2, . . . , αn ∈ FG+ and similarly for their
inverses. Let G1 the subgroup of G generated by the supports of all of these elements.
As G is locally finite, G1 is finite. Taking H1 = G1 ∩ H , we have by the finite case
that U+(F(G1/H1)) satisfies ω(x1, ..., xn) = 1. Replacing G with G1 and H with
H1, we get the statement. ��

Consider the group algebra FG, where G is a locally finite group with an oriented
group involution�, P the set of p-elements ofG andF an infinite field with char(F) =
p �= 2. Suppose that U+(FG) ∈ GI and let G = G/P . If FG satisfies conditions (i)
and (ii) of Theorem 3.1, then by Lemma 3.3, we have that P is a normal subgroup of
G and by Lemma 3.4 U+(FG) is GI. Since FG is regular, it follows that either G is
abelian, or N and G satisfy one of the conclusions of Theorem 3.1 and the involution
∗ : G → G is as given in the expression (3). Moreover, FG

+
is central in FG and thus

FG is PI. Since FG ∼= FG/
(G, P) and 
(G, P) is a nil subring of FG �-invariant,
by [10, Remark 2, p. 450] we have that 
(G, P) is PI and as being PI is closed under
ideal extensions, we get that FG is also PI. Therefore, we obtain the next result for
non-regular group algebras.

Theorem 3.2 Let g �→ g∗ be an involution on a locally finite group G, σ : G → {±1}
a non-trivial orientation with N = ker(σ ), P the set of p-elements of G and F an
infinite field with char(F) = p �= 2. Suppose that U+(FG) ∈ GI and that one of the
following conditions holds:

(i) F is uncountable,
(ii) all finite non-abelian subgroups of G/P which are∗-invariant have no simple com-

ponents in their group algebra over F that are non-commutative division algebras
other than quaternion algebras,
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then we have that

(1) G = G/P is abelian, or
(2) N = N/P = ker(σ ) is abelian and (G\N ) ⊂ G+, or
(3) G and N have the LC-property and there exists a unique non-trivial commutator

s such that the involution ∗ in G is given by

g∗ =
{
g, if g ∈ N ∩ ζ(G) or g ∈ (G \ N ) \ ζ(G);
sg, otherwise.

(4)

Moreover, FG ∈ PI.

To obtain sufficient conditions for locally finite groups G such that U+(FG) ∈ GI,
we need the following lemma:

Lemma 3.5 Let F be a field with char(F) = p �= 2. Let G be a locally finite group
with an involution ∗ and a non-trivial orientation σ . If P is a subgroup of bounded
exponent, and either G/P is abelian, or G/P and N/P are as in Theorem 3.1, then
U+(FG) ∈ GI.

Proof Suppose P is a subgroup of bounded exponent and that N/P , G/P , ∗
and σ are as in the statement. Then by Lemma 3.2, U+(FG) is abelian. Hence
(U+(FG),U+(FG)) ⊂ 1 + 
(G, P). Now 
(G, P) is nil of bounded exponent
and thus (U+(FG),U+(FG))p

n = 1 for some n ≥ 0. Hence U+(FG) ∈ GI. ��
Remark 2 Note that, under the assumptions of Lemma 3.5, in case FG is PI and G/P
is abelian, we obtain that G ′ ⊆ P is of bounded exponent. Hence by [5, Theorem 1.1,
p. 657] even U(FG) satisfies a GI. Now, if G/P is an SLC-group one easily deduces
that also in this caseG ′ is of bounded exponent, but not necessarily a p-group. Finally,
if N = N/P is abelian and (G \ N ) ⊂ G+ we can not assure that G ′ is neither of
bounded exponent nor a p-group.

In the sequel, we characterize the groups for which the symmetric units U+(FG)

under� do satisfy a group identity. For g ∈ G, letCG(g) = {h ∈ G : hg = gh} be the
centralizer of g in G. Set �(G) = {g ∈ G : [G : CG(g)] < ∞} the finite conjugacy
subgroup of G and �p(G) = 〈P ∩ �(G)〉.
Theorem 3.3 Let g �→ g∗ be an involution on a locally finite group G, σ : G → {±1}
a non-trivial orientation and F an infinite field with char(F) = p �= 2. Suppose that
the prime radical η(FG) of FG is a nilpotent ideal and that one of the following
conditions holds:

(i) F is uncountable,
(ii) all finite non-abelian subgroups of G/P which are∗-invariant have no simple com-

ponents in their group algebra over F that are non-commutative division algebras
other than quaternion algebras.

Then U+(FG) ∈ GI if and only if P is a finite normal subgroup and G/P is abelian
or G/P and N/P are as in Theorem 3.1.
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Proof Suppose that U+(FG) ∈ GI, then by Lemma 3.3 we have that P is a normal
subgroup. Now, by Theorem 3.2, either G/P is abelian or G/P and N/P are as in
Theorem 3.1 and hence, FG ∈ PI. Thus by [2, Theorem 5.2.14, p. 189], [G : �(G)] <

∞ and
∣∣�′(G)

∣∣ < ∞. Since η(FG) is nilpotent [2, Theorem 8.1.12, p. 311] gives that
�p(G) = P∩�(G) is a finite normal p-subgroup.As P�(G)/�(G) ∼= P/P∩�(G)

is finite, then P is finite.
Now, the converse is clear by Lemma 3.5. ��

As a corollary following the arguments in Dooms and Ruiz [12, Corollary 3.7, p.
749], we obtain a characterization of the locally finite groups with semiprime group
algebras such that the set of �-symmetric units is GI.

Corollary 3.1 Let g �→ g∗ be an involution on a locally finite group G, σ : G → {±1}
a non-trivial orientation and F an infinite field with char(F) = p �= 2 such that FG
is semiprime. Suppose one of the following conditions holds:

(i) F is uncountable,
(ii) all finite non-abelian subgroups of G/P which are∗-invariant have no simple com-

ponents in their group algebra over F that are non-commutative division algebras
other than quaternion algebras.

Then U+(FG) ∈ GI if and only if U+(FG) is an abelian group.

Proof Suppose U+(FG) ∈ GI, then following the lines of the proof of Theorem 3.3,
FG is semiprime PI. Hence by [2, Theorem 4.2.13, p. 131] �p(G) = {1} and by the
previous proof, we get that P = {1}. Thus FG is regular, and the result follows from
Theorem 3.1. ��
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