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Abstract
We study the stability of shear flows of an incompressible fluid contained in a hor-
izontal layer. We consider rigid–rigid, rigid—stress-free and stress-free—stress-free
boundary conditions. We study (and recall some known results) linear stability/insta-
bility of the basic Couette, Poiseuille and a laminar parabolic flow with the spectral
analysis by using the Chebyshev collocation method. We then use an L2-energy with
Lyapunov second method to obtain nonlinear critical Reynolds numbers, by solv-
ing a maximum problem arising from the Reynolds energy equation. We obtain this
maximum (which gives the minimum Reynolds number) for streamwise perturba-
tions Rec = Rey . However, this contradicts a theorem which proves that streamwise
perturbations are always stabilizing, Rey = +∞. We solve this contradiction with
a conjecture and prove that the critical nonlinear Reynolds numbers are obtained for
two-dimensional perturbations, the spanwise perturbations, Rec = Rex , as Orr had
supposed in the classic case of Couette flow between rigid planes.

Keywords Couette flow · Poiseuille · Stress-free boundary conditions · Nonlinear
stability

Mathematics Subject Classification 76D05 · 76E05

1 Introduction

The stability of parallel shear flows has been studied by many authors analytically,
numerically and with experiments, see Refs. [1–16]. Shear flows have application in
many physical situations, for example in astrophysics, meteorology, oceanography,
geophysics, and engineering, The stability/instability problem is nowadays object of
study because the transition from laminar flows to instability, turbulence and chaos
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is not completely understood and there are some discrepancies between the critical
Reynolds numbers of linear and nonlinear analysis and the experiments at least in the
case of rigid boundary conditions (the so called Couette-Sommerfeld paradox).

Recently [17], we have studied the nonlinear stability of plane Couette and
Poiseuille flows with rigid (and periodic) boundary conditions, with the Lyapunov
second method by using the classical L2-energy. We proved that the streamwise per-
turbations are L2-energy stable for any Reynolds number. This contradicts the results
of Joseph [18], Joseph andCarmi [19] andBusse [8], and led us tomake a guess to solve
that problem. With this conjecture, for plane Couette and Poiseuille flows with rigid
boundaries, we proved that the critical nonlinear Reynolds numbers are obtained along
two-dimensional perturbations, the spanwise perturbations, as Orr [4] had supposed.
This conclusion combined with some results by Falsaperla et al. [15] on the stability
with respect to tilted rolls, provides a possible solution to the Couette-Sommerfeld
paradox.

Herewe investigate the stability for the classical shear flows,Couette andPoiseuille,
in the cases of one rigid an the other stress-free (also called slip-free) boundaries, RF ,
and both stress-free FF boundaries, for completeness we also add the results for rigid
RR boundaries. We also consider a case of a parabolic laminar flow where we assign
the velocity at the bottom and the third component of the velocity and the tangential
stress at top boundary, this problem is more appropriate for studying the flow of water
in a river [20].

Although the case of stress-free planes is an ideal case (which is more appropriate
in astrophysics and meteorology) in some applications it is useful to consider such
boundary conditions. For example at the interface of a multiphase flow FF boundary
conditions can occur in situations including micro-and nano-fluidic flow, flow over
hydrophobic surfaces, rising bubbles in quiescent liquid, and polymer extrusion pro-
cesses, see [21] where the free-slip boundary condition with an adaptive Cartesian
grid method has been implemented. In numerical applications, the possibility of using
free-slip conditions within the context of the particle finite element method (PFEM)
has been investigated [22] “for high Reynolds number engineering applications in
which tangential effects at the fluid-solid boundaries are not of primary interest, the
use of free-slip conditions can alleviate the need for very fine boundary layer meshes”.

In Rao and Rajagopal [23] a history of slip and no-slip boundary conditions and
a list of references can be found. The authors in particular observe that “it has been
found that a large class of polymeric materials slip or stick-slip on solid boundaries.
For instance, when polymeric melts flow due to an applied pressure gradient, there is
a sudden increase in the throughput at a critical", see Rf. [23] p. 113.

The existence of slip between the velocity of the fluid at thewall and the speed of the
wall sometimes is considered [24], the relative velocity is assumed to be proportional
to the shear rate at the wall with a suitable slip coefficient (here we do not consider
this interesting case that will be object of future study).

We recall that the classical results for Couette and Poiseuille for RR boundary
conditions are the following: the plane Poiseuille flow is unstable for Re > 5772
(Orszag [10]); the plane Couette flow is linearly stable for any Reynolds numbers,
Romanov [9]; for laboratory experiments and numerical simulations see, for instance
[13, 14]. The nonlinear asymptotic L2-energy stability has been proved for Reynolds

123



Stability of plane shear flows in a layer with rigid…

numbers Re below some critical nonlinear value Rec which is of the order 102. In
particular Joseph [7, 18] proved that Rec = Rey = 20.65 (and Rex = 44.3) for
plane Couette flow, and Joseph and Carmi [19] proved that Rec = Rey = 49.55 (and
Rex = 87.6) for plane Poiseuille flow. Here and in what follows Rey refers to critical
value for streamwise (or longitudinal) perturbations, Rex refers to the critical value
for spanwise (or transverse) perturbations.

The use of weighted L2-energy has been fruitful for studying nonlinear stability in
fluid mechanics (see Straughan [25]).

Rionero and Mulone [26] studied the nonlinear stability of Couette and Poiseuille
flowswith the Lyapunov secondmethod in the case of stress-free boundary conditions.
By using a weighted energy they proved that plane Couette flows and plane Poiseuille
flows are conditionally asymptotically nonlinear stable for any Reynolds numbers.
They observed that, by applying the classical L2-energymethod, it is possible to obtain
global nonlinear stability. However, they have not studied the maximum problem
obtained from the Reynolds-Orr equation, and by introducing a suitable kinematically
admissible velocity field, they proved that the nonlinear critical Reynolds numbers are
less than 80 and 40 in the FF case of Couette and Poiseuille flows, respectively.

The problem of finding the best conditions for global nonlinear energy stability
with respect to three-dimensional perturbations is still an open problem (for RR, RF
and FF boundary conditions). This problem is equivalent to finding the maximum of
a functional ratio that arises from the Reynolds-Orr energy equation [3].

In the nonlinear case it is often assumed that the least stabilizing perturbations,
as in the linear case, are the two-dimensional spanwise perturbations, see Orr [4].
However, Joseph in his paper on Couette flow [18] proved that the least stabilizing
perturbations are the streamwise perturbations and concluded that the Orr result is
wrong. Joseph and Carmi [19] and Busse [8] obtained a result similar to Joseph [18]
for Poiseuille flow. Moreover, our numerical calculations (for rigid and stress-free
boundary conditions) with the Chebyshev collocation method (see Figs. 6, 7 and 8),
show that the minimum Reynolds number for the energy method is obtained with
respect to streamwise perturbations. In the RR case we obtained (see Ref. [17]) the
same numerical results of Joseph [18] for the Couette case, and Joseph and Carmi
[19] and Busse [8] for the Poiseuille case (Rec = Rey = 20.6 in Couette case, and
Rec = Rey = 49.55 in Poiseuille case).

Despite of the results of Joseph [7, 18], Joseph andCarmi [19], andBusse [8] and our
numerical calculations with the Chebyshev collocation method, we shall prove, also in
the case of a stress-free boundary, that these results lead to a contradiction. In fact, in
Sect. 3, we prove that streamwise perturbations are nonlinear L2-energy exponentially
stable for anyReynolds number (i.e. Rey = +∞). Although some authors [27] assume
that streamwise perturbations are always stable, as far as we know, in the literature
there is no precise proof apart from Moffatt’s proof in a semi-space [28], for rigid
boundary conditions and a vanishing condition of the product of perturbations of
pressure and a component of the velocity field at infinite. We then observe that there
is a contradiction between this result ( Rey = +∞) and the numerical ones, i.e. the
critical Reynolds number is obtained from the maximum problem (see Sect. 3) on
the streamwise perturbations: Rey is a finite real value (for instance in the RR case,
Rey= 20.6 for Couette and Rey=49.5 for Poiseuille). In Sect. 3 we suggest how to
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solve this contradiction through a conjecture: the maximum of the functional ratio
that comes from the Reynolds-Orr energy equation is obtained in a subspace of the
space of kinematically admissible perturbations, the space of physically admissible
perturbations competing for the maximum. In this way, we are able to prove that the
maximum is reached on two-dimensional perturbations, the spanwise perturbations,
and that the streamwise perturbations are stable for any Reynolds number.

This result (i.e. the least stabilizing perturbations are two-dimensional perturba-
tions) justifies the study of the stability with respect to two-dimensional rolls done by
Falsaperla et al. [15]. These rolls appear at the onset of turbulence in the experiments
and so we have a possible explanation of the Couette-Sommerfeld paradox.

The plan of the paper is the following.
In Sect. 2 we write the non-dimensional perturbation equations of laminar flows:

plane Couette, plane Poiseuille and “parabolic" flow, and we recall the classical linear
stability/instability results.

In Sect. 3 we recall the classical energy stability results of Orr [4], Joseph [18],
Joseph and Carmi [19], Busse [8] (see Drazin and Reid [29]). Then, we prove non-
linear exponential stability of streamwise perturbations for any Reynolds number and
any boundary conditions, i.e. Rey = +∞ with respect to the L2-energy norm. Fur-
thermore, we study the maximum problem arising from the Reynolds energy [3], we
arrive at a contradiction and make a conjecture to solve it by introducing the space
of physical admissible perturbations competing for the maximum problem. In this
space we find the optimal perturbations which give the critical Reynolds number: the
spanwise perturbations, as Orr [4] had supposed in the case RR.

In Sect.4 we make some final comments.

2 Laminar flows between two parallel planes

Given a reference frame Oxyz, with unit vectors i, j,k, consider the layer D =
R
2 × [−1, 1] of thickness 2 with horizontal coordinates x, y and vertical coordinate

z.
Plane parallel shear flows are solutions of the stationary Navier-Stokes equations

{
U·∇U = Re−1�U − ∇P

∇ · U = 0,
(1)

characterized by the functional form

U =
⎛
⎝ f (z)

0
0

⎞
⎠ = f (z)i, (2)

where U is the velocity field and P the pressure field, and Re is the Reynolds number.
The function f (z) : [−1, 1] → R is assumed to be sufficiently smooth and is called
the shear profile. All the variables are written in a non-dimensional form. To non-

123



Stability of plane shear flows in a layer with rigid…

dimensionalize the equations and the gap of the layer we use a Reynolds number
based on the maximum velocity and half gap d (see [20]).

In particular, for fixed velocity at the boundaries z = ±1, we have the well known
profiles:

(a) Couette f (z) = z,
(b) Poiseuille f (z) = 1 − z2.

If the velocity vanishes at z = −1 and its derivative with respect to z vanishes at
z = 1, we have the

(c) laminar parabolic flow f (z) = 1

4
[−z2 + 2z + 3].

2.1 Perturbation equations

The perturbation equations to the plane parallel shear flows, in non-dimensional form,
are

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = −u·∇u + Re−1�u − ( f ux + f ′w) − ∂ p

∂x

vt = −u·∇v + Re−1�v − f vx − ∂ p

∂ y

wt = −u·∇w + Re−1�w − f wx − ∂ p

∂z
∇ · u = 0,

(3)

where u = ui+ vj+ wk is the perturbation to the velocity field, p is the perturbation
to the pressure field.

Throughout the paper, we use the symbol hx as ∂h
∂x , ht as

∂h
∂t , etc., for any function

h, f ′ = d f

dz
.

To system (3) we append the
rigid (R) boundary conditions

u(x, y,±1, t) = 0, (x, y, t) ∈ R
2 × (0,+∞),

stress-free (F) boundary conditions

uz(x, y,±1, t) = vz(x, y,±1, t) = w(x, y,±1, t) = 0,

(x, y, t) ∈ R
2 × (0,+∞),

in this case, in order to guarantee the uniquenesswemust add the average conditions

∫
�

u dz dy dz =
∫

�

v dz dy dz = 0

(� is a cell of periodicity, see next section),
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or mixed (RF, rigid - stress-free) boundary conditions

u(x, y,−1, t) = 0, (x, y, t) ∈ R
2 × (0,+∞),

uz(x, y, 1, t) = vz(x, y, 1, t) = w(x, y, 1, t) = 0,

(x, y, t) ∈ R
2 × (0,+∞).

We also give the initial condition

u(x, y, z, 0) = u0(x, y, z), in D,

with u0(x, y, z) solenoidal vector which vanishes at the boundaries.

Definition 2.1 We define streamwise (or longitudinal) perturbations the perturbations
u, p which do not depend on x .

Definition 2.2 We define spanwise (or transverse) perturbations the perturbations u, p
which do not depend on y.

2.2 Linear stability/instability

The linear stability/instability is obtained by studying the linearised system by neglect-
ing the terms u·∇u, u·∇v, u·∇w in (3).

The linear perturbation equations become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Re−1�u − ( f ux + f ′w) − ∂ p

∂x

vt = Re−1�v − f vx − ∂ p

∂ y

wt = Re−1�w − f wx − ∂ p

∂z
∇ · u = 0.

(4)

Since the system is autonomous, we consider solutions of the form (cf. [25, 29]):

f (x, y, z, t) = f (z)ei(ax+by)+ct , (5)

with f = u, v, w or p, in the domain R
2 × (−1, 1) × (0,+∞), a ≥ 0, b ≥ 0,

a2 + b2 > 0, and c is a complex number. By substituting (5) in (4), we have the
system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cu + ia f u + f ′w = Re−1(D2 − (a2 + b2))u − iap

cv + ia f v = Re−1(D2 − (a2 + b2))v − ibp

cw + ia f w = Re−1(D2 − (a2 + b2))w − Dp

iau + ibv + Dw = 0 ,

(6)
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where D and D2 indicate first and second derivatives with respect to z.
We recall that, for rigid boundary conditions, the classical result of Romanov [9]

proves that Couette flow is linearly stable for any Reynolds number. Instead, Poiseuille
flow is unstable for any Reynolds number bigger that 5772 (Orszag [10]).

We observe that, in the linear case, the Squire theorem [6] holds, and the most
destabilizing perturbations are two-dimensional, in particular the spanwise perturba-
tions (see Drazin and Reid [29], p. 155). The critical Reynolds value, for Poiseuille
flow, can be obtained by solving the celebrated Orr-Sommerfeld equation (see Drazin
and Reid [29]).

Applying the Squire transformation [6], we are led to study the system of the
spanwise perturbations:⎧⎪⎪⎨

⎪⎪⎩
cu + ia f u + f ′w = Re−1(D2 − a2)u − iap

cw + ia f w = Re−1(D2 − a2)w − Dp

iau + Dw = 0 ,

(7)

We differentiate the first and secondmember of (7)1 with respect to z, then multiply
by ia; multiply both sides of (7)1 by a2. Taking into account (7)3, adding term to term
the equations so obtained, we get the Orr-Sommerfeld equation [5] (cf. [29], p. 156)

c(D2 − a2)w + ia f (D2 − a2)w − f ′′iaw = Re−1(D2 − a2)2w. (8)

This equation can also be obtained by taking the third component of the double curl
of the equation

cu + f ux + f ′wi = Re−1�u − ∇ p (9)

and applying the solenoidality of the velocity field and the Squire transformation.
It is easy to see that both Couette and Poiseuille flows under stress-free boundary

conditions are linearly stable for any Reynolds number. This is in agreement with the
result of Rionero andMulone [26]. Moreover, plane Couette flow, with rigid boundary
conditions is linearly stable for any Reynolds numbers (Romanov [9]).

By solving this equation with the Chebyshev collocation method, we obtain the
following results for linear stability/instability:
Couette

1. In the stress-free—stress-free case we have stability for any Reynolds number [26]
(see Fig. 1).

2. In the rigid—stress-free case we have stability for any Reynolds number (in this
case we obtain a graph very similar to the FF case).

3. In the rigid–rigid case we have stability for any Reynolds number [9] (in this case
we obtain a graph very similar to the FF case).

Poiseuille

1. In the stress-free—stress-free case we have stability for any Reynolds number [26],
(see Fig. 2).
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Fig. 1 Plane Couette (linear) stability. The surface gives themaximum real part of the time decay coefficient
Real(c), when a runs from 0 to 4, and the Reynolds number � is in the interval [103.5, 106.5] for Orr-
Sommerfeld equation (8) with FF boundary conditions (for RF and RR boundaries the graphics are very
similar). The horizontal plane corresponds to Real(c) = 0. Other computations in larger ranges of � and
a confirm these stability results

Fig. 2 Plane Poiseuille (linear) stability. The surface gives the maximum real part of the time decay coef-
ficient Real(c), when a runs from 0 to 4, and the Reynolds number � is in the interval [103.5, 106.5] for
Orr-Sommerfeld Eq. (8) with FF boundary conditions. The horizontal planes correspond to Real(c) = 0

2. In the rigid—stress-free case we have instability for Re > 169785 (see Fig. 3, left
panel).

3. In the rigid–rigid case we have instability for Re > 5772 (Orszag [10]), (see Fig.
4, right panel).

Laminar parabolic flow

1. In the stress-free—stress-free case we have stability for any Reynolds number (see
Fig. 5, top panel)

123



Stability of plane shear flows in a layer with rigid…

Fig. 3 On the top: the surface gives the real part of the time decay coefficient Real(σ ) for Orr-Sommerfeld
Eq. (8) with RF boundary conditions. a runs from 0.45 to 0.75, and the Reynolds number� is in the interval
[105.2, 105.8]. The meshed plane corresponds to Real(c) = 0, the surface corresponds to the set of points
(a, log10(�), Real(c)). On the bottom: the correspondent critical curve in the a-Re plane is plotted; the
minimum is highlighted by a circle and its numerical value is marked on the horizontal axis. The minimum
is equal to � = 169785

2. In the rigid—stress-free case we have stability of any Reynolds number, see [20]
(see Fig. 5, middle panel).

3. In the rigid–rigid case we have stability for any Reynolds number (see Fig. 5,
bottom panel).
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Fig. 4 On the top: the surface gives the real part of the time decay coefficient Real(σ ) for Orr-Sommerfeld
Eq. (8) with RR boundary conditions. a runs from 0.45 to 0.75, and the Reynolds number� is in the interval
[103.7, 104.2]. The meshed plane corresponds to Real(c) = 0, the surface corresponds to the set of points
(a, log10(�), Real(c)). On the bottom: the correspondent critical curves in the a-Re plane are plotted; the
minimum is highlighted by a circle and its numerical value is marked on the horizontal axis.The minimum
is equal to � = 5772, the Orszag [10] result

3 Nonlinear energy stability

Assume that both u and ∇ p are x, y-periodic with periods a and b in the x and y
directions, respectively, with wave numbers (a, b) ∈ R

2+ . In the following it suffices
therefore to consider functions over the periodicity cell

� = [0, 2π
a

] × [0, 2π
b

] × [−1, 1].
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Fig. 5 Plane parabolic (linear)
stability. Each surface gives the
real part of the time decay
coefficient Real(c), when a runs
from 0 to 4, and the Reynolds
number � is in the interval
[103.5, 106.5] for
Orr-Sommerfeld Eq. (8) with
FF , RF and RR boundary
conditions (from top to bottom).
Each meshed plane corresponds
to �(c) = 0, the surface
corresponds to the set of points
(a, log10(�), Real(c))
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As the basic function space, we take L2(�), which is the space of square-summable
functions in � with the scalar product denoted by

(g, h) =
∫ 2π

a

0

∫ 2π
b

0

∫ 1

−1
g(x, y, z)h(x, y, z)dxdydz,

and the norm given by

‖g‖ =
[∫ 2π

a

0

∫ 2π
b

0

∫ 1

−1
g2(x, y, z)dxdydz

] 1
2
.

Here we study the nonlinear energy stability with the Lyapunov method, by using the
classical energy

V (t) = 1

2
[‖u‖2 + ‖v‖2 + ‖w‖2].

We obtain sufficient conditions of global nonlinear stability.
Taking into account the solenoidality of u and the boundary condition, we write

the Reynolds-Orr energy identity [3]

V̇ = −( f ′w, u) − Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2], (10)

and we have

V̇ = −( f ′w, u) − Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2]

=
( −( f ′w, u)

‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2 − 1

Re

)
‖∇u‖2

≤
(

1

Re c
− 1

Re

)
‖∇u‖2,

(11)

where

1

Re c
= m = max

S
−( f ′w, u)

‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2 , (12)

S is the space of the kinematically admissible fields

S = {u, v, w ∈ H2(�), satisfying the boundary
conditions RR, RF, FF, periodic inx, and y,
ux + vy + wz = 0, ‖∇u‖ > 0},

(13)

and H2(�) is the Sobolev space of the functions which are in L2(�) together with
their first and second generalized derivatives.
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Fig. 6 Plane Couette energy Orr-Reynolds number � = �c as function of the wave numbers a and b, for
system (17) with FF , RF and RR boundary conditions (from top to bottom). The absolute minimum of
each surface is achieved on the streamwise perturbations (a = 0)

Fig. 7 Plane Poiseuille energy Orr-Reynolds number � = �c as function of the wave numbers a and b, for
system (17) with FF , RF and RR boundary conditions (from top to bottom). The absolute minimum of
each surface is achieved on the streamwise perturbations (a = 0)

The Euler-Lagrange equations of this maximum problem are given by

− f ′wi − f ′uk + 2m�u = ∇λ, (14)

where λ is a Lagrange multiplier in the cases RR and RF .
In the case FF , the Euler-Lagrange equations of this maximum problem are given

by

− f ′wi − f ′uk + 2m�u = ∇λ + h, (15)

where the functionλ and the constant vectorh = (h1, h2, 0)T are Lagrangemultipliers
which come from the zero divergence of the velocity vector u, and the zero mean
conditions of u and v, respectively.

It is easy to prove that h = 0. For this we write equation (15) in components

⎧⎪⎨
⎪⎩

− f ′w + 2m�u = λx + h1

2m�v = λy + h2

− f ′u + 2m�w = λz .

(16)

Integrating (16)2 over � we have

2m
∫

�

�vd � =
∫

�

λyd � +
∫

�

h2d �.
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Fig. 8 Plane parabolic energy Orr-Reynolds number � = �c as function of the wave numbers a and b, for
system (17) with RF and RR boundary conditions (from top to bottom). The absolute minimum of each
surface is achieved on the streamwise perturbations (a = 0)

Due to the boundary conditions and the periodicity it follows

h2(meas(�)) = 0

and so h2 = 0. Integrating (16)1 over � we have

−
∫

�

f ′wd � + 2m
∫

�

�ud � =
∫

�

λxd � +
∫

�

h1d �.

As before we deduce

−
∫

�

f ′wd � = h1(meas(�)).

Computing this integral and using the boundary conditions and the divergence-free
equation, we have

−
∫

�

f ′wd � =
∫

�

f wzd � = −
∫

�

[( f u)x + ( f v)y]d � = 0,

and so also h1 = 0. Therefore the Euler-Lagrange equations are given by (14) for any
boundary condition.

We define

ζ = vx − uy

(it is linked to the toroidal part of the decomposition of the velocity vector u in the
poloidal, toroidal and the mean flow, see [30, 31]) and take the third component of the
double curl of (14) and the third component of the curl of (14). We obtain the system
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of the Euler-Lagrange equations written in terms of ζ and w:

{
f ′(ζy + 2wxz) + f ′′wx + 2m��w = 0

f ′wy + 2m�ζ = 0,
(17)

with the boundary conditions

w = wz = 0, ζ = 0 (18)

on z = ±1 in the RR case,

w = wz = 0, ζ = 0 on z = −1 and w = wzz = 0, ζz = 0 on z = 1 (19)

in the RF case,
and

w = wzz = 0, ζz = 0, (20)

on z = ±1 in the FF case.
By solving this system with the Chebyshev collocation method, and using 80 poly-

nomials, we obtain that the critical Reynolds numbers are reached for streamwise
perturbations, Rec = Rey .

In Table 1 we report the critical energy Orr-Reynolds numbers obtained for stream-
wiseRey , and for spanwise perturbationsRex , corresponding to the solutions of system
(17).

In the next subsection, we prove that the streamwise perturbations are stable for any
Reynolds number. This means that the previous results, even if numerically correct
(see for example the case of the Couette flow with rigid boundary conditions studied
by Joseph [18]) do not match the physics of the problem [17]. This is due to a possible
wrong choice of the space of the fields competing for amaximumproblem (see below).

Table 1 We report the Reynolds numbers and wave numbers for spanwise (�x , a) and streamwise (�y , b)
perturbations, obtained from system (17) for different basic laminar flows and boundary conditions. The
case FR corresponds to consider stress-free perturbations at the bottom plane

Couette Poiseuille Parabolic

RR �x = 44.30 a = 1.89 �x = 87.59 a = 2.09 �x = 84.95 a = 1.92

�y = 20.66 b = 1.55 �y = 49.59 b = 2.05 �y = 39.86 b = 1.58

RF �x = 34.88 a = 1.57 �x = 62.64 a = 1.70 �x = 72.98 a = 1.62

�y = 12.93 b = 1.04 �y = 22.25 b = 1.15 �y = 30.63 b = 1.13

FF �x = 26.34 a = 1.21 �x = 48.89 a = 1.39 �x = 50.51 a = 1.27

�y = 19.22 b = 1.14

FR �x = 34.88 a = 1.57 �x = 62.64 a = 1.70 �x = 61.73 a = 1.57

�y = 12.93 b = 1.04 �y = 22.25 b = 1.15 �y = 21.19 b = 1.02
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3.1 Stability of streamwise perturbations for any Reynolds number

Weassume that the perturbations are streamwise, i.e. they do not depend on x ( ∂
∂x ≡ 0).

Therefore the perturbation Eqs. (3) become

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = −u·∇u + Re−1�u − f ′w

vt = −u·∇v + Re−1�v − ∂ p

∂ y

wt = −u·∇w + Re−1�w − ∂ p

∂z
vy + wz = 0.

(21)

Weuse the classical energy norm and show that the streamwise perturbations cannot
destabilize the basic laminar flows: Couette, Poiseuille and laminar parabolic flow (see
[17]).

We multiply (21)1 by u and integrate over � (now � = �yz = [0, 2π
b ] × [−1, 1]).

Besides, we multiply (21)2 and (21)3 by v and w and integrate over �. By taking
into account of the solenoidality of u, the boundary conditions and the periodicity, we
have

d

dt

‖u‖2
2

= −( f ′u, w) − Re−1‖∇u‖2,

d

dt
(
‖v‖2
2

+ ‖w‖2
2

) = −Re−1[‖∇v‖2 + ‖∇w‖2].

By using the Wirtinger inequality [30, 32],

d

dt
(
‖v‖2
2

+ ‖w‖2
2

) = −Re−1[‖∇v‖2 + ‖∇w‖2]
≤ −C(‖v‖2 + ‖w‖2).

(22)

and integrating we have

‖v‖2 + ‖w‖2 ≤ H0e
−2Ct , H0 = ‖v0‖2 + ‖w0‖2, (23)

where C is a positive constant which depends on the domain and the boundary condi-

tions: C = 1

Re
min{π

2

4
, b2} for FF boundaries, C = π2

16Re
for RF boundaries, and

C = π2

4Re
for RR boundaries. v0 and w0 are the initial values of v and w.
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Now we consider the equation depending on u and define M = max[−1,1] | f ′(z)|.
We have the following inequalities:

d

dt

‖u‖2
2

= −( f ′u, w) − Re−1‖∇u‖2 ≤ M‖u‖‖w‖ +

−Re−1‖∇u‖2 ≤ M(
‖u‖2
2ε

+ ε

2
‖w‖2) +

−Re−1‖∇u‖2 ≤ M(
‖u‖2
2ε

+ ε

2
‖w‖2) +

−C‖u‖2 = (
M

2ε
− C)‖u‖2 + ε

2
M‖w‖2

= −C

2
‖u‖2 + M2

C

‖w‖2
2

. (24)

where ε = M

C
.

We use this inequality and (23) to obtain

d

dt
‖u‖2 ≤ −C‖u‖2 + M2

C
‖w‖2 ≤ −C‖u‖2+

+ M2

C
(‖v‖2 + ‖w‖2) ≤ −C‖u‖2 + M2

C
H0e

−2Ct .

(25)

Integrating last inequality, we have

‖u‖2 ≤ e−Ct [k − M2

C2 H0e
−Ct ] = ke−Ct − M2

C2 H0e
−2Ct , (26)

with k = K0 + M2

C2 H0, K0 = ‖u0‖2, and u0 are the initial value of u.

We introduce the classical energy

L(t) = 1

2
[‖u‖2 + ‖v‖2 + ‖w‖2], (27)

and observe that the initial energy is given by L0 = H0 + K0

2
. Adding the (23) and

the (26) we finally have:

L(t) ≤ H0e
−2Ct + (K0 + M2

C2 H0)e
−Ct − M2

C2 H0e
−2Ct

≤ L0e
−2Ct + (L0 + M2

C2 L0)e
−Ct

= L0(e
−2Ct + e−Ct + M2

C2 e
−Ct ).

(28)
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This inequality implies nonlinear exponential stability of the basic laminar flows (Cou-
ette, Poiseuille and parabolic) with respect to the streamwise perturbations for any
Reynolds number.
Therefore, we have proved:

Theorem 3.1 Assuming the perturbations to the basic shear flows (2) are streamwise,
then we have nonlinear stability according to (28) for any Reynolds number.

From this Theorem we have Rey = +∞, i.e., the streamwise perturbations cannot
destabilize the basic flows. This contradicts the numerical results we have reached (cf.
Joseph [18], Joseph and Carmi [19] and Busse [8], in the RR case).

3.2 Possible solution of the contradiction

Probably the contradiction we have obtained in the previous subsection is due to the
choice of the space of kinematically admissible perturbations where we look for the
maximum [17]. Falsaperla et al. [17] note that this space is too large and likely contains
perturbations which are not admissible as physical perturbations competing for the
maximum.

How can we solve this contradiction?
As in Falsaperla et al. [17], we first observe that if the streamwise perturbations

(now wx = 0 and ζx = 0) are stable for any Reynolds number, than, from (17)1,
m = 0 and this implies that ζy = 0 for any basic flow and any boundary condition.
Equation (17)2 implies that also wy = 0. If now we consider plan-form perturbations

(see Chandrasekhar [33], p.24 formula (111)) we have v = 1

a2 + b2
[wyz − ζx ] = 0.

So, as in [17], we are led to speculate the
Conjecture:
A possible answer to the contradiction is this: we introduce the subspace S0 of the

physical admissible perturbationswhich is the subspace ofS consisting ofmaximizing
functions u, v, w ∈ S such that v = 0 and we conjecture that the maximum m is
assumed among the functions of this subspace, for any basic flow and any boundary
condition. Furthermore, we observe that in the numerator of (12) does not appear
explicitly the field v.

With this conjecture, we see immediately that the streamwise perturbations are
always stable and the maximum is achieved on the spanwise perturbations.

In fact, from the Reynolds-Orr equation

V̇ = −( f ′w, u) − Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2], (29)

we have the inequality

V̇ ≤ −Re−1‖∇v‖2 − ( f ′w, u) − Re−1[‖∇u‖2 + ‖∇w‖2]
≤ −Re−1‖∇v‖2 − (m − Re−1)[‖∇u‖2 + ‖∇w‖2], (30)
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where

m = max
S0

−( f ′w, u)

‖∇u‖2 + ‖∇w‖2 . (31)

The Euler-Lagrange equations of this maximum problem are given by

− f ′wi − f ′uk + 2m�u = ∇λ, (32)

where λ is a Lagrange multiplier, ∇λ = (λx , 0, λz)
T .

We take the third component of the double curl of (32) and the third component
of the curl of (32). We obtain the system of the Euler-Lagrange equations written in
terms of ζ and w:

{
f ′(ζy + 2wxz) + f ′′wx + 2m��w = 0

f ′wy + 2m�ζ = 0,
(33)

with the boundary conditions (20), (19), (18), where now ζ = −uy .
We take the second component of the double curl of (32) to get

f ′ζz + f ′′ζ − f ′wxy = 0. (34)

From this equation and (33)2 we have that ζ and all its derivative with respect to z are
zero on the boundaries. Let’s prove this in a particular case: Couette between rigid
planes and for FF boundary conditions. The proof in the case of the other laminar
flows and different boundary conditions is done in a similar way.

In the case of RR Couette, from (33) and (34), we have:

⎧⎪⎨
⎪⎩

ζy + 2wxz + 2m��w = 0

wy + 2m�ζ = 0

ζz − wxy = 0.

(35)

On the boundaries z = ±1 we have ζ = 0, from (35)3 evaluated on z = ±1, we

have ζ ′ = 0 (ζ ′ = dζ

dz
). From (35)2, evaluated on z = ±1, we have ζ ′′ = 0. Now if

we differentiate (35)2 with respect to z and evaluate the result on the boundaries we
have ζ ′′′ = 0. From this, if we differentiate twice (35)3 with respect to z we have that
the second derivative of w with respect to z is zero on the boundaries. And so, from
(35)2 differentiated twice with respect to z we have ζ ′′′′ = 0, ad so on.

In the case of FF Couette we have ζ ′ = 0 on the boundaries. From ζ = −uy and
the solenoidality of velocity field, we have ζx = −uxy = wzy . Moreover, by taking
the Laplacian of (35)3 we have �ζz = �wxy . Evaluating this on z = ±1, we have
�ζz = 0 on the boundaries. From (35)2 we now havewyz = ζx = 0. This implies that
ζ = 0 on the boundaries. (35)2, evaluated on z = ±1, implies that ζ ′′ = 0 on z = ±1.
From this and �ζz = 0 on the boundaries, we also have ζ ′′′ = 0 on the boundaries.
Now we take the Laplacian of (35)2 and we get also ζ ′′′′ = 0 on z = ±1. And so on.
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This implies that ζ ≡ 0, hence uy = 0 and from (33)2 also wy = 0. Therefore,
u = u(x, z), v = 0, w = w(x, z) and the less stabilizing perturbations which satisfy
the equation

2 f ′wxz + f ′′wx + 2m��w = 0, (36)

with boundary conditions conditions (20), (19), (18), are the spanwise perturbations,
as Orr [4] had supposed for RR Couette case. Moreover, if we consider streamwise
perturbations, from the equation

m‖�w‖2 = 0,

we immediately find m = 0, i.e. Rey = +∞. We report these results in Figs. 9, 10,11
(similar graphs can be done in the case FR), where the critical Reynolds number
versus wave numbers for spanwise perturbations are shown.

4 Conclusion

We study linear instability and nonlinear stability in the L2-energy norm for laminar
Couette, Poiseuille and parabolic flows when at least one of the planes bounding the
layer is stress-free. We also recall the classic case of rigid boundaries for Couette and
Poiseuille flows.

Fig. 9 The energy Orr-Reynolds number, for Couette shear flow, as function of the wavenumber a, for Eq.
(36) with rigid-rigid, rigid-free, free-free boundary conditions (from the top to the bottom curve). For each
curve, the minimum is highlighted by an asterisk and its numerical value is marked on the y-axis. Note
that the minimum of the curve corresponding to the rigid-free boundary conditions is greater than the one
corresponding to the free-free boundary conditions and lower than the one corresponding to the rigid-rigid
boundary conditions
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Fig. 10 The energy Orr-Reynolds number, for Poiseuille shear flow, as function of the wavenumber a, for
Eq. (36) with rigid-rigid, rigid-free, free-free boundary conditions (from the top to the bottom curve). For
each curve, the minimum is highlighted by an asterisk and its numerical value is marked on the y-axis. Note
that the minimum of the curve corresponding to the rigid-free boundary conditions is greater than the one
corresponding to the free-free boundary conditions and lower than the one corresponding to the rigid-rigid
boundary conditions

Fig. 11 The energy Orr-Reynolds number, for parabolic shear flow, as function of the wavenumber a, for
Eq. (36) with rigid-rigid, rigid-free, free-free boundary conditions (from the top to the bottom curve). For
each curve, the minimum is highlighted by an asterisk and its numerical value is marked on the y-axis. Note
that the minimum of the curve corresponding to the rigid-free boundary conditions is greater than the one
corresponding to the free-free boundary conditions and lower than the one corresponding to the rigid-rigid
boundary conditions

We observe that the classical Couette and Poiseuille basic motions are obtained
with RR boundary conditions, however it is possible to study the stability also with
respect to stress-free perturbations. In fact, as can be verified, such basic motions can
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be obtained when one of the two planes has an assigned tangential stress (stress-free
perturbations), for example in the case of the Couette motion U (z) = z, the value
of U (z) can be assigned in the lower plane - rigid plane - and its first derivative in
the upper plane, or both have a fixed tangential stress (in this case, for the purpose of
uniqueness of the motion, an assigned average condition must be requested).

By using the energy norm, we prove nonlinear stability conditions with respect to
streamwise perturbations for any Reynolds number, and for any boundary condition
RR, RF and FF i.e. we have Rey = +∞. On the other hand, the numerical calcu-
lations made with the Chebyshev collocation method give critical Reynolds numbers
Rey < +∞ for non-linear energy stability on streamwise perturbations. This, as seen
in the work of Falsaperla et al. [16], gives rise to a contradiction. We make a conjec-
ture to overcome this contradiction: we introduce a space of physical perturbations
competing for the maximum problem and we prove that the least stabilizing perturba-
tions are two-dimensional (spanwise perturbations), for any boundary conditions RR,
RF , FF .

We note that the critical Reynolds numbers we obtain for each basic flow Couette,
Poiseuille and parabolic, show the stabilizing effect of the no slip boundaries as Figs. 9,
10 and 11 also indicate. This happens also in the Bénard problem, see Chandrasekhar
[33] for a fluid in a layer between rigid or stress-free boundaries.Moreover, we observe
that the least critical Reynolds numbers (on the spanwise perturbations) are given for
Couette case (for any boundary conditions).

We observe that in Table 1, in the FF case, we left two empty lines because our
calculations, for streamwise perturbations, give some problems of convergence and
numerical instability for b → 0.

Some open open problems are:

• To prove the conjecture;
• To consider laminar flows with Navier boundary conditions;
• The study the same problem in magnetohydrodynamics;
• To study the same problem for a mixture of immiscible fluids;
• To consider the stability of laminar flows for reological fluids (non-Newtonian
fluids);

• To better understand the transition growth mechanism [27, 34].
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