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Abstract
In the paper we prove the weighted Hardy type inequality

∫
RN

Vϕ2μ(x)dx ≤
∫
RN

|∇ϕ|2μ(x)dx + K
∫
RN

ϕ2μ(x)dx, (1)

for functions ϕ in a weighted Sobolev space H1
μ, for a wider class of potentials V than

inverse square potentials and for weight functions μ of a quite general type. The case
μ = 1 is included. To get the result we introduce a generalized vector field method.
The estimates apply to evolution problems with Kolmogorov operators

Lu = Δu + ∇μ

μ
· ∇u

perturbed by singular potentials.

Keywords Weighted Hardy type inequalities · Kolmogorov operators · Singular
potentials · Evolution problems

Mathematics Subject Classification 35K15 · 35K65 · 35B25 · 34G10 · 47D03

1 Introduction

Themain purpose of the paper is to state a class of inequalities inRN which generalizes
the weighted Hardy inequalities to the case of a more general type of potentials than
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620 A. Canale

inverse square potentials. The method we introduce to get the result is a generalization
of the vector field technique used in [19] to prove the classical Hardy inequality. The
estimates we prove fit in the framework of the study of boundedness of multiplication
operators defined in Sobolev spaces and of the related embedding results.

When V is an inverse square potential, weighted Hardy inequalities have been
studied in [10,17], in the case of Gaussian measures, and in [8,11,12] in the setting of
more general measures.

In the paper we state the inequality

∫
RN

Vϕ2μ(x)dx ≤
∫
RN

|∇ϕ|2μ(x)dx + K
∫
RN

ϕ2μ(x)dx, (2)

with K constant, for functions in a weighted Sobolev space H1
μ, for a class of potentials

V , 0 ≤ V ∈ L1
loc(R

N ), and for weight functions μ of a quite general type.
The estimate includes the case of the Lebesgue measure and the weighted Hardy

inequality with V inverse square potential.
The main reason we are interested in this kind of inequality lies in the applications

to the study of Kolmogorov operators

Lu = Δu + ∇μ

μ
· ∇u, (3)

defined on smooth functions, perturbed by singular potentials, and of the related evo-
lution problems

(P)

{
∂t u(x, t) = Lu(x, t) + V (x)u(x, t), x ∈ R

N , t > 0,
u(·, 0) = u0 ≥ 0, u0 ∈ L2

μ,

where L2
μ := L2(RN , dμ), with dμ(x) = μ(x)dx .

In the applications to existence of weak positive solutions to problem (P)we follow
Cabré-Martel’s approach using the relation between the weak solution of (P) and the
bottom of the spectrum of the operator −(L + V )

λ1(L + V ) := inf
ϕ∈H1

μ\{0}

(∫
RN |∇ϕ|2 dμ − ∫

RN Vϕ2 dμ∫
RN ϕ2 dμ

)
.

When μ = 1 Cabré and Martel in [2] showed that the boundedness of λ1(Δ + V ) is a
necessary and sufficient condition for the existence of positive exponentially bounded
in time solutions to the associated initial value problem. Later in [8,12,17] similar
results have been extended to Kolmogorov operators perturbed by inverse square
potentials. The proof uses some properties of the operator L and of its corresponding
semigroup in L2

μ(RN ).
The existence of positive solutions to (P) is related to the Hardy type inequality

(2). This is due to the relationship between the estimate of the bottom of the spectrum
λ1(L + V ) and the inequality.
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A class of weighted Hardy type inequalities inRN 621

The paper is organized as follows.
In Sect. 2 we present the class of potentials we consider in the paper and give some

examples. In Sect. 3 we state, as a first step, an unweighted Hardy type inequality
introducing a generalized vector field method and observing the connection with the
embedding results. In Sect. 4 we introduce a class of weight functions and state a
weighted inequality. Section 5 is devoted to an application to evolution problems.

2 A class of potentials

The class of potentials V we consider in unweighted case is of the type

(H1) V = V (x) ∈ L1
loc(R

N ) and 0 ≤ V ≤ V f := −Δ f
f , where the radial

functions f fulfil
(H2) (i) f > 0, f ∈ C2(RN ) or f ∈ C2(RN \ {0});

(i i) −Δ f
f ≥ 0.

Under the condition f ∈ C2(RN ) in H2), we can integrate by parts in the proof of the
inequalities in the next Sections. We need i i) in H2) to apply Fatou’s lemma in the
proof and to obtain nonnegative potentials V on the left-hand side in the inequalities.

The class of radial functions f for |x | = ρ ∈ [r0,+∞[ satisfying H2) is such that

f ′′ + N − 1

ρ
f ′ =

(
f ′ρN−1

)′

ρN−1 ≤ 0,

where f ′, f ′′ are the first and the second derivatives with respect to ρ, respectively.
So the radial functions are such that f ′ρN−1 is decreasing, from which

f ′(r) ≤ f ′(r0) r N−1
0

r N−1 , r0 ≤ r .

If we integrate in [r0, r ], r0 > 0, we get

f (r) ≤ c1
r N−2 + c2,

where c1 = − f ′(r0) r N−1
0

N−2 and c2 = f ′(r0) r0
N−2 + f (r0), or, equivalently,

f (r) ≤ c3
r N−2 − c3

r N−2
0

+ f (r0),

where c3 = − f ′(r0) r N−1
0

N−2 , that is the function f (r) − c3
r N−2 is decreasing.

This class includes the function

fε(x) = 1

(ε + |x |2) α
2
, ε > 0, α ∈]0, N − 2[, (4)
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622 A. Canale

used to get the Hardy inequality with potential V = c
|x |2 , c ∈]0, (N − 2)2/4] in [11]

and, through the vector field method, with α = 2, in [19] .
An example of function f ∈ C2(RN\{0}) verifying H2) is represented by f (x) =
1

logα(1+|x |) , for α ∈]0, N − 2], which generates a potential

which behaves like cα
|x |2 near to zero.

In the case when f (x) = log(1+|x |)
|x |α , α ∈ [1, N − 2], the potential

V f = α(N − 2 − α)

|x |2 − N − 1 − 2α

|x |(1 + |x |) log(1 + |x |) + 1

(1 + |x |)2 log(1 + |x |) .

behaves like cα
|x |2 when |x | goes to zero if N ≥ 4 and as 1

|x | if N = 3. If α ≥ N−1
2 , we

get

V = −α2 + α(N − 2)

|x |2 ≤ V f .

Another admissible potential V related to f is

V = 1

(1 + |x |)2 log(1 + |x |) ≤ V f ,

where the singularity in zero is of different type.
In general, under assumptions H2), the functions f = f (r) solves the linear dif-

ferential equation for suitable potentials V f

f ′′ + N − 1

r
f ′ + f V f = 0

or equivalently, by placing u = f ′
f , the Riccati equation

u′ = −u2 − N − 1

r
u − V f .

In a forthcoming paper we study examples of functions f to get improved Hardy
inequality in bounded sets in RN .

3 First step: unweighted Hardy type inequalities

The estimate in the next Theorem concerns the case of Lebesgue measure.

Theorem 1 Under the condition H1) and H2), we get the estimate

∫
RN

Vϕ2 dx ≤
∫
RN

|∇ϕ|2 dx (5)

for any functions ϕ ∈ H1(RN ).
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A class of weighted Hardy type inequalities inRN 623

Proof By density, it is enough to prove (5) for every ϕ ∈ C∞
c (RN ).

As a first step we suppose f ∈ C2(RN ) and prove that it holds

−
∫
RN

Δ f

f
ϕ2 dx ≤

∫
RN

|∇ϕ|2 dx . (6)

To this aim we introduce the vectorial function

F = −∇ log f .

The starting point is the following integral

∫
RN

divF ϕ2 dx = −
∫
RN

Δ log f ϕ2 dx

= −
∫
RN

Δ f

f
ϕ2 dx +

∫
RN

∣∣∣∣∇ f

f

∣∣∣∣
2

ϕ2 dx . (7)

The next step is to estimate the integral on the left-hand side in (7) from above. We
integrate by parts taking into account that Fj ,

∂Fj
∂x j

∈ L1
loc(R

N ) where Fj = − 1
f

∂ f
∂x j

.
Using Hölder’s and Young’s inequalities we get

∫
RN

divF ϕ2dx = −2
∫
RN

ϕF · ∇ϕ dx

≤ 2

(∫
RN

|∇ϕ|2 dx
) 1

2
(∫

RN

∣∣∣∣∇ f

f

∣∣∣∣
2

ϕ2 dx

) 1
2

≤
∫
RN

|∇ϕ|2 dx +
∫
RN

∣∣∣∣∇ f

f

∣∣∣∣
2

ϕ2 dx . (8)

Putting together (7) and (8) we have

−
∫
RN

Δ f

f
ϕ2 dx +

∫
RN

∣∣∣∣∇ f

f

∣∣∣∣
2

ϕ2 dx

≤
∫
RN

|∇ϕ|2 dx +
∫
RN

∣∣∣∣∇ f

f

∣∣∣∣
2

ϕ2 dx (9)

and, then, (6).
If f ∈ C2(RN\{0}), reviewing the radial function f as f = f (|x |2), we

remove the singularity introducing the corresponding function fε, ε > 0, as fε =
f (ε + |x |2) ∈ C2(RN ). This is why the gradient of |x |2 is not singular in zero. So we
get limε→0 fε(x) = f (x) and Δ fε → Δ f . Then we reason as above to get

−
∫
RN

Δ fε
fε

ϕ2 dx ≤
∫
RN

|∇ϕ|2 dx . (10)
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624 A. Canale

Letting ε → 0 on the left-hand side in (10), by Fatou’s lemma and H1), we deduce
the inequality (5). 	

Remark 1 We obtain the classical Hardy inequality if f (x) = 1

|x |α , for α ∈]0, N − 2[.
We remove the singularity in zero introducing fε(x) = f (ε + |x |2) = 1

(ε+|x |2) α
2

(cf. (4)) which generates the vectorial function F(x) = α x
ε+|x |2 . The potential is

V f = c
|x |2 , c = α(N − 2 − α). The maximum value of the constant c is co = (N−2)2

4

attained for α = N−2
2 . In general we cannot state the optimality of the inequality (5).

Furthermore we remark that the method we use in the proof of the Theorem 1, in
the case fε(x) = 1

ε+|x |2 , results to be the vector field method used in [19] to prove the
Hardy inequality.

As a consequence of Theorem 1 we deduce the boundedness of the multiplication
operator

ϕ → V
1
2 ϕ (11)

defined in the Sobolev space H1(RN ) and which takes values in L2(RN )

‖V 1
2 ϕ‖L2(RN ) ≤ c‖ϕ‖H1(RN ),

where c is a constant independent of V and ϕ, and, then, we get an embedding result.
For L p estimates for multiplication operators and embedding results of this type

with some applications to elliptic equations see [3–7,16].

4 Weighted Hardy type inequalities

Nowwe consider theHardy type inequality in theweighted case. Letμ ≥ 0 be aweight
function on R

N . We define the weighted Sobolev space H1
μ = H1(RN , μ(x)dx) as

the space of functions in L2
μ := L2(RN , μ(x)dx) whose weak derivatives belong to

L2
μ.
The conditions on μ which we need are the following.

(H3) (i)
√

μ ∈ H1
loc(R

N );
(i i) μ−1 ∈ L1

loc(R
N );

(i i i) there exist constants K1, K2 ∈ R such that under the hypothesis H2) on f it
holds

∇ log f · ∇μ ≤
(
K1 + K2

x

|x |2 · ∇ f

f

)
μ (12)

with K2 so that

− Δ f

f
− K2

x

|x |2 · ∇ f

f
= − f ′′

f
− (N + K2 − 1)

r

f ′

f
≥ 0. (13)
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A class of weighted Hardy type inequalities inRN 625

Let us observe that under the assumptions (i) and (i i) in the hypothesis H3) the space
C∞
c (RN ) is dense in H1

μ (see e.g. [20]). So we can regard H1
μ as the completion of

C∞
c (RN ) with respect to the Sobolev norm

‖ · ‖2H1
μ

:= ‖ · ‖2L2
μ

+ ‖∇ · ‖2L2
μ
.

The condition (13) is the same as i i) in H2) with N + K2 in place of N .
The condition (12) states a relation between f andμ and can be rewritten as follows

f ′

f

(
μ′

μ
− K2

r

)
≤ K1, r = |x |. (14)

For f fixed, it is a condition forμ. For example if f is as in (4), good weight functions
to get weighted Hardy inequalities are the functions

μ(x) = 1

|x |γ e
−δ|x |m , δ ≥ 0, γ < N − 2,

for suitable values of γ and m (see [11]). Conversely, for μ fixed, (14) represents a
condition on f . If, for example,μ(x) = e−δ|x |2 , a Gaussian function, K2 > 0, starting
with (14) and integrating in [r0, r ], r0 > 0, we get the necessary condition

f (r) ≥ f (r0)

(
2δr20 + K2

2δr2 + K2

) K1
4δ

.

The assumption on the potential V in the weighted case is the following

H4) V = V (x) ∈ L1
loc(R

N ) and

0 ≤ V ≤ V f := −Δ f

f
− K2

x

|x |2 · ∇ f

f
. (15)

The next result is an inequality of Hardy type with weight. To obtain the result we
introduce a suitable vectorial function F and use the method introduced in Sect. 2 in
the case μ = 1.

Theorem 2 Under the conditions (i) in (H2), (H3) and (H4), the following inequality
with potential V holds

∫
RN

Vϕ2 dμ ≤
∫
RN

|∇ϕ|2 dμ + K1

∫
RN

ϕ2 dμ, (16)

for any functions ϕ ∈ H1
μ.

Proof As in the Theorem 1 it is enough to prove (16) for any ϕ ∈ C∞
c (RN ). As in the

previous proof we suppose f ∈ C2(RN ) at first.
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626 A. Canale

We introduce the function

F = −μ∇ log f .

The divergence of the vector field assumes the form

divF = −μΔ log f − ∇ log f · ∇μ = −Δ f

f
μ +

∣∣∣∣∇ f

f

∣∣∣∣
2

μ − ∇ f

f
· ∇μ.

So, by hypothesis (i i i) in (H3), we obtain from below

∫
RN

divF ϕ2dx = −
∫
RN

Δ f

f
ϕ2 dμ +

∫
RN

∣∣∣∣∇ f

f

∣∣∣∣
2

ϕ2 dμ

−
∫
RN

∇ f

f
· ∇μ

μ
ϕ2 dμ ≥

∫
RN

Δ f

f
ϕ2 dμ

+
∫
RN

∣∣∣∣∇ f

f

∣∣∣∣
2

ϕ2 dμ

−K1

∫
RN

ϕ2 dμ − K2

∫
RN

x

|x |2 · ∇ f

f
ϕ2 dμ. (17)

To estimate the integral on the left-hand side in (17) from above, reasoning as in the
proof of Theorem 1 to get (8), we integrate by parts.

To this aim we need to Fj ,
∂Fj
∂x j

∈ L1
loc(R

N ) where Fj , for j = 1, . . . n, is the j-th

component of F . For the partial derivatives of Fj , it is sufficient that − 1
f

∂ f
∂x j

√
μ ∈

L2
loc(R

N ) and 1
f

∂2 f
∂x2j

μ ∈ L1
loc(R

N ). In particular, for any K compact set in R
N , Fj

belongs to L1
loc(R

N ) since μ ∈ L1
loc(R

N ) by (i) in (H3).
On the other hand

∫
K

∣∣∣∣∂Fj

∂x j

∣∣∣∣ dx ≤
∫
K

∣∣∣∣ 1f
∂ f

∂x j

∣∣∣∣
2

μ(x) dx +
∫
K

∣∣∣∣∣−
1

f

∂2 f

∂x2j

∣∣∣∣∣ μ(x) dx

+
∫
K

∣∣∣∣− 1

f

∂ f

∂x j

∂μ

∂x j

∣∣∣∣ dx . (18)

The last term on the right-hand side in (18) can be estimated using Hölder’s inequality

∫
K

∣∣∣∣− 1

f

∂ f

∂x j

∂μ

∂x j

∣∣∣∣ dx ≤
(∫

K

∣∣∣∣− 1

f

∂ f

∂x j

∣∣∣∣
2

μ(x) dx

) 1
2
(∫

K

∣∣∣∣ 1√
μ

∂μ

∂x j

∣∣∣∣
2

dx

) 1
2

≤ 4

(∫
K

∣∣∣∣− 1

f

∂ f

∂x j

∣∣∣∣
2

dμ

) 1
2 (∫

K

∣∣∇√
μ

∣∣2 dx

) 1
2

.
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A class of weighted Hardy type inequalities inRN 627

Then
∂Fj
∂x j

is locally integrable by (i) in (H3). In analogy to (8) we get

∫
RN

divF ϕ2 dx = −2
∫
RN

ϕF · ∇ϕ dx

≤
∫
RN

|∇ϕ|2 dμ +
∫
RN

∣∣∣∣−∇ f

f

∣∣∣∣
2

ϕ2 dμ. (19)

From (17) and (19) we deduce that

−
∫
RN

Δ f

f
ϕ2 dμ − K2

∫
RN

(
x

|x |2 · ∇ f

f

)
ϕ2 dμ

≤
∫
RN

|∇ϕ|2 dμ + K1

∫
RN

ϕ2 dμ. (20)

If f ∈ C2(RN \ {0}) we argue as in the proof of Theorem 1 to avoid the singularity
by means the introduction of functions fε ∈ C2(RN ) which approximate f getting

−
∫
RN

Δ fε
fε

ϕ2 dμ − K2

∫
RN

x

|x |2 · ∇ fε
fε

ϕ2 dμ

≤
∫
RN

|∇ϕ|2 dμ + K1

∫
RN

ϕ2 dμ. (21)

The condition (13) in (H3) allow us to apply Fatou’s lemma. So, letting ε → 0 on the
left-hand side in (21) we deduce (20) and, so, the inequality (16) taking into account
(15). 	


A weighted Hardy inequality was stated in [11] with f as in (4), which generates
the potential V = c

|x |2 , with c ∈]0, (N + K2 − 2)2/4], using a different method. We
observe that the Theorem 2 includes the case of inverse square potentials.

Remark 2 In an alterative way we can suppose

− 1

f

∂ f

∂x j

√
μ ∈ L2

loc(R
N ),

1

f

∂2 f

∂x2j
μ ∈ L1

loc(R
N )

in place of hypothesis (i) in (H2). The proof of the Theorem 2 would be slightly
different with more attention to show local integrability and to apply integration by
parts.

To conclude, we observe that from Theorem 2 we get the following estimate for
the multiplication operator (11)

‖V 1
2 ϕ‖L2

μ
≤ c‖ϕ‖H1

μ
.
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628 A. Canale

5 An application to evolution problems

The purpose is to show an application of Hardy inequalities to evolution problems of
the type

(P)

{
∂t u(x, t) = Lu(x, t) + V (x)u(x, t), x ∈ R

N , t > 0,
u(·, 0) = u0 ≥ 0, u0 ∈ L2

μ,

where L + V is the Kolmogorov operator

Lu = Δu + ∇μ

μ
· ∇u, (22)

on smooth functions, perturbed by a potential V which fulfils condition H4). The
weight function μ in the drift term belongs to C1,λ

loc (RN\{0}).
In particular we state an existence result for weak solutions to the initial value

problem (P) if a Hardy type inequality holds.
We say that u is a weak solution to (P) if, for each T , R > 0, we have

u ∈ C([0, T ] , L2
μ), Vu ∈ L1(BR × (0, T ) , dμdt)

and

∫ T

0

∫
RN

u(−∂tφ − Lφ) dμdt −
∫
RN

u0φ(·, 0) dμ =
∫ T

0

∫
RN

V uφ dμdt

for all φ ∈ W 2,1
2 (RN × [0, T ]) having compact support with φ(·, T ) = 0, where BR

denotes the open ball of RN of radius R centered at 0. For any Ω ⊂ R
N , W 2,1

2 (Ω ×
(0, T )) is the parabolic Sobolev space of the functions u ∈ L2(Ω × (0, T )) having
weak space derivatives Dα

x u ∈ L2(Ω × (0, T )) for |α| ≤ 2 and weak time derivative
∂t u ∈ L2(Ω × (0, T )) equipped with the norm

‖u‖W 2,1
2 (Ω×(0,T ))

:=
(

‖u‖2L2(Ω×(0,T ))
+ ‖∂t u‖2L2(Ω×(0,T ))

+
∑

1≤|α|≤2

‖Dαu‖2L2(Ω×(0,T ))

) 1
2

.

In the standard setting one considers μ ∈ C1,λ
loc (RN ) for some λ ∈ (0, 1) and μ > 0

for any x ∈ R
N . In this case it is known that the operator L with domain

Dmax (L) = {u ∈ Cb(R
N ) ∩ W 2,p

loc (RN ) for all 1 < p < ∞, Lu ∈ Cb(R
N )}

is the weak generator of a not necessarily C0-semigroup in Cb(R
N ). Since∫

RN Lu dμ = 0 for any u ∈ C∞
c (RN ), then dμ = μ(x)dx is the invariant mea-

sure for this semigroup in Cb(R
N ). So we can extend it to a positivity preserving and
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A class of weighted Hardy type inequalities inRN 629

analytic C0-semigroup {T (t)}t≥0 on L2
μ, whose generator is still denoted by L (see

[18]).
When the assumptions onμ allow degeneracy at one point, we require the following

conditions to get that L generates a semigroup:

(H5) μ ∈ C1,λ
loc (RN \ {0}), λ ∈ (0, 1), μ ∈ H1

loc(R
N ), ∇μ

μ
∈ Lr

loc(R
N ) for some

r > N , and infx∈K μ(x) > 0 for any compact set K ⊂ R
N .

We remark that the condition (H5) implies (i) in (H3). Indeed if μ ∈ H1
loc(R

N )

then μ ∈ L1
loc(R

N ) and ∇μ ∈ L2
loc(R

N ). Moreover ∇μ
μ

∈ L2
loc(R

N ) since r > 2. So
we get

∫
K

∣∣∇√
μ

∣∣2 dx = 1

4

∫
K

|∇μ|2
μ

dx ≤ 1

4

(∫
K

∣∣∣∣∇μ

μ

∣∣∣∣
2

dx

) 1
2 (∫

K
|∇μ|2 dx

) 1
2

.

An example of weight function satisfying (H5) is μ = e−δ|x |m , δ,m > 0.
Under assumption (H5), by [1, Corollary 3.7] we have that the closure of

(L,C∞
c (RN )) on L2

μ generates a strongly continuous and analytic Markov semigroup
{T (t)}t≥0 on L2

μ.
We remark that in the applications to evolution problems we need C0-semigroup

generation results. Operators of a more general type, perturbed by potentials with
different singularities, for which the generation of semigroups was stated, have been
studied in [13–15] when μ = 1 and in [9] in weighted spaces.

We define the bottom of the spectrum of −(L + V ) as follows

λ1(L + V ) := inf
ϕ∈H1

μ\{0}

(∫
RN |∇ϕ|2 dμ − ∫

RN Vϕ2 dμ∫
RN ϕ2 dμ

)
.

In the case of μ ∈ C1,λ
loc (RN ) the authors in [17] extended the existence results in [2]

to the Kolmogorov operators.
The following result stated in [8], assuming for μ the condition (H5), shows that

the condition λ1(L + V ) > −∞ is a sufficient condition for the existence of an
exponentially bounded positive weak solution of (P). We include the condition (i i)
in (H3) to get the density result.

Theorem 3 Let 0 ≤ V (x) ∈ L1
loc(R

N ). Assume that the weight function μ satisfies
(i i) in (H3) and (H5). Then, if λ1(L+V ) > −∞ there exists a positive weak solution
u ∈ C([0,∞), L2

μ) of (P) satisfying the estimate

‖u(t)‖L2
μ

≤ Meωt‖u0‖L2
μ
, t ≥ 0 (23)

for some constants M ≥ 1 and ω ∈ R.

In the next Theorem we state an existence result for weak solutions to the problem
(P) associated to the Kolmogorov operators with weights which are not necessarily
(1, λ)-Hölder continuous in the whole space.
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Theorem 4 Assume hypotheses (i) in (H2) and (H4) for the potential V and the
conditions (i i), (i i i) in (H3) and (H5) onμ. Then there exists a positive weak solution
u ∈ C([0,∞), L2

μ) of (P) satisfying

‖u(t)‖L2
μ

≤ Meωt‖u0‖L2
μ
, t ≥ 0 (24)

for some constants M ≥ 1 and ω ∈ R.

Proof Under the hypotheses of the Theorem the inequality (16) holds. The result is a
consequence of the Theorem 3 and of the inequality (16) taking into account that the
weighted Hardy type inequality implies that λ1(L + V ) > −∞. 	


We observe that, in the case of Schrödinger operators, we relay on the result in [2]
and on the Hardy type inequality (5) to get the following result.

Theorem 5 Assume hypotheses (H1) and (H2). Then there exists a positive weak
solution u ∈ C([0,∞), L2(RN ) of (P) with L = Δ and μ = 1, satisfying

‖u(t)‖L2(RN ) ≤ Meωt‖u0‖L2(RN ), t ≥ 0 (25)

for some constants M ≥ 1 and ω ∈ R.
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