# $H^{1}$ solutions for a Kuramoto-Sinelshchikov-Cahn-Hilliard type equation 

Giuseppe Maria Coclite ${ }^{1}$ (D) . Lorenzo di Ruvo ${ }^{2}$

Received: 19 April 2021 / Accepted: 14 July 2021 / Published online: 27 July 2021
© The Author(s) 2021


#### Abstract

The Kuramoto-Sinelshchikov-Cahn-Hilliard equation models the spinodal decomposition of phase separating systems in an external field, the spatiotemporal evolution of the morphology of steps on crystal surfaces and the growth of thermodynamically unstable crystal surfaces with strongly anisotropic surface tension. In this paper, we prove the well-posedness of the Cauchy problem, associated with this equation.


Keywords Existence • Uniqueness • Stability •
Kuramoto-Sinelshchikov-Cahn-Hilliard type equation • Cauchy problem

Mathematics Subject Classification 35G25 • 35K55

## 1 Introduction

In this study, we investigate the well-posedness od the classical solution of the following Cauchy problem:

[^0]\[

$$
\begin{cases}\partial_{t} u+v \partial_{x} u+\kappa \partial_{x} u^{2}+q \partial_{x} u^{3}+r \partial_{x} u^{4}+h \partial_{x} u^{5}+m \partial_{x} u^{6} &  \tag{1.1}\\ \quad+\alpha \partial_{x}^{3} u+\beta^{2} \partial_{x}^{4} u+\gamma \partial_{x}^{2} u+\tau \partial_{x}^{2}\left(u^{2}\right)-\delta^{2} \partial_{x}^{2}\left(u^{3}\right)=0, & t>0, \quad x \in \mathbb{R}, \\ u(0, x)=u_{0}(x), & x \in \mathbb{R},\end{cases}
$$
\]

with $a, \kappa, q, r, h, m, \alpha, \beta, \gamma, \tau, \delta \in \mathbb{R}$, with $\beta, \tau, \delta \neq 0$. On the initial datum, we assume

$$
\begin{equation*}
u_{0} \in H^{1}(\mathbb{R}) \tag{1.2}
\end{equation*}
$$

(1.1) occurs in many branches of mechanics and physics. For example, taking $v=$ $q=h=m=\alpha=0,(1.1)$ reads

$$
\begin{equation*}
\partial_{t} u+\kappa \partial_{x} u^{2}+r \partial_{x} u^{4}+\beta^{2} \partial_{x}^{4} u+\gamma \partial_{x}^{2} u+\tau \partial_{x}^{2}\left(u^{2}\right)-\delta^{2} \partial_{x}^{2}\left(u^{3}\right)=0 \tag{1.3}
\end{equation*}
$$

which is known as the convective Cahn-Hilliard equation. It models the spinodal decomposition of phase separating systems in an external field [35,62,84], the spatiotemporal evolution of the morphology of steps on crystal surfaces [73], and the growth of thermodynamically unstable crystal surfaces with strongly anisotropic surface tension [39-41,43,66], where the constant $\kappa, r$ are the driving forces.

For instance, in the case of a growing crystal surface with strongly anisotropic surface tension, the function $u$ represents is the surface slope, while the constants $\kappa, r$ are the growth driving force proportional to the difference between the bulk chemical potentials of the solid and fluid phases.
(1.3) was also obtained by Watson [81] as a small-slope approximation of the crystal-growth model obtained in [32].

From a mathematical point of view, the coarsening dynamics for (1.3) has been studied in the limit $0<\kappa \ll 1, r=\tau=0$ in [35,41] and analytically in [82]. In [1], a numerical scheme is studied for (1.3), while the existence of the periodic solution are analyzed in $[33,53]$. in $[62,69]$, the existence of exact solutions for $(1.3)$ and the its viscous form have been investigated. In [27], the authors proved the well-posedness of the classical solution of (1.1), under assumption

$$
\begin{equation*}
u_{0} \in H^{\ell}(\mathbb{R}), \quad \ell \in\{2,3,4\} . \tag{1.4}
\end{equation*}
$$

Moreover, [41] shows that, taking $r=\tau=0$, when $\kappa$ tends to $\infty$, (1.3) reduces to the Kuramoto-Sivashinsky equation (see (1.9)). Physically, it means that, with the growth of the driving force, there must be a transition from the coarsening dynamics to a chaotic spatiotemporal behavior.

Taking $\kappa=r=\tau=0$ in (1.3), we obtain that

$$
\begin{equation*}
\partial_{t} u+\beta^{2} \partial_{x}^{4} u+\gamma \partial_{x}^{2} u-\delta^{2} \partial_{x}^{2}\left(u^{3}\right)=0 \tag{1.5}
\end{equation*}
$$

which is known as the Cahn-Hilliard equation. It describes the spinodal decomposition in phase-separating systems [10,11]. It also describes the coarsening dynamics of the faceting of thermodynamically unstable surfaces [46,77]. Krekhov [50] shows that (1.5) can be an effective tool in technological applications to design nanostructured materials.

From a mathematical point of view, in [2], the the existence of some extremely slowly evolving solutions for (1.5) is proven, considering an boundary domain, while, in [8,37], the problem of a global attractor is studied, In [27], the well-posedness of the classical solution of under Assumption (1.4) is proven. In [42,85], numerical schemes for (1.5) are analyzed, while, in [80], an approximate analytical solution is studied.

Observe that (1.5) is has been much studied, as shown in the papers $[9,34,86]$ and their references.

Taking $v=q=r=h=m=\beta=\gamma=\tau=\delta=0$ in (1.1), we obtain the following equation:

$$
\begin{equation*}
\partial_{t} u+\kappa \partial_{x} u^{2}+\alpha \partial_{x}^{3} u=0 \tag{1.6}
\end{equation*}
$$

which is known as the Korteweg-de Vries equation [49]. It has a very wide range of applications, such as magnetic fluid waves, ion sound waves, and longitudinal astigmatic waves.

From a mathematical point of view, in [15, 17,47], the Cauchy problem for (1.6) is studied, while in [51], the author reviewed the travelling wave solutions for (1.6). Moreover, in [18,61,74], the convergence of the solution of (1.6) to the unique entropy one of the Burgers equation is proven.

Taking $v=\kappa=r=h=m=\beta=\gamma=\tau=\delta=0$, (1.1) becomes

$$
\begin{equation*}
\partial_{t} u+q \partial_{x} u^{3}+\alpha \partial_{x}^{3} u=0 \tag{1.7}
\end{equation*}
$$

which is known as the modified Korteweg-de Vries equation.
[3,4,19,58-60] show that (1.7) is a non-slowly-varying envelope approximation model that describes the physics of few-cycle-pulse optical solitons. In [15,47], the Cauchy problem for (1.7) is studied, while, in [20,74], the convergence of the solution of (1.7) to the unique entropy solution of the following scalar conservation law

$$
\begin{equation*}
\partial_{t} u+q \partial_{x} u^{3}=0 . \tag{1.8}
\end{equation*}
$$

Assuming $v=q=r=h=m=\tau=\delta=0$, (1.1) reads

$$
\begin{equation*}
\partial_{t} u+\kappa \partial_{x} u^{2}+\alpha \partial_{x}^{3} u+\beta^{2} \partial_{x}^{4} u+\gamma \partial_{x}^{2} u=0 . \tag{1.9}
\end{equation*}
$$

(1.9) arises in interesting physical situations, for example as a model for long waves on a viscous fluid owing down an inclined plane [79] and to derive drift waves in a plasma [31]. (1.9) was derived also independently by Kuramoto [54-56] as a model for phase turbulence in reaction-diffusion systems and by Sivashinsky [76] as a model for plane flame propagation, describing the combined influence of diffusion and thermal conduction of the gas on the stability of a plane flame front.
(1.9) also describes incipient instabilities in a variety of physical and chemical systems [13,44,57]. Moreover, (1.9), which is also known as the Benney-Lin equation $[6,63]$, was derived by Kuramoto in the study of phase turbulence in the BelousovZhabotinsky reaction [64].

The dynamical properties and the existence of exact solutions for (1.9) have been investigated in $[36,48,52,70,71,83]$. In $[5,12,38]$, the control problem for (1.9) with
periodic boundary conditions, and on a bounded interval are studied, respectively. In [14], the problem of global exponential stabilization of (1.9) with periodic boundary conditions is analyzed. In [45], it is proposed a generalization of optimal control theory for (1.9), while in [65] the problem of global boundary control of (1.9) is considered. In [72], the existence of solitonic solutions for (1.9) is proven. In [7,21,78], the wellposedness of the Cauchy problem for (1.9) is proven, using the energy space technique, a priori estimates together with an application of the Cauchy-Kovalevskaya and the fixed point method, respectively. In particular, in [21], the well-posedness of (1.1) is proven assuming

$$
\begin{equation*}
u_{0} \in H^{2}(\mathbb{R}) \tag{1.10}
\end{equation*}
$$

In $[28,67,68]$, the initial-boundary value problem for (1.9) is studied, using a priori estimates together with an application of the Cauchy-Kovalevskaya and the energy space technique, respectively.

Finally, following [22,61,74], in [23], the convergence of the solution of (1.9) to the unique entropy one of the Burgers equation is proven.

The main result of this paper is the following theorem.
Theorem 1.1 Fix $T>0$. Assume (1.2). There exists a unique solution $u$ of (1.1), such that

$$
\begin{equation*}
u \in L^{\infty}\left(0, T ; H^{1}(\mathbb{R})\right) \cap L^{4}\left(0, T ; W^{1,4}(\mathbb{R})\right) \tag{1.11}
\end{equation*}
$$

Moreover, if $u_{1}$ and $u_{2}$ are two solutions of (1.1), we have that

$$
\begin{equation*}
\left\|u_{1}(t, \cdot)-u_{2}(t, \cdot)\right\|_{L^{2}(\mathbb{R})} \leq e^{C(T) t}\left\|u_{1,0}-u_{2,0}\right\|_{L^{2}(\mathbb{R})}, \tag{1.12}
\end{equation*}
$$

for some suitable $C(T)>0$, and every $0 \leq t \leq T$.
Observe that Theorem 1.1 holds also when $\tau=\delta=0$, which corresponds the Kuramoto-Sivashinsky equation. Moreover, even if the equation is of the fourth order, the proof of Theorem 1.1 is based on the Aubin-Lions Lemma due to the functional setting (see [26,29,30,75]).

The paper is organized as follows. In Sect. 2, we prove several a priori estimates on a vanishing viscosity approximation of (1.1). Those play a key role in the proof of our main result, that is given in Sect. 3 .

## 2 Vanishing viscosity approximation

Our existence argument is based on passing to the limit in a vanishing viscosity approximation of (1.1).

Fix a small number $0<\varepsilon<1$ and let $u_{\varepsilon}=u_{\varepsilon}(t, x)$ be the unique classical solution of the following problem [24,25]:

$$
\begin{cases}\partial_{t} u_{\varepsilon}+v \partial_{x} u_{\varepsilon}+\kappa \partial_{x} u_{\varepsilon}^{2}+q \partial_{x} u_{\varepsilon}^{3}+r \partial_{x} u_{\varepsilon}^{4}+h \partial_{x} u_{\varepsilon}^{5} &  \tag{2.1}\\ \quad+m \partial_{x} u_{\varepsilon}^{6}+\alpha \partial_{x}^{3} u_{\varepsilon}+\beta^{2} \partial_{x}^{4} u_{\varepsilon}+\gamma \partial_{x}^{2} u_{\varepsilon} & \\ \quad+\tau \partial_{x}^{2}\left(u_{\varepsilon}^{2}\right)-\delta^{2} \partial_{x}^{2}\left(u_{\varepsilon}^{3}\right)=\varepsilon \partial_{x}^{6} u, & x>0, \quad x \in \mathbb{R}, \\ u_{\varepsilon}(0, x)=u_{\varepsilon, 0}(x), & x \in \mathbb{R},\end{cases}
$$

where $u_{\varepsilon, 0}$ is a $C^{\infty}$ approximation of $u_{0}$ such that

$$
\begin{equation*}
\left\|u_{\varepsilon, 0}\right\|_{H^{1}(\mathbb{R})} \leq\left\|u_{0}\right\|_{H^{1}(\mathbb{R})}, \quad \sqrt{\varepsilon}\left\|u_{\varepsilon, 0}\right\|_{L^{2}(\mathbb{R})} \leq C_{0} \tag{2.2}
\end{equation*}
$$

where $C_{0}$ is a positive constant, independent on $\varepsilon$.
Let us prove some a priori estimates on $u_{\varepsilon}$. We denote with $C_{0}$ the constants which depend only on the initial data, and with $C(T)$, the constants which depend also on $T$.

We begin by proving the following result.
Lemma 2.1 Fix $T>0$. We have that

$$
\begin{align*}
& \left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\beta^{2} e^{C_{0} t} \int_{0}^{t} e^{-C_{0} s}\left\|\partial_{x}^{2} u(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \\
& \quad+4 \delta^{2} e^{C_{0} t} \int_{0}^{t} e^{-C_{0} s}\left\|u(s, \cdot) \partial_{x} u(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \\
& \quad+2 \varepsilon e^{C_{0} t} \int_{0}^{t} e^{-C_{0} s}\left\|\partial_{x}^{3} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \leq C(T) . \tag{2.3}
\end{align*}
$$

for every $0 \leq t \leq T$. In particular, we have that

$$
\begin{equation*}
\int_{0}^{t}\left\|\partial_{x} u(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \leq C(T) \tag{2.4}
\end{equation*}
$$

for every $0 \leq t \leq T$.
Proof Let $0 \leq t \leq T$. We begin by observing that

$$
\begin{equation*}
\partial_{x} u_{\varepsilon}^{2}=2 u_{\varepsilon} \partial_{x} u, \quad \partial_{x} u_{\varepsilon}^{3}=3 u_{\varepsilon}^{2} \partial_{x} u \tag{2.5}
\end{equation*}
$$

Multiplying (2.1) by $2 u_{\varepsilon}$, thanks to (2.5), an integration on $\mathbb{R}$ gives

$$
\begin{aligned}
\frac{d}{d t}\left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}= & 2 \int_{\mathbb{R}} u_{\varepsilon} \partial_{t} u_{\varepsilon} d x \\
= & -2 v \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} d x-4 \kappa \int_{\mathbb{R}} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} d x-6 q \int_{\mathbb{R}} u_{\varepsilon}^{3} \partial_{x} u_{\varepsilon} d x \\
& -8 r \int_{\mathbb{R}} u_{\varepsilon}^{4} \partial_{x} u_{\varepsilon} d x-10 h \int_{\mathbb{R}} u_{\varepsilon}^{5} \partial_{x} u_{\varepsilon} d x-12 m \int_{\mathbb{R}} u_{\varepsilon}^{6} \partial_{x} u_{\varepsilon} d x \\
& -2 \alpha \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{3} u_{\varepsilon} d x-2 \beta^{2} \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{4} u_{\varepsilon} d x-2 \gamma \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x \\
& -2 \tau \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{2}\left(u_{\varepsilon}\right)^{2} d x+2 \delta^{2} \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{2}\left(u_{\varepsilon}^{3}\right) d x+2 \varepsilon \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{6} u_{\varepsilon} d x \\
= & 2 \alpha \int_{\mathbb{R}} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+2 \beta^{2} \int_{\mathbb{R}} \partial_{x} u_{\varepsilon} \partial_{x}^{3} u_{\varepsilon} d x-2 \gamma \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x \\
& +4 \tau \int_{\mathbb{R}} u_{\varepsilon}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x-6 \delta^{2}\left\|u_{\varepsilon}(t, \cdot) \partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}-2 \varepsilon \int_{\mathbb{R}} \partial_{x} u_{\varepsilon} \partial_{x}^{5} u_{\varepsilon} d x \\
= & -2 \beta^{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}-2 \gamma \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+4 \tau \int_{\mathbb{R}} u_{\varepsilon}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& -6 \delta^{2}\left\|u_{\varepsilon}(t, \cdot) \partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \varepsilon \int_{\mathbb{R}} \partial_{x}^{2} u_{\varepsilon} \partial_{x}^{4} u_{\varepsilon} d x \\
= & -2 \beta^{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}-2 \gamma \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+4 \tau \int_{\mathbb{R}} u_{\varepsilon}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x \\
& -6 \delta^{2}\left\|u_{\varepsilon}(t, \cdot) \partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}-2 \varepsilon\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} .
\end{aligned}
$$

Therefore, we have that

$$
\begin{align*}
\frac{d}{d t} & \left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \beta^{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& +6 \delta^{2}\left\|u_{\varepsilon}(t, \cdot) \partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \varepsilon\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& =-2 \gamma \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+4 \tau \int_{\mathbb{R}} u_{\varepsilon}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x . \tag{2.6}
\end{align*}
$$

Due to the Young inequality,

$$
\begin{aligned}
& 2|\gamma| \int_{\mathbb{R}}\left|u_{\varepsilon}\right|\left|\partial_{x}^{2} u_{\varepsilon}\right| d x=\int_{\mathbb{R}}\left|\frac{2 \gamma u_{\varepsilon}}{\beta}\right|\left|\beta \partial_{x}^{2} u_{\varepsilon}\right| d x \\
& \quad \leq \frac{2 \gamma^{2}}{\beta^{2}}\left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2}}{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& 4|\tau| \int_{\mathbb{R}}\left|u_{\varepsilon}\right|\left(\partial_{x} u_{\varepsilon}\right)^{2} d x=4 \int_{\mathbb{R}}\left|\delta u_{\varepsilon} \partial_{x} u_{\varepsilon}\right|\left|\frac{\tau \partial_{x} u_{\varepsilon}}{\delta}\right| d x \\
& \quad \leq 2 \delta^{2}\left\|u_{\varepsilon}(t, \cdot) \partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\frac{2 \tau^{2}}{\delta^{2}}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} .
\end{aligned}
$$

Consequently, by (2.6), we have that

$$
\begin{align*}
& \frac{d}{d t}\left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\frac{3 \beta^{2}}{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad+4 \delta^{2}\left\|u_{\varepsilon}(t, \cdot) \partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \varepsilon\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq \frac{2 \gamma^{2}}{\beta^{2}}\left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\frac{2 \tau^{2}}{\delta^{2}}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \tag{2.7}
\end{align*}
$$

Observe that

$$
\frac{2 \tau^{2}}{\delta^{2}}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}=\frac{2 \tau^{2}}{\delta^{2}} \int_{\mathbb{R}} \partial_{x} u_{\varepsilon} \partial_{x} u_{\varepsilon} d x=-\frac{2 \tau^{2}}{\delta^{2}} \int_{\mathbb{R}} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x
$$

Therefore, by the Young inequality,

$$
\begin{align*}
\frac{2 \tau^{2}}{\delta^{2}}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} & \leq \int_{\mathbb{R}}\left|\frac{2 \tau^{2} u_{\varepsilon}}{\beta \delta^{2}}\right|\left|\beta \partial_{x}^{2} u_{\varepsilon}\right| d x \\
& \leq \frac{2 \tau^{4}}{\beta^{2} \delta^{4}}\left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2}}{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \tag{2.8}
\end{align*}
$$

It follows from (2.7) that

$$
\begin{aligned}
& \frac{d}{d t}\left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\beta^{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+4 \delta^{2}\left\|u_{\varepsilon}(t, \cdot) \partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad+2 \varepsilon\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \leq C_{0}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}
\end{aligned}
$$

By (2.2) and the the Gronwall Lemma, we get

$$
\begin{aligned}
& \left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\beta^{2} e^{C_{0} t} \int_{0}^{t} e^{-C_{0} s}\left\|\partial_{x}^{2} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \\
& \quad+4 \delta^{2} e^{C_{0} t} \int_{0}^{t} e^{-C_{0} s}\left\|u_{\varepsilon}(s, \cdot) \partial_{x} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \\
& \quad+2 \varepsilon e^{C_{0} t} \int_{0}^{t} e^{-C_{0} s}\left\|\partial_{x}^{3} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \leq C_{0} e^{C_{0} t} \leq C(T),
\end{aligned}
$$

which gives (2.3).
Finally, we prove (2.4). Thanks to (2.3) and (2.8), we have that

$$
\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \leq C(T)+C_{0}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}
$$

Integrating on $(0, T)$, thanks to (2.3), we have that

$$
\int_{0}^{t}\left\|\partial_{x} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \leq C(T) t+C_{0} \int_{0}^{t}\left\|\partial_{x}^{2} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \leq C(T)
$$

that is (2.4).
Lemma 2.2 Fix $T>0$. There exists a constant $C(T)>0$, independent on $\varepsilon$, such that

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})} \leq C(T) \tag{2.9}
\end{equation*}
$$

In particular, we have that

$$
\begin{equation*}
\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\beta^{2} \int_{0}^{t}\left\|\partial_{x}^{3} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s+2 \varepsilon \int_{0}^{t}\left\|\partial_{x}^{4} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \leq C(T), \tag{2.10}
\end{equation*}
$$

for every $0 \leq t \leq T$. Moreover,

$$
\begin{equation*}
\int_{0}^{t}\left\|\partial_{x} u_{\varepsilon}(s, \cdot)\right\|_{L^{4}(\mathbb{R})}^{4} d s \leq C(T) \tag{2.11}
\end{equation*}
$$

for every $0 \leq t \leq T$.

Proof Let $0 \leq t \leq T$. Multiplying (2.1) by $-2 \partial_{x}^{2} u_{\varepsilon}$, thanks to (2.5), an integration on $\mathbb{R}$ gives

$$
\begin{aligned}
\frac{d}{d t}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}= & -2 \int_{\mathbb{R}} \partial_{x}^{2} u_{\varepsilon} \partial_{t} u_{\varepsilon} d x \\
= & 2 v \int_{\mathbb{R}} \partial_{x} u_{\varepsilon} \partial_{x}^{2} d x+4 \kappa \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+6 q \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x \\
& +8 r \int_{\mathbb{R}} u_{\varepsilon}^{3} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+10 h \int_{\mathbb{R}} u_{\varepsilon}^{4} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x \\
& +12 m \int_{\mathbb{R}} u_{\varepsilon}^{5} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+2 \alpha \int_{\mathbb{R}} \partial_{x}^{2} u_{\varepsilon} \partial_{x}^{3} u_{\varepsilon} d x \\
& +2 \beta^{2} \int_{\mathbb{R}} \partial_{x}^{2} u_{\varepsilon} \partial_{x}^{4} u_{\varepsilon} d x+2 \gamma\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& +2 \tau \int_{\mathbb{R}} \partial_{x}^{2} u_{\varepsilon} \partial_{x}^{2}\left(u_{\varepsilon}\right)^{2} d x-2 \delta^{2} \int_{\mathbb{R}} \partial_{x}^{2} u_{\varepsilon} \partial_{x}^{2}\left(u_{\varepsilon}^{3}\right) d x-2 \varepsilon \int_{\mathbb{R}} \partial_{x}^{2} u_{\varepsilon} \partial_{x}^{6} u_{\varepsilon} d x \\
= & 4 \kappa \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+6 q \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+8 r \int_{\mathbb{R}} u_{\varepsilon}^{3} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x \\
& +10 h \int_{\mathbb{R}} u_{\varepsilon}^{4} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+12 m \int_{\mathbb{R}} u_{\varepsilon}^{5} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x \\
& -2 \beta^{2}\left\|_{\partial_{x}^{3}}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \gamma\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& -4 \tau \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{3} u_{\varepsilon} d x-6 \delta^{2} \int_{\mathbb{R}} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} \partial_{x}^{3} u_{\varepsilon} d x \\
& +2 \varepsilon \int_{\mathbb{R}} \partial_{x}^{3} u_{\varepsilon} \partial_{x}^{5} u_{\varepsilon} d x \\
= & 4 \kappa \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+6 q \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+8 r \int_{\mathbb{R}} u_{\varepsilon}^{3} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x \\
& +10 h \int_{\mathbb{R}} u_{\varepsilon}^{4} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+12 m \int_{\mathbb{R}} u_{\varepsilon}^{5} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x \\
& -2 \beta^{2}\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \gamma\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& -4 \tau \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{3} u_{\varepsilon} d x-6 \delta^{2} \int_{\mathbb{R}} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} \partial_{x}^{3} u_{\varepsilon} d x \\
& -2 \varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} .
\end{aligned}
$$

Therefore, we have that

$$
\begin{align*}
& \frac{d}{d t}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \beta^{2}\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad=4 \kappa \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+6 q \int_{\mathbb{R}} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+8 r \int_{\mathbb{R}} u_{\varepsilon}^{3} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x \\
& \quad+10 h \int_{\mathbb{R}} u_{\varepsilon}^{4} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+12 m \int_{\mathbb{R}} u_{\varepsilon}^{5} \partial_{x} u_{\varepsilon} \partial_{x}^{2} u_{\varepsilon} d x+2 \gamma\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad-4 \tau \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{3} u_{\varepsilon} d x-6 \delta^{2} \int_{\mathbb{R}} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} \partial_{x}^{3} u_{\varepsilon} d x \tag{2.12}
\end{align*}
$$

Due to the Young inequality,

$$
\begin{aligned}
& 4|\kappa| \int_{\mathbb{R}}\left|u_{\varepsilon} \partial_{x} u_{\varepsilon}\right|\left|\partial_{x}^{2} u_{\varepsilon}\right| d x \leq 2 \kappa^{2} \int_{\mathbb{R}} u_{\varepsilon}^{2}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x+2\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq \kappa^{2} \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x+\kappa^{2}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 6|q| \int_{\mathbb{R}}\left|u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon}\right|\left|\partial_{x}^{2} u_{\varepsilon}\right| d x \leq 3 q^{2} \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x+3\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 8|r| \int_{\mathbb{R}}\left|u_{\varepsilon}\right|^{3}\left|\partial_{x} u_{\varepsilon}\right|\left|\partial_{x}^{2} u_{\varepsilon}\right| d x \leq 8\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})} \int_{\mathbb{R}}\left|r u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} \| \partial_{x}^{2} u_{\varepsilon}\right| d x \\
& \quad \leq 4 r^{2}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})} \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x+4\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 10|h| \int_{\mathbb{R}} u_{\varepsilon}^{4}\left|\partial_{x} u_{\varepsilon}\right|| | \partial_{x}^{2} u_{\varepsilon}\left|d x \leq 10\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2} \int_{\mathbb{R}}\right| h u_{\varepsilon}^{2} \partial_{x} \| \partial_{x}^{2} u_{\varepsilon} \mid d x \\
& \quad \leq 5 h^{2}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2} \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x+5\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 12|m| \int_{\mathbb{R}}\left|u_{\varepsilon}\right|^{5}\left|\partial_{x} u_{\varepsilon}\right|\left|\partial_{x}^{2} u_{\varepsilon}\right| d x \leq 12\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{3} \int_{\mathbb{R}}\left|m u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} \| \partial_{x}^{2} u_{\varepsilon}\right| d x \\
& \leq 6 m^{2}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{3} \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x+6\left\|\partial_{x} u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{3}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 4|\tau| \int_{\mathbb{R}}\left|u_{\varepsilon} \partial_{x} u_{\varepsilon} \| \partial_{x}^{3} u_{\varepsilon}\right| d x=\int_{\mathbb{R}}\left|\frac{4 \tau u_{\varepsilon} \partial_{x} u_{\varepsilon}}{\beta}\right|\left|\beta \partial_{x}^{3} u_{\varepsilon}\right| d x \\
& \quad \leq \frac{8 \tau^{2}}{\beta^{2}} \int_{\mathbb{R}} u_{\varepsilon}^{2}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x+\frac{\beta^{2}}{2}\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq \frac{4 \tau^{2}}{\beta^{2}} \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x+\frac{4 \tau^{2}}{\beta^{2}}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2}}{2}\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 6 \delta^{2} \int_{\mathbb{R}}\left|u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} \| \partial_{x}^{3} u_{\varepsilon}\right| d x=\int_{\mathbb{R}}\left|\frac{6 \delta^{2} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon}}{\beta}\right|\left|\beta \partial_{x}^{3} u_{\varepsilon}\right| d x \\
& \leq \frac{18 \delta^{4}}{\beta^{2}} \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x+\frac{\beta^{2}}{2}\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \cdot
\end{aligned}
$$

It follows from (2.12) that

$$
\begin{align*}
& \frac{d}{d t}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\beta^{2}\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \leq \\
& \quad C_{0}\left(1+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}\right) \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x \\
& \quad+C_{0}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{3} \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x+C_{0}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad+C_{0}\left(1+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}\right)\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}  \tag{2.13}\\
& \quad+C_{0}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{3}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} .
\end{align*}
$$

[15, Lemma 2.6] says that

$$
\begin{equation*}
\int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x \leq 4\left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{4}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \tag{2.14}
\end{equation*}
$$

Consequently, by (2.3) and (2.14),

$$
\begin{equation*}
\int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x \leq C(T)\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \tag{2.15}
\end{equation*}
$$

Therefore, by (2.13) and (2.15), we have that

$$
\begin{aligned}
& \frac{d}{d t}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\beta^{2}\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \leq \\
& \leq C(T)\left(1+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}\right)\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \\
& \quad+C(T)\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{3}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+C_{0}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} .
\end{aligned}
$$

(2.2), (2.3), (2.4) and an integration on ( $0, t$ ) give

$$
\begin{align*}
& \left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\beta^{2} \int_{0}^{t}\left\|\partial_{x}^{3} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s+2 \varepsilon \int_{0}^{t}\left\|\partial_{x}^{4} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \\
& \quad \leq C_{0}+C(T)\left(1+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}\right) \int_{0}^{t}\left\|\partial_{x}^{2} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \\
& \quad+C(T)\left(\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{3}\right) \int_{0}^{t}\left\|\partial_{x}^{2} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \\
& \quad+C_{0} \int_{0}^{t}\left\|\partial_{x} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \\
& \leq  \tag{2.16}\\
& \quad C(T)\left(1+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}+\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{3}\right) .
\end{align*}
$$

Due to the Young inequality,

$$
\begin{aligned}
& \left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})} \leq \frac{1}{2}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}+\frac{1}{2} \\
& \left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{3} \leq \frac{D_{1}}{2}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{4}+\frac{1}{2 D_{1}}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2},
\end{aligned}
$$

where $D_{1}$ is a positive constant, which will be specified later. It follows from (2.16) that

$$
\begin{align*}
& \left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\beta^{2} \int_{0}^{t}\left\|\partial_{x}^{3} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s+2 \varepsilon \int_{0}^{t}\left\|\partial_{x}^{4} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \\
& \quad \leq C(T)\left(1+\left(1+\frac{1}{D_{1}}\right)\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}+D_{1}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{4}\right) \tag{2.17}
\end{align*}
$$

We prove (2.9). Thanks to (2.3), (2.17) and the Hölder inequality,

$$
\begin{aligned}
u_{\varepsilon}^{2}(t, x) & =2 \int_{-\infty}^{x} u_{\varepsilon} \partial_{x} u_{\varepsilon} d y \leq 2 \int_{\mathbb{R}}\left|u_{\varepsilon}\right|\left|\partial_{x} u_{\varepsilon}\right| d x \leq 2\left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})} \\
& \leq C(T) \sqrt{\left(1+\left(1+\frac{1}{D_{1}}\right)\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}+D_{1}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{4}\right)}
\end{aligned}
$$

Hence,

$$
\left(1-C(T) D_{1}\right)\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{4}-C(T)\left(1+\frac{1}{D_{1}}\right)\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}-C(T) \leq 0 .
$$

Taking

$$
\begin{equation*}
D_{1}=\frac{1}{2 C(T)} \tag{2.18}
\end{equation*}
$$

we have that

$$
\frac{1}{2}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{4}-C(T)\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2}-C(T) \leq 0
$$

which gives (2.9).
(2.10) follows from (2.9) and (2.18).

Finally, we prove (2.11). We begin by observing that [16, Lemma 2.3] says that

$$
\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{4}(\mathbb{R})}^{4} \leq 6\left(\left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}\right)\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}
$$

Consequently, by (2.3) and (2.10),

$$
\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{4}(\mathbb{R})}^{4} \leq C(T)\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}
$$

Integrating on $(0, t)$, by (2.3), we have (2.11).
Lemma 2.3 Fix $T>0$. There exists a constant $C(T)>0$, independent on $\varepsilon$, such that

$$
\begin{align*}
& \varepsilon\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \beta^{2} \varepsilon \int_{0}^{t}\left\|\partial_{x}^{4} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \\
& \quad+\varepsilon^{2} \int_{0}^{t}\left\|\partial_{x}^{5} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \leq C(T) \tag{2.19}
\end{align*}
$$

for every $0 \leq t \leq T$.
Proof Let $0 \leq t \leq T$. We begin by defining the following equation:

$$
\begin{equation*}
f^{\prime}\left(u_{\varepsilon}\right):=2 \kappa u_{\varepsilon}+3 q u_{\varepsilon}^{2}+4 r u_{\varepsilon}^{3}+5 h u_{\varepsilon}^{4}+6 m u_{\varepsilon}^{5} . \tag{2.20}
\end{equation*}
$$

Thanks to (2.20), (2.1) reads

$$
\begin{align*}
& \partial_{t} u_{\varepsilon}+v \partial_{x} u_{\varepsilon}+f^{\prime}\left(u_{\varepsilon}\right) \partial_{x} u_{\varepsilon}+\alpha \partial_{x}^{3} u_{\varepsilon}+\beta^{2} \partial_{x}^{4} u_{\varepsilon} \\
& \quad+\gamma \partial_{x}^{2} u_{\varepsilon}+\tau \partial_{x}^{2}\left(u_{\varepsilon}^{2}\right)-\delta^{2} \partial_{x}^{2}\left(u_{\varepsilon}^{3}\right)=\varepsilon \partial_{x}^{6} u \tag{2.21}
\end{align*}
$$

Multiplying (2.21) by $2 \varepsilon \partial_{x}^{4} u_{\varepsilon}$, thanks to (2.5), an integration on $\mathbb{R}$ gives

$$
\begin{aligned}
\varepsilon \frac{d}{d t}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}= & 2 \varepsilon \int_{\mathbb{R}} \partial_{x}^{4} u_{\varepsilon} \partial_{t} u_{\varepsilon} d x \\
= & -2 \varepsilon v \int_{\mathbb{R}} \partial_{x} u_{\varepsilon} \partial_{x}^{4} u_{\varepsilon} d x-2 \varepsilon \int_{\mathbb{R}} f^{\prime}\left(u_{\varepsilon}\right) \partial_{x} u_{\varepsilon} \partial_{x}^{4} u_{\varepsilon} d x \\
& -2 \alpha \varepsilon \int_{\mathbb{R}} \partial_{x}^{3} u_{\varepsilon} \partial_{x}^{4} u_{\varepsilon} d x-2 \beta^{2} \varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& -2 \gamma \varepsilon \int_{\mathbb{R}} \partial_{x}^{2} u_{\varepsilon} \partial_{x}^{4} u_{\varepsilon} d x-2 \tau \varepsilon \int_{\mathbb{R}} \partial_{x}^{4} u_{\varepsilon} \partial_{x}^{2}\left(u_{\varepsilon}^{2}\right) d x \\
& +2 \delta^{2} \varepsilon \int_{\mathbb{R}} \partial_{x}^{4} u_{\varepsilon} \partial_{x}^{2}\left(u_{\varepsilon}^{3}\right) d x+2 \varepsilon \int_{\mathbb{R}} \partial_{x}^{4} u_{\varepsilon} \partial_{x}^{6} u_{\varepsilon} d x \\
= & 2 \varepsilon v \int_{\mathbb{R}} \partial_{x}^{2} u_{\varepsilon} \partial_{x}^{3} u_{\varepsilon} d x-2 \varepsilon \int_{\mathbb{R}} f^{\prime}\left(u_{\varepsilon}\right) \partial_{x} u_{\varepsilon} \partial_{x}^{4} u_{\varepsilon} d x \\
& -2 \beta^{2} \varepsilon\left\|_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \gamma \varepsilon\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& +4 \tau \varepsilon \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{5} u_{\varepsilon} d x-6 \delta^{2} \varepsilon \int_{\mathbb{R}} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} \partial_{x}^{5} u_{\varepsilon} d x \\
& -2 \varepsilon\left\|\partial_{x}^{5} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & -2 \varepsilon \int_{\mathbb{R}} f^{\prime}\left(u_{\varepsilon}\right) \partial_{x} u_{\varepsilon} \partial_{x}^{4} u_{\varepsilon} d x-2 \beta^{2} \varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& +2 \gamma \varepsilon\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+4 \tau \varepsilon \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{5} u_{\varepsilon} d x \\
& -6 \delta^{2} \varepsilon \int_{\mathbb{R}} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} \partial_{x}^{5} u_{\varepsilon} d x-2 \varepsilon\left\|\partial_{x}^{5} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}
\end{aligned}
$$

Therefore, we have that

$$
\begin{align*}
& \varepsilon \frac{d}{d t}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \beta^{2} \varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \varepsilon\left\|\partial_{x}^{5} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad=-2 \varepsilon \int_{\mathbb{R}} f^{\prime}\left(u_{\varepsilon}\right) \partial_{x} u_{\varepsilon} \partial_{x}^{4} u_{\varepsilon} d x+2 \gamma \varepsilon\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad+4 \tau \varepsilon \int_{\mathbb{R}} u_{\varepsilon} \partial_{x} u_{\varepsilon} \partial_{x}^{5} u_{\varepsilon} d x+6 \delta^{2} \varepsilon \int_{\mathbb{R}} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon} \partial_{x}^{5} u_{\varepsilon} d x . \tag{2.22}
\end{align*}
$$

Since $0<\varepsilon<1$, thanks to (2.9), (2.10) and the Young inequality,

$$
\begin{aligned}
& 2 \varepsilon \int_{\mathbb{R}}\left|f^{\prime}\left(u_{\varepsilon}\right) \partial_{x} u_{\varepsilon}\left\|\partial_{x}^{4} u_{\varepsilon} \mid d x \leq \varepsilon \int_{\mathbb{R}}\left(f^{\prime}\left(u_{\varepsilon}\right)\right)^{2}\left(\partial_{x} u_{\varepsilon}\right)^{2}+\varepsilon\right\| \partial_{x}^{4} u_{\varepsilon}(t, \cdot) \|_{L^{2}(\mathbb{R})}^{2}\right. \\
& \quad \leq\left\|f^{\prime}\right\|_{L^{\infty}(-C(T), C(T))}^{2}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq C(T)+\varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 4|\tau| \varepsilon \int_{\mathbb{R}}\left|u_{\varepsilon} \partial_{x} u_{\varepsilon}\left\|\partial_{x}^{5} u_{\varepsilon}|d x \leq 4| \tau\left|\varepsilon\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})} \int_{\mathbb{R}}\right| \partial_{x} u_{\varepsilon}\right\| \partial_{x}^{5} u_{\varepsilon}\right| d x \\
& \quad \leq C(T) \varepsilon \int_{\mathbb{R}}\left|\partial_{x} u_{\varepsilon}\right|\left|\partial_{x}^{5} u_{\varepsilon}\right| d x \leq \varepsilon C(T)\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\frac{\varepsilon}{2}\left\|\partial_{x}^{5} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq C(T)+\frac{\varepsilon}{2}\left\|\partial_{x}^{5} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 6 \delta^{2} \varepsilon \int_{\mathbb{R}} u_{\varepsilon}^{2}\left|\partial_{x} u_{\varepsilon}\left\|\partial_{x}^{5} u_{\varepsilon}\left|d x \leq 6 \delta^{2} \varepsilon\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2} \int_{\mathbb{R}}\right| \partial_{x} u_{\varepsilon}\right\| \partial_{x}^{5} u_{\varepsilon}\right| d x \\
& \quad \leq C(T) \varepsilon \int_{\mathbb{R}}\left|\partial_{x} u_{\varepsilon}\right|\left|\partial_{x}^{5} u_{\varepsilon}\right| d x \leq \varepsilon C(T)\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\frac{\varepsilon}{2}\left\|\partial_{x}^{5} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq C(T)+\frac{\varepsilon}{2}\left\|\partial_{x}^{5} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} .
\end{aligned}
$$

It follows from (2.22) that

$$
\begin{aligned}
& \varepsilon \frac{d}{d t}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2 \beta^{2} \varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\varepsilon\left\|\partial_{x}^{5} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq C(T)+\varepsilon\left\|\partial_{x}^{4} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+2|\gamma| \varepsilon\left\|\partial_{x}^{3} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} .
\end{aligned}
$$

Integrating on $(0, t)$, by (2.2), (2.3) and (2.10), we get

$$
\begin{aligned}
\varepsilon \| & \partial_{x}^{2} u_{\varepsilon}(t, \cdot)\left\|_{L^{2}(\mathbb{R})}^{2}+2 \beta^{2} \varepsilon \int_{0}^{t}\right\| \partial_{x}^{4} u_{\varepsilon}(s, \cdot)\left\|_{L^{2}(\mathbb{R})}^{2} d s+\varepsilon \int_{0}^{t}\right\| \partial_{x}^{5} u_{\varepsilon}(s, \cdot) \|_{L^{2}(\mathbb{R})}^{2} d s \\
& \leq C_{0}+\varepsilon \int_{0}^{t}\left\|\partial_{x}^{4} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s+2|\gamma| \varepsilon \int_{0}^{t}\left\|\partial_{x}^{3} u_{\varepsilon}(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \leq C(T),
\end{aligned}
$$

which gives (2.19).

## 3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
We begin by proving the following lemma.
Lemma 3.1 Fix $T>0$. Then,

$$
\begin{equation*}
\text { the sequence }\left\{u_{\varepsilon}\right\}_{\varepsilon>0} \text { is compact in } L_{l o c}^{2}((0, \infty) \times \mathbb{R}) \tag{3.1}
\end{equation*}
$$

Consequently, there exists a subsequence $\left\{u_{\varepsilon_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{u_{\varepsilon}\right\}_{\varepsilon>0}$ and $u \in L_{\text {loc }}^{2}((0, \infty) \times$ $\mathbb{R})$ such that, for each compact subset $K$ of $(0, \infty) \times \mathbb{R})$,

$$
\begin{equation*}
u_{\varepsilon_{k}} \rightarrow u \text { in } L^{2}(K) \text { and a.e. } \tag{3.2}
\end{equation*}
$$

Moreover, $u$ is a solution of (1.1), satisfying (1.11).
Proof We begin by proving (3.1). To prove (3.1), we rely on the Aubin-Lions Lemma (see [22,29,30,75]). We recall that

$$
H_{l o c}^{1}(\mathbb{R}) \hookrightarrow \hookrightarrow L_{l o c}^{2}(\mathbb{R}) \hookrightarrow H_{l o c}^{-1}(\mathbb{R})
$$

where the first inclusion is compact and the second is continuous. Owing to the AubinLions Lemma [75], to prove (3.1), it suffices to show that

$$
\begin{align*}
& \left\{u_{\varepsilon}\right\}_{\varepsilon>0} \text { is uniformly bounded in } L^{2}\left(0, T ; H_{l o c}^{1}(\mathbb{R})\right),  \tag{3.3}\\
& \left\{\partial_{t} u_{\varepsilon}\right\}_{\varepsilon>0} \text { is uniformly bounded in } L^{2}\left(0, T ; H_{l o c}^{-1}(\mathbb{R})\right) . \tag{3.4}
\end{align*}
$$

We prove (3.3). Thanks to Lemmas 2.1 and 2.2,

$$
\left\|u_{\varepsilon}(t, \cdot)\right\|_{H^{1}(\mathbb{R})}^{2}=\left\|u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \leq C(T)
$$

Therefore,

$$
\left\{u_{\varepsilon}\right\}_{\varepsilon>0} \text { is uniformly bounded in } L^{\infty}\left(0, T ; H^{1}(\mathbb{R})\right),
$$

which gives (3.3).

We prove (3.4). Observe that, by (2.1) and (2.5),

$$
\begin{aligned}
\partial_{t} u_{\varepsilon}= & -\partial_{x}\left(v u_{\varepsilon}+\alpha \partial_{x}^{2} u_{\varepsilon}+\beta^{2} \partial_{x}^{3} u_{\varepsilon}+\gamma \partial_{x} u_{\varepsilon}+2 \tau u_{\varepsilon} \partial_{x} u_{\varepsilon}-3 \delta^{2} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon}-\varepsilon \partial_{x}^{5} u_{\varepsilon}\right) \\
& -f^{\prime}\left(u_{\varepsilon}\right) \partial_{x} u_{\varepsilon},
\end{aligned}
$$

where $f^{\prime}\left(u_{\varepsilon}\right)$ is defined in (2.20). Thanks to Lemmas 2.1, 2.2 and 2.3, we have that

$$
\begin{align*}
& \nu^{2}\left\|u_{\varepsilon}^{2}\right\|_{L^{2}((0, T) \times \mathbb{R})}, \alpha^{2}\left\|\partial_{x}^{2} u_{\varepsilon}\right\|_{L^{2}((0, T) \times \mathbb{R})}^{2}, \beta^{4}\left\|\partial_{x}^{3} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2} \leq C(T),  \tag{3.5}\\
& \gamma^{2}\left\|\partial_{x} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}, \varepsilon^{2}\left\|\partial_{x}^{5} u_{\varepsilon}\right\|_{L^{2}((0, T) \times \mathbb{R})}^{2} \leq C(T) .
\end{align*}
$$

We claim that

$$
\begin{align*}
& 4 \tau^{2} \int_{0}^{T} \int_{\mathbb{R}} u_{\varepsilon}^{2}\left(\partial_{x} u_{\varepsilon}\right)^{2} d t d x \leq C(T), \\
& 9 \delta^{4} \int_{0}^{T} \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d t d x \leq C(T) \tag{3.6}
\end{align*}
$$

Thanks to (2.9) and (2.10),

$$
\begin{aligned}
& 4 \tau^{2} \int_{0}^{T} \int_{\mathbb{R}} u_{\varepsilon}^{2}\left(\partial_{x} u_{\varepsilon}\right)^{2} d t d x \leq 4 \tau^{2}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{2} \int_{0}^{T}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})} d t \leq C(T), \\
& 9 \delta^{4} \int_{0}^{T} \int_{\mathbb{R}} u_{\varepsilon}^{4}\left(\partial_{x} u_{\varepsilon}\right)^{2} d t d x \leq 9 \delta^{4}\left\|u_{\varepsilon}\right\|_{L^{\infty}((0, T) \times \mathbb{R})}^{4} \int_{0}^{T}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})} d t \leq C(T) .
\end{aligned}
$$

Therefore, by (3.5) and (3.6), we have that

$$
\left\{\partial_{x}\left(v u_{\varepsilon}+\alpha \partial_{x}^{2} u_{\varepsilon}+\beta^{2} \partial_{x}^{3} u_{\varepsilon}+\gamma \partial_{x} u_{\varepsilon}+2 \tau u_{\varepsilon} \partial_{x} u_{\varepsilon}-3 \delta^{2} u_{\varepsilon}^{2} \partial_{x} u_{\varepsilon}-\varepsilon \partial_{x}^{5} u_{\varepsilon}\right)\right\}_{\varepsilon>0}
$$

is bounded in $H^{1}((0, T) \times \mathbb{R})$.
We have that

$$
\begin{equation*}
\int_{0}^{T} \int_{\mathbb{R}}\left(f^{\prime}\left(u_{\varepsilon}\right)\right)^{2}\left(\partial_{x} u_{\varepsilon}\right)^{2} d t d x \leq C(T) \tag{3.7}
\end{equation*}
$$

Thanks to (2.9) and (2.10),
$\int_{0}^{T} \int_{\mathbb{R}}\left(f^{\prime}\left(u_{\varepsilon}\right)\right)^{2}\left(\partial_{x} u_{\varepsilon}\right)^{2} d t d x \leq\left\|f^{\prime}\right\|_{L^{\infty}(-C(T), C(T))}^{2} \int_{0}^{T}\left\|\partial_{x} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d t \leq C(T)$.
Therefore, (3.4) follows from (3.7) and (3.8).
Thanks to the Aubin-Lions Lemma, (3.1) and (3.2) hold.
Consequently, $u$ is solution of (1.1) and, thanks to Lemmas 2.1 and 2.2, (1.11) holds.

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Lemma 3.1 gives the existence of a solution of (1.1) such that (1.11) holds.

Let $u_{1}$ and $u_{2}$ two solutions of (1.1), which verify (1.11), that is

$$
\begin{aligned}
& \left\{\begin{array}{cl}
\partial_{t} u_{1}+v \partial_{x} u_{1}+f^{\prime}\left(u_{1}\right) \partial_{x} u_{1}+\alpha \partial_{x}^{3} u_{1}+\beta^{2} \partial_{x}^{4} u_{1} & \\
+\gamma \partial_{x}^{2} u_{1}+\tau \partial_{x}^{2}\left(u_{1}^{2}\right)-\delta^{2} \partial_{x}^{2}\left(u_{1}^{3}\right)=0, & t>0, \quad x \in \mathbb{R}, \\
u_{1}(0, x)=u_{1,0}(x), & x \in \mathbb{R},
\end{array}\right. \\
& \left\{\begin{array}{cl}
\partial_{t} u_{2}+v \partial_{x} u_{2}+f^{\prime}\left(u_{2}\right) \partial_{x} u_{2}+\alpha \partial_{x}^{3} u_{2}+\beta^{2} \partial_{x}^{4} u_{2} & \\
+\gamma \partial_{x}^{2} u_{2}+\tau \partial_{x}^{2}\left(u_{2}\right)^{2}-\delta^{2} \partial_{x}^{2}\left(u_{2}^{3}\right)=0, & x \in 0, \quad x \in \mathbb{R}, \\
u_{2}(0, x)=u_{2,0}(x), &
\end{array}\right.
\end{aligned}
$$

where $f^{\prime}(u)$ is defined in (2.20). Then, the function

$$
\begin{equation*}
\omega=u_{1}-u_{2} \tag{3.9}
\end{equation*}
$$

is the solution of the following Cauchy problem:

$$
\begin{cases}\partial_{t} \omega+v \partial_{x} \omega+f^{\prime}\left(u_{1}\right) \partial_{x} u_{1}-f^{\prime}\left(u_{2}\right) \partial_{x} u_{2}+\alpha \partial_{x}^{3} \omega+\beta^{2} \partial_{x}^{4} \omega &  \tag{3.10}\\ \quad+\gamma \partial_{x}^{2} \omega+\tau \partial_{x}^{2}\left(u_{1}^{2}-u_{2}^{2}\right)-\delta^{2} \partial_{x}^{2}\left(u_{1}^{3}-u_{2}^{3}\right)=0, & t>0, \quad x \in \mathbb{R}, \\ \omega(0, x)=u_{1,0}(x)-u_{2,0}(x), & x \in \mathbb{R}\end{cases}
$$

Observe that, thanks to (3.9),

$$
\begin{aligned}
f^{\prime}\left(u_{1}\right) \partial_{x} u_{1}-f^{\prime}\left(u_{2}\right) \partial_{x} u_{2} & =f^{\prime}\left(u_{1}\right) \partial_{x} u_{1}-f^{\prime}\left(u_{1}\right) \partial_{x} u_{2}+f^{\prime}\left(u_{1}\right) \partial_{x} u_{2}-f^{\prime}\left(u_{2}\right) \partial_{x} u_{2} \\
& =f^{\prime}\left(u_{1}\right) \partial_{x} \omega+\left(f^{\prime}\left(u_{1}\right)-f^{\prime}\left(u_{2}\right)\right) \partial_{x} u_{2} .
\end{aligned}
$$

Therefore, (3.10) is equivalent to the following equation:

$$
\begin{gather*}
\partial_{t} \omega+v \partial_{x} \omega+f^{\prime}\left(u_{1}\right) \partial_{x} \omega+\left(f^{\prime}\left(u_{1}\right)-f^{\prime}\left(u_{2}\right)\right) \partial_{x} u_{2}+\alpha \partial_{x}^{3} \omega \\
\quad+\beta^{2} \partial_{x}^{4} \omega+\gamma \partial_{x}^{2} \omega+\tau \partial_{x}^{2}\left(u_{1}^{2}-u_{2}\right)-\delta^{2} \partial_{x}^{2}\left(u_{1}^{3}-u_{2}^{3}\right)=0 \tag{3.11}
\end{gather*}
$$

Since $u_{1}, u_{2} \in L^{\infty}\left((0, T) ; H^{1}\right)$, there exists a constant $C(T)$, such that

$$
\begin{align*}
& \left\|u_{1}\right\|_{L^{\infty}((0, T) \times \mathbb{R})},\left\|u_{2}\right\|_{L^{\infty}((0, T) \times \mathbb{R})} \leq C(T), \\
& \left\|\partial_{x} u_{1}\right\|_{L^{\infty}((0, T) \times \mathbb{R})},\left\|\partial_{x} u_{2}\right\|_{L^{\infty}((0, T) \times \mathbb{R})},\left\|\partial_{x} u_{2}(t, \cdot)\right\|_{L^{2}(\mathbb{R})} \leq C(T), \tag{3.12}
\end{align*}
$$

for every $0 \leq t \leq T$. Moreover, by (2.20), $f^{\prime} \in C^{1}(\mathbb{R})$. Consequently, there exists $\xi$ between $u_{1}$ and $u_{2}$, such that

$$
\begin{equation*}
f^{\prime}\left(u_{1}\right)-f^{\prime}\left(u_{2}\right)=f^{\prime \prime}(\xi)\left(u_{1}-u_{2}\right)=f^{\prime \prime}(\xi) \omega, \quad u_{1}<\xi<u_{2} \quad \text { or } \quad u_{2}<\xi<u_{1}, \tag{3.13}
\end{equation*}
$$

while, by (3.12),

$$
\begin{align*}
\left|f^{\prime}\left(u_{1}\right)\right| & \leq\left\|f^{\prime}\right\|_{L^{\infty}(-C(T), C(T))} \\
\left|f^{\prime \prime}(\xi)\right| & \leq\left\|f^{\prime \prime}\right\|_{L^{\infty}(-C(T), C(T))} \tag{3.14}
\end{align*}
$$

## Since

$$
\begin{aligned}
& 2 v \int_{\mathbb{R}} \omega \partial_{x} \omega=0, \\
& 2 \alpha \int_{\mathbb{R}} \omega \partial_{x}^{3} \omega d x=-2 \alpha \int_{\mathbb{R}} \partial_{x} \omega \partial_{x}^{2} \omega d x=0 \\
& 2 \beta^{2} \int_{\mathbb{R}} \omega \partial_{x}^{4} \omega d x=-2 \beta^{2} \int_{\mathbb{R}} \partial_{x} \omega \partial_{x}^{3} \omega d x=2 \beta^{2}\left\|\partial_{x}^{2} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 2 \tau \int_{\mathbb{R}} \partial_{x}^{2}\left(u_{1}^{2}-u_{2}^{2}\right) \omega d x=-2 \tau \int_{\mathbb{R}} \partial_{x}\left(u_{1}^{2}-u_{2}^{2}\right) \partial_{x} \omega d x=2 \tau \int_{\mathbb{R}}\left(u_{1}^{2}-u_{2}^{2}\right) \partial_{x}^{2} \omega d x \\
& -2 \delta^{2} \int_{\mathbb{R}} \partial_{x}^{2}\left(u_{1}^{3}-u_{2}^{3}\right) \omega d x=2 \delta^{2} \int_{\mathbb{R}} \partial_{x}\left(u_{1}^{3}-u_{2}^{3}\right) \partial_{x} \omega d x=-2 \delta^{2} \int_{\mathbb{R}}\left(u_{1}^{3}-u_{2}^{3}\right) \partial_{x}^{2} \omega d x
\end{aligned}
$$

multiplying (3.11) by $2 \omega$, (3.14) and an integration on $(0, t)$ give

$$
\begin{align*}
& \frac{d}{d t}\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+2 \beta^{2}\left\|\partial_{x}^{2} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad=2 \int_{\mathbb{R}} f^{\prime}\left(u_{1}\right) \partial_{x} \omega \omega d x+2 \int_{\mathbb{R}} f^{\prime \prime}(\xi) \partial_{x} u_{2} \omega^{2} d x-2 \gamma \int_{\mathbb{R}} \omega \partial_{x}^{2} \omega d x \\
& \quad-2 \tau \int_{\mathbb{R}}\left(u_{1}^{2}-u_{2}^{2}\right) \partial_{x}^{2} \omega d x+2 \delta^{2} \int_{\mathbb{R}}\left(u_{1}^{3}-u_{2}^{3}\right) \partial_{x}^{2} \omega d x \tag{3.15}
\end{align*}
$$

Thanks to (3.9),

$$
\begin{aligned}
& u_{1}^{2}-u_{2}^{2}=\left(u_{1}+u_{2}\right)\left(u_{1}-u_{2}\right)=\left(u_{1}+u_{2}\right) \omega \\
& u_{1}^{3}-u_{2}^{3}=\left(u_{1}-u_{2}\right)\left(u_{1}^{2}+u_{2}^{2}+u_{1} u_{2}\right)=\left(u_{1}^{2}+u_{2}^{2}+u_{1} u_{2}\right) \omega .
\end{aligned}
$$

Therefore, by (3.15),

$$
\begin{align*}
& \frac{d}{d t}\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+2 \beta^{2}\left\|\partial_{x}^{2} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad=2 \int_{\mathbb{R}} f^{\prime}\left(u_{1}\right) \omega \partial_{x} \omega d x+2 \int_{\mathbb{R}} f^{\prime \prime}(\xi) \omega^{2} \partial_{x} u_{2} d x-2 \gamma \int_{\mathbb{R}} \omega \partial_{x}^{2} \omega d x \\
& \quad-2 \tau \int_{\mathbb{R}}\left(u_{1}+u_{2}\right) \omega \partial_{x}^{2} \omega d x+2 \delta^{2} \int_{\mathbb{R}}\left(u_{1}^{2}+u_{2}^{2}+u_{1} u_{2}\right) \omega \partial_{x}^{2} \omega d x . \tag{3.16}
\end{align*}
$$

Due to (3.12), (3.14) and the Young inequality,

$$
\begin{aligned}
& 2 \int_{\mathbb{R}} f^{\prime}\left(u_{1}\right)\left|\partial_{x} \omega\right||\omega| d x \leq 2\left\|f^{\prime \prime}\right\|_{L^{\infty}(-C(T), C(T))} \int_{\mathbb{R}}\left|\partial_{x} \omega\right||\omega| d x \\
& \quad \leq 2 C(T) \int_{\mathbb{R}}\left|\partial_{x} \omega\right||\omega| d x \leq\left\|\partial_{x} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}+C(T)\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}, \\
& 2 \int_{\mathbb{R}}\left|f ^ { \prime \prime } ( \xi ) \left\|\partial_{x} u_{2}\left|\omega^{2} d x \leq 2\left\|f^{\prime \prime}\right\|_{L^{\infty}(-C(T), C(T))} \int_{\mathbb{R}}\right| \partial_{x} u_{2} \mid \omega^{2} d x\right.\right. \\
& \quad \leq 2 C(T) \int_{\mathbb{R}}\left|\omega \partial_{x} u_{2}\right||\omega| d x \leq \int_{\mathbb{R}} \omega^{2}\left(\partial_{x} u_{2}\right)^{2} d x+C(T)\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq\|\omega(t, \cdot)\|_{L^{\infty}(\mathbb{R})}^{2}\left\|\partial_{x} u_{2}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}+C(T)\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq C(T)\|\omega(t, \cdot)\|_{L^{\infty}(\mathbb{R})}^{2}+C(T)\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}, \\
& 2|\gamma| \int_{\mathbb{R}} \omega \partial_{x}^{2} \omega d x=\int_{\mathbb{R}}\left|\frac{2 \gamma \omega}{\beta}\right|\left|\beta \partial_{x}^{2} \omega\right| d x \\
& \quad \leq \frac{2 \gamma^{2}}{\beta^{2}}\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2}}{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 2|\tau| \int_{\mathbb{R}}\left|u_{1}+u_{2}\right||\omega|\left|\partial_{x}^{2} \omega\right| d x \leq C(T) \int_{\mathbb{R}}|\omega|\left|\partial_{x}^{2} \omega\right| d x \\
& \quad=\int_{\mathbb{R}}\left|\frac{C(T) \omega}{\beta}\right|\left|\beta \partial_{x}^{2} \omega\right| d x \leq C(T)\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2}}{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}, \\
& 2 \delta^{2} \int_{\mathbb{R}}\left|u_{1}^{2}+u_{2}^{2}+u_{1} u_{2}\left\|\omega| | \partial_{x}^{2} \omega\left|d x \leq C(T) \int_{\mathbb{R}}\right| \omega\left|\| \partial_{x}^{2} \omega\right| d x\right.\right. \\
& \quad=\int_{\mathbb{R}}\left|\frac{C(T) \omega}{\beta}\right|\left|\beta \partial_{x}^{2} \omega\right| d x \leq C(T)\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2}}{2}\left\|\partial_{x}^{2} u_{\varepsilon}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}
\end{aligned}
$$

It follows from (3.16) that

$$
\begin{align*}
& \frac{d}{d t}\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2}}{2}\left\|\partial_{x}^{2} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq C(T)\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+C(T)\|\omega(t, \cdot)\|_{L^{\infty}(\mathbb{R})}^{2}+\left\|\partial_{x} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})} \tag{3.17}
\end{align*}
$$

Observe that

$$
\omega^{2}(t, x)=2 \int_{-\infty}^{x} \omega \partial_{x} \omega d y \leq 2 \int_{\mathbb{R}}|\omega|\left|\partial_{x} \omega\right| d x
$$

Therefore, by the Young inequality,

$$
\|\omega(t, \cdot)\|_{L^{\infty}(\mathbb{R})}^{2} \leq\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+\left\|\partial_{x} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2}
$$

Consequently, by (3.17),

$$
\begin{align*}
& \frac{d}{d t}\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2}}{2}\left\|\partial_{x}^{2} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \quad \leq C(T)\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+C(T)\left\|\partial_{x} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})} \tag{3.18}
\end{align*}
$$

Observe that

$$
C(T)\left\|\partial_{x} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})}=C(T) \int_{\mathbb{R}} \partial_{x} \omega \partial_{x} \omega d x=-C(T) \int_{\mathbb{R}} \omega \partial_{x}^{2} \omega d x
$$

Therefore, by the Young inequality,

$$
\begin{aligned}
C(T)\left\|\partial_{x} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})} & \leq 2 \int_{\mathbb{R}}\left|\frac{C(T) \sqrt{3} \omega}{2 \beta}\right|\left|\frac{\beta \partial_{x}^{2} \omega}{\sqrt{3}}\right| d x \\
& \leq C(T)\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2}}{3}\left\|\partial_{x}^{2} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} .
\end{aligned}
$$

It follows from (3.18) that

$$
\frac{d}{d t}\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2}}{6}\left\|\partial_{x}^{2} \omega(t, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} \leq C(T)\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}
$$

The Gronwall Lemma and (3.10) give

$$
\begin{equation*}
\|\omega(t, \cdot)\|_{L^{2}(\mathbb{R})}^{2}+\frac{\beta^{2} e^{C(T) t}}{6} \int_{0}^{t} e^{-C(T) s}\left\|\partial_{x}^{2} \omega(s, \cdot)\right\|_{L^{2}(\mathbb{R})}^{2} d s \leq e^{C(T) t}\left\|\omega_{0}\right\|_{L^{2}(\mathbb{R})}^{2} \tag{3.19}
\end{equation*}
$$

(1.12) follows from (3.9) and (3.19).

Funding Open access funding provided by Politecnico di Bari within the CRUI-CARE Agreement.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

## References

1. Aderogba, A.A., Chapwanya, M., Djoko, J.K.: On fractional step-splitting scheme for the CahnHilliard equation. Eng. Comput. 31, 1151-1168 (2014)
2. Alikakos, N., Bates, P.W., Fusco, G.: Slow motion for the Cahn-Hilliard equation in one space dimension. J. Differ. Equ. 90, 81-135 (1991)
3. Amiranashvili, Sh, Vladimirov, A.G., Bandelow, U.: A model equation for ultrashort optical pulses. Eur. Phys. J. D 58, 219 (2010)
4. Amiranashvili, Sh, Vladimirov, A.G., Bandelow, U.: Solitary-wave solutions for few-cycle optical pulses. Phys. Rev. A 77, 063821 (2008)
5. Armaou, A., Christofides, P.D.: Feedback control of the Kuramoto-Sivashinsky equation. Physica D 137, 49-61 (2000)
6. Benney, D.J.: Long waves on liquid films. J. Math. Phys. 45, 150-155 (1966)
7. Biagioni, H.A., Bona, J.L., Iorio, R., Scialom, M.: On the Korteweg-de Vries-Kuramoto-Sivashinsky equation. Adv. Differ. Equ. 1, 1-20 (1996)
8. Bonfoh, A., Grasselli, M., Miranville, A.: Singularly perturbed 1D Cahn-Hilliard equation revisited. Nonlinear Differ. Equ. 17, 663-695 (2010)
9. Caffarelli, L.A., Muler, N.E.: An $L^{\infty}$ bound for solutions of the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 133, 129-144 (1995)
10. Cahn, J.W., Hilliard, J.E.: Free energy of no-uniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258-267 (1958)
11. Cahn, J.W., Hilliard, J.E.: Free energy of non-uniform system. III. J. Chem. Phys. 31, 688-699 (1959)
12. Cerpa, E.: Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Commun. Pure Appl. Anal. 9, 91-102 (2010)
13. Chen, L.H., Chang, H.C.: Nonlinear waves on liquid film surfaces-II. Bifurcation analyses of the long-wave equation. Chem. Eng. Sci. 41, 2477-2486 (1986)
14. Christofides, P.D., Armaou, A.: Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control. Syst. Control Lett. 39, 283-294 (2000)
15. Coclite, G.M., di Ruvo, L.: On the solutions for an Ostrovsky type equation. Nonlinear Anal. Real World Appl. 55, 103141 (2020)
16. Coclite, G.M., di Ruvo, L.: Existence results for the Kudrayashov-Sinelshchikov-Olver equation. Proc. R. Soc. Edinb. Sect. A. 1-26 (2020)
17. Coclite, G.M., di Ruvo, L.: Convergence of the Rosenau-Korteweg-de Vries equation to the Kortewegde Vries one. Contem. Math. 1(5), 393-420 (2020)
18. Coclite, G.M., di Ruvo, L.: A singular limit problem for conservation laws related to the Rosenau equation. Juor. Abstr. Differ. Equ. Appl. 8(3), 24-47 (2017)
19. Coclite, G.M., di Ruvo, L.: Discontinuous solutions for the generalized short pulse equation. Evol. Equ. Control Theory. 4, 737-753 (2019)
20. Coclite, G.M., di Ruvo, L.: Convergence of the solutions on the generalized Korteweg-de Vries equation. Math. Model. Anal. 21(2), 239-259 (2016)
21. Coclite, G.M., di Ruvo, L.: On the classical solutions for a Kuramoto-Sinelshchikov-Velarde type equation. Algorithms 4, 1-22 (2020)
22. Coclite, G.M., di Ruvo, L.: Dispersive and diffusive limits for Ostrovsky-Hunter type equations. Nonlinear Differ. Equ. Appl. 22, 1733-1763 (2015)
23. Coclite, G.M., di Ruvo, L.: Convergence of the Kuramoto-Sinelshchikov equation to the Burgers one. Acta Appl. Math. 145(1), 89-113 (2016)
24. Coclite, G.M., di Ruvo, L.: On the well-posedness of a hight order convective Cahn-Hilliard type equation. Algorithms 13(7), 170 (2020)
25. Coclite, G.M., di Ruvo, L.: A note on the solutions for a higher order convective Cahn-Hilliard type equation. Mathematics 8, 1835 (2020)
26. Coclite, G.M., di Ruvo, L.: Well-posedness results for the continuum spectrum pulse equation. Mathematics 7, 1006 (2019)
27. Coclite, G.M., di Ruvo, L.: Well-posedness of the classical solution for the Kuramto-Sivashinsky equation with anisotropy effects. Z. Angew. Math. Phys. 72, 1-37 (2021)
28. Coclite, G. M., di Ruvo, L.: On the initial-boundary value problem for a Kuramoto-Sinelshchikov type equation. Math. Eng. 3(4), 1-43 (2020)
29. Coclite, G.M., Garavello, M.: A time dependent optimal harvesting problem with measure valued solutions. SIAM J. Control Optim. 55, 913-935 (2017)
30. Coclite, G.M., Garavello, M., Spinolo, L.V.: Optimal strategies for a time-dependent harvesting problem. Discrete Contin. Dyn. Syst. Ser. S 11(5), 865-900 (2016)
31. Cohen, B.I., Krommes, J.A., Tang, W.M., Rosenbluth, M.N.: Nonlinear saturation of the dissipative trapped-ion mode by mode coupling. Nucl. Fusion 16, 971-992 (1976)
32. Di Carlo, A., Gurtin, M.E., Podio-Guidugli, P.: A regularized equation for anisotropic motion-byCurvature. SIAM J. Appl. Math. 52(4), 1111-1119 (1992)
33. Eden, A., Kalantarov, V.K.: The convective Cahn-Hilliard equation. Appl. Math. Lett. 20, 455-461 (2007)
34. Elliot, C.M., French, D.A.: Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J. Appl. Math. 35, 97-128 (1987)
35. Emmott, C.L., Bray, A.J.: Coarsening dynamics of a one-dimensional driven Cahn-Hilliard system. Phys. Rev. E 54, 4568 (1996)
36. Foias, C., Nicolaenko, B., Sell, G.R., Temam, R.: Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl. 67, 197-226 (1988)
37. Gatti, S., Grasselli, M., Miranville, A., Pata, V.: On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation. J. Math. Anal. Appl. 312, 230-247 (2005)
38. Giacomelli, L., Otto, F.: New bounds for the Kuramoto-Sivashinsky equation. Commun. Pure Appl. Math. 58, 297-318 (2005)
39. Golovin, A.A., Davis, S.H., Nepomnyashchy, A.A.: Model for faceting in a kinetically controlled crystal growth. Phys. Rev. E 59, 803 (1999)
40. Golovin, A.A., Davis, S.H., Nepomnyashchy, A.A.: Modeling the formation of facets and corners using a convective Cahn-Hilliard model. J. Cryst. Growth 198(199), 1245-1250 (1999)
41. Golovin, A.A., Nepomnyashchy, A.A., Davis, S.H., Zaks, M.A.: Convective Cahn-Hilliard models: from coarsening to roughening. Phys. Rev. Lett. 86, 1550-1553 (2001)
42. Grasseli, M., Pierre, M.: A splitting method for the Cahn-Hilliard equation with inertial term. Math. Models Methods Appl. Sci. 20(8), 1363-1390 (2010)
43. Gurtin, M.E.: Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford (1993)
44. Hooper, A.P., Grimshaw, R.: Nonlinear instability at the interface between two viscous fluids. Phys. Fluids 28, 37-45 (1985)
45. Hu, C., Temam, R.: Robust control of the Kuramoto-Sivashinsky equation. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 8, 315-338 (2001)
46. Kawasaki, K., Ohta, T.: Kink dynamics in one-dimensional nonlinear systems. Physica A 116(3), 573-593 (1982)
47. Kenig, C.E., Ponce, G., Vega, L.: Wellposedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527-620 (1993)
48. Khalique, C.M.: Exact solutions of the generalized Kuramoto-Sivashinsky equation. Caspian J. Math. Sci. 1(2), 109-116 (2012)
49. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(240), 422-443 (1895)
50. Krekhov, A.: Formation of regular structures in the process of phase separation. Phys. Rev. E 79, 035302 (2009)
51. Kudryashov, N.A.: On new travelling wave solutions of the KdV and the KdV-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 14, 1891-1900 (2009)
52. Kudryashov, N.A.: Exact solutions of the generalized Kuramoto-Sivashinsky equation. Phys. Lett. A 147, 287-291 (1990)
53. Kulikov, A.N., Kulikov: Local bifurcations in the Cahn-Hilliard and Kuramoto-Sivashinsky equations and in their generalizations. Comput. Math. Math. Phys. 59(4), 630-643 (2019)
54. Kuramoto, Y.: Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. Suppl. 64, 346-367 (1978)
55. Kuramoto, Y., Tsuzuki, T.: On the formation of dissipative structures in reaction-diffusion systems. Theor. Phys. 54, 687-699 (1975)
56. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356-369 (1976)
57. Laquey, R.E., Mahajan, S.M., Rutherford, P.H.: Nonlinear saturation of the trapped-ion mode. Phys. Rev. Lett. 34, 391-394 (1975)
58. Leblond, H., Mihalache, D.: Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 79, 063835 (2009)
59. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61-126 (2013)
60. Leblond, H., Sanchez, F.: Models for optical solitons in the two-cycle regime. Phys. Rev. A 67, 013804 (2003)
61. LeFloch, P.G., Natalini, R.: Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal. Ser. A Theory Methods 36(2), 212-230 (1992)
62. Leung, K.: Theory on morphological instability in driven systems. J. Stat. Phys. 61, 345 (1990)
63. Lin, S.P.: Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 63(3), 417-429 (1974)
64. Li, C., Chen, G., Zhao, S.: Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Lat. Am. Appl. Res. 34, 64-68 (2004)
65. Liu, W.J., Krstic, M.: Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation. Nonlinear Anal. 43, 485-507 (2001)
66. Liu, F., Metiu, H.: Dynamics of phase separation of crystal surfaces. Phys. Rev. B 48(9), 5808 (1993)
67. Li, J., Zhang, B.Y., Zhang, Z.: A nonhomogeneous boundary value problem for the KuramotoSivashinsky equation in a quarter plane. Math. Methods Appl. Sci. 40(15), 5619-5641 (2017)
68. Li, J., Zhang, B.Y., Zhang, Z.: A non-homogeneous boundary value problem for the KuramotoSivashinsky equation posed in a finite interval. ESAIM COCV 26, 43 (2020)
69. Mchedlov-Petrosyan, P.O.: The convective viscous Cahn-Hilliard equation: exact solutions. Euro. J. Appl. Math. 27, 42-65 (2016)
70. Nicolaenko, B., Scheurer, B.: Remarks on the Kuramoto-Sivashinsky equation. Physica D 12, 391-395 (1984)
71. Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of the KuramotoSivashinsky equations: nonlinear stability and attractors. Physica D 16, 155-183 (1985)
72. Sajjadian, M.: The shock profile wave of Kuramoto-Sivashinsky equation and solitonic solution of generalized Kuramoto-Sivashinsky equation. Acta Univ. Apulensis, Mat.-Inform 38, 163-176 (2014)
73. Saito, Y., Uwaha, M.: Anisotropy effect on step morphology described by Kuramoto-Sivashinsky equation. J. Phys. Soc. Jpn. 65, 3576-3581 (1996)
74. Schonbek, M.E.: Convergence of solutions to nonlinear dispersive equations. Commun. Partial Differ. Equ. 7(8), 959-1000 (1982)
75. Simon, J.: Compact sets in the space $L_{p}(0, T ; B)$. Ann. Mat. Pura Appl. 4(146), 65-94 (1987)
76. Sivashinsky, G.I.: Nonlinear analysis of hydrodynamic instability in laminar flames-I derivation of basic equations. Acta Astronaut. 4, 1177-1206 (1977)
77. Stewart, J., Goldenfeld, N.: Spinodal decomposition of a crystal surface. Phys. Rev. A 46, 6505 (1992)
78. Tadmor, E.: The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 17(4), 884-893 (1986)
79. Topper, J., Kawahara, T.: Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Jpn. 44, 663-666 (1978)
80. Villain-Guillot, S.: Coalescence in the 1D Cahn-Hilliard model. J. Phys. A Math. Gen. 37, 6929-6941 (2004)
81. Watson, S.J.: Free Boundary Problems Theory and Applications, pp. 329-341. Birkhäuser, Basel (2004)
82. Watson, S.J., Otto, F., Rubinstein, B.Y., Davis, S.H.: Coarsening dynamics of the convective CahnHilliard equation. Physica D 178, 127-148 (2003)
83. Xie, Y.: Solving the generalized Benney equation by a combination method. Int. J. Nonlinear Sci. 15(4), 350-354 (2013)
84. Yeung, C., Rogers, T., Hernandes-Machado, A., Jasnow, D.: Phase separation dynamics in driven diffusive systems. J. Stat. Phys. 66, 1071 (1992)
85. Zhang, W., Li, T., Zhang, P.: Numerical study for the nucleation of one-dimensional stochastic CahnHilliard equation. Commun. Math. Sci. 10(4), 1105-1132 (2012)
86. Zhao, X.: Global well-posedness of solutions to the Cauchy problem of convective Cahn-Hilliard equation. Annali di Matematica 197, 1333-1348 (2018)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


[^0]:    The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). GMC has been partially supported by the Research Project of National Relevance "Multiscale Innovative Materials and Structures" granted by the Italian Ministry of Education, University and Research (MIUR Prin 2017, Project code 2017J4EAYB and the Italian Ministry of Education, University and Research under the Programme Department of Excellence Legge 232/2016 (Grant No. CUP - D94I18000260001). The authors declare that they do not have any conflict of interest.
    $\triangle$ Giuseppe Maria Coclite
    giuseppemaria.coclite@poliba.it
    https://www.dmmm.poliba.it/index.php/it/profile/gmcoclite
    Lorenzo di Ruvo
    lorenzo.diruvo77@gmail.com
    1 Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy

    2 Dipartimento di Matematica, Università di Bari, Via E. Orabona 4, 70125 Bari, Italy

