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Abstract
In this paper we characterize, in terms of their conjugacy classes, linear groups G
such that G/ζk(G) belongs to a certain group class X for several natural choices of X.
Moreover, a description is given of linear groups with restrictions on layers.
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1 Introduction

A famous theorem of Schur [11] states that if G is any group whose centre ζ1(G) has
finite index, then its commutator subgroup G ′ is finite. This result was later extended
by Baer [1], who proved that the (k + 1)-th term γk+1(G) of the lower central series
of G is finite whenever G is finite over its k-th centre ζk(G) for some non-negative
integer k. Although the consideration of an infinite extraspecial group shows that an
exact converse of Baer’s theorem is false, even for k = 1, it was shown by Philip Hall
[6] that if G is any group with γk+1(G) finite, then also the factor group G/ζ2k(G) is
finite. On the other hand, Merzljakov proved that for any linear group G the finiteness
of G/ζk(G) and γk+1(G) are equivalent (see [8] or [13], Corollary 10.20).
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The above results have been generalized by replacing finiteness by other natural
finiteness conditions. In particular, it turns out that if G/ζ1(G) ∈ X, then G ′ is an
X-group, whenever X is any of the classes C of Černikov groups, PF of polycyclic-
by-finite groups, Mπ of soluble-by-finite π -minimax groups, R of soluble-by-finite
groups of finite rank (see the introduction of [5] for more details). Here a group G is
said to have finite rank r if every finitely generated subgroup of G can be generated by
r elements and if r is the least non-negative integer with this property. Recall also that,
if π is any set of primes, a soluble-by-finite group G is π -minimax if it has a series
of finite length whose factors are finite or cyclic or of type p∞ for some p ∈ π ; if π

is the set of all primes, a π -minimax group is simply called minimax and the class of
minimax groups is denoted byM. It is known that a soluble-by-finiteminimax group is
reduced, i.e. it has no radicable non-trivial subgroups, if and only it is residually finite.
Notice that Platonov proved that any linear group of finite rank is soluble-by-finite (see
[13], Theorem 10.9). Moreover, it has been shown in [5] that a linear group admitting
a finite series whose factors satisfy either the minimal or the maximal condition is a
soluble-by-finite π -minimax for some finite set π of primes.

Recall that a group G is an FC-group if each of its elements has only finitely
many conjugates, or equivalently if the centralizer CG(g) has finite index in G for
every g ∈ G. Of course, any direct product of finite groups has the FC-property, so
that there are FC-groups with an infinite commutator subgroup and a fortiori whose
centre has infinite index.However, it is well known that for a linear group the properties
of being FC and central-by-finite are equivalent (see for instance [13], Corollary 5.6).
For more details on the theory of FC-groups we refer to the monograph [12].

More generally, ifX is any group class, we say that a groupG is anXC-group, or has
X-conjugacy classes, if the factor groupG/CG

(〈g〉G)
belongs toX for each element g

ofG. In particular, if F is the class of all finite groups, a group has F-conjugacy classes
if and only if it is an FC-group and so XC-groups arise as natural generalizations of
groups with finite conjugacy classes. If the group class X is chosen to be one of
the classes C, PF and M, we obtain the concepts of CC-groups, PC-groups and
MC-groups, respectively. Groups with the CC-property were introduced by Polo-
vickiı̆ in [9] and later investigated by several authors, while the study of PC-groups
was started in [3] and that of MC-groups in [7]. Notice that the properties FC and PC
obviously coincide for periodic groups, as well as the properties CC and MC .

If X is any Q-closed group class (i.e. a class of groups which is closed under
quotients) and G is a group such that G/ζ1(G) belongs to X, then G is an XC-group.
On the other hand, as in the case of FC-groups, the imposition of the property XC to
a group G does not imply that G/ζ1(G) is in X, even when X is one if the classes C,
PF, M. It is easy to prove that for a linear group the XC-property is equivalent to
the property of being central-by-X for the above choices of the group class X and the
aim of this paper is to further investigate this kind of restrictions on conjugacy classes
within the universe of linear groups.

Our notation is mostly standard and can be found in [10].We refer to [13] for results
and terminology concerning linear groups.
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Linear Groups with Restricted Conjugacy Classes 181

2 Conjugacy classes

We start by recalling properties of linear groups that we require. If G is a linear
group, denote by G0 its connected component containing 1. It is well known that G0

has finite index in G and is contained in every closed subgroup of finite index (see
[13], Lemma 5.2 and Lemma 5.3). It follows that G0 centralizes each element of G
admitting finitely many conjugates, since all centralizers in a linear group are closed
(see [13], Lemma 5.4); for the same reason, the centre of a linear group is closed and
every linear group satisfies the minimal and the maximal condition on centralizers.
Finally, we mention that any soluble connected linear group over an algebraically
closed field is triangularizable by the Lie-Kolchin theorem (see [13], Theorem 5.8).

The first lemma of this section proves that in the linear case the XC-property is
equivalent to the property of being central-by-X for several natural choices of the
group class X. Recall that a group class X is R0-closed if G/N1 ∩ N2 is an X-group
whenever N1 and N2 are normal subgroups of a group G such that G/N1 and G/N2
belong to X.

Lemma 2.1 Let X be an R0-closed group class and let G a linear XC-group. Then
the factor group G/ζ1(G) belongs to X.

Proof Since G satisfies the minimal condition on centralizers, there is a finitely gener-
ated subgroup X of G such that ζ1(G) = CG(X). Then ζ1(G) = CG(XG) and hence
G/ζ1(G) is anX-group becauseG has theXC-property and the classX isR0-closed.�	
Lemma 2.2 Let G be a linear group such that [g,G] is soluble-by-finite for each
element g of G. Then G is soluble-by-finite.

Proof Let S be themaximal soluble normal subgroup ofG. Then S is closed inG,G =
G/S is a linear group and [g,G] is finite for each g ∈ G. Hence G is an FC-group,
is central-by-finite and so is finite. Therefore G is soluble-by-finite. �	

Now, a group G has the CC-property if and only if for each element g of G
both the subgroup [g,G] and the factor group G/CG([g,G]) are Černikov; actually,
since periodic groups of automorphisms of Černikov groups are likewise Černikov
(see [10] Part 1, Theorem 3.29), the condition on G/CG([g,G]) may be weakened,
requiring only its periodicity. On the other hand, consideration of the holomorph of
a Prüfer group proves that in general the assumption on G/CG([g,G]) cannot be
completely removed. However, this is certainly possible in the case of linear groups,
as the following shows.

Lemma 2.3 Let G be a linear group and let N be a Černikov normal subgroup of G.
Then G/CG(N ) is Černikov.

Proof Let J be the largest divisible normal subgroup of N and let g be any element of
G. Since the connected component G0 centralizes J by Lemma 1.12 of [13] and has
finite index in G, there exists a positive integer k such that x = gk acts trivially on J
and N/J . It easily follows that xh centralizes N for a suitable h > 0. Thus G/CG(N )

is periodic and hence it is a Černikov group. �	
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Our next statement provides a characterization of the CC-property within the uni-
verse of linear groups.

Theorem 2.4 Let G be a linear group. Then the following statements are equivalent:

(a) G/ζ1(G) is a Černikov group;
(b) G ′ is a Černikov group;
(c) [g,G] is a Černikov group for each element g of G;
(d) G is a CC-group.

Proof The implication (a) 
⇒ (b) holds for an arbitrary group by a result of Polo-
vickiı̆ (see [10], Theorem 4.23). Moreover, (b) 
⇒ (c) is obvious and (d) 
⇒ (a) is
a consequence of Lemma 2.1. Finally, it follows from Lemma 2.3 and the previously
quoted characterization ofCC-groups that a linear group satisfying (c) has theCC-pro-
perty. �	

The following two consequences of Theorem 2.4 show that linear CC-groups
behave similarly to Černikov groups; in particular, the second of them provides a
characterization of periodic linear CC-groups.

Corollary 2.5 Let G be a linear CC-group. Then G0 is abelian and G is abelian-by-
finite.

Proof Of course, we may suppose that G is linear over an algebraically closed field.
Since G/ζ1(G) is Černikov by Theorem 2.4, G is metabelian-by-finite. Hence G0 is
metabelian and so triangularizable by theLie-Kolchin theorem.Thus (G0)′ is unipotent
and hence finite, being Černikov by Theorem 2.4. But (G0)′ is connected by Lemma
5.7 of [13], so that (G0)′ = {1} and G0 is abelian. �	

IfG is any periodic group, we use the symbol π(G) to denote the set of all primes p
such that G has elements of order p.

Corollary 2.6 Let G be a periodic linear CC-group over a field of characteristic q and
put π = π

(
G/ζ1(G)

)
.

(a) If q does not belong to π , then G = U × V × W, where U is a Černikov π -
subgroup, V is an abelian q-subgroup of finite exponent and W is an abelian
(π ∪ {q})′-subgroup of finite rank if q > 0, while V = {1} and W is an abelian
π ′-subgroup of finite rank if q = 0.

(b) If q belongs to π , then G = U × W, where U = E(V1 × V2), E is a finite
π -subgroup whose order is divisible by q, V1 is a central q-subgroup of finite
exponent, V2 is a Černikov π -subgroup and W is an abelian π ′-subgroup of finite
rank.

Proof (a) Clearly, the π ′-component A of ζ1(G) is a Hall π ′-subgroup of G and so
G = U × A for a suitable π -subgroup U (see [13], Theorem 9.18). Since A
is linear over a field of characteristic q, we have A = V × W , where V is an
abelian q-group of finite exponent and W is an abelian q ′-group of finite rank if
q > 0, while V = {1} and W = A has finite rank if q = 0 (see for instance [13],
Theorem 2.2). Finally, for each prime p ∈ π the p-component of U ∩ ζ1(G) has
finite rank and hence U is a Černikov group (the set π is finite by Theorem 2.4).
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Linear Groups with Restricted Conjugacy Classes 183

(b) Let J/ζ1(G) be the largest divisible subgroup of the Černikov group G/ζ1(G).
Since the Sylow q-subgroups of G have finite exponent, q is not in

π1 = π
(
J/ζ1(J )

) ⊆ π

and hence by (a) we have J = U1 × V1 × W1, where U1 is a Černikov π -sub-
group, V1 is an abelian q-subgroup of finite exponent and W1 is an abelian
(π1∪{q})′-subgroup of finite rank.WriteW1 = U2×W , whereU2 is aπ -subgroup
and W is a π ′-subgroup, so that W ≤ ζ1(G) and V2 = U1 × U2 is a Černikov
π -subgroup. Clearly there exists a finite π -subgroup E of G such that G = E J .
In particular, q divides the order of E and

G = E
(
(V1 × V2) × W

) = U × W ,

where U = E(V1 × V2) is a π -subgroup. �	
The characterization of linear CC-groups provided by Theorem 2.4 can actually

be generalized to XC-groups for several other choices of the group class X. In fact, it
can be proved that for a linear group G the following four statements

(a) G/ζ1(G) ∈ X
(b) G ′ ∈ X
(c) [g,G] ∈ X for each g ∈ G
(d) G is an XC-group

are equivalent when X is any one of the classes of polycyclic-by-finite, π -minimax,
reduced π -minimax groups and, provided that the characteristic is positive, the class of
groups of finite rank. In fact, it has been remarked in the introduction that (a) 
⇒ (b)
holds for all these classes, while (b) 
⇒ (c) is obvious and (d) 
⇒ (a) follows
from Lemma 2.1. In order to prove that (d) is a consequence of (c), notice first that
the latter condition ensures that the whole group G is soluble-by-finite by Lemma 2.2.
Since 〈g〉G = 〈g〉[g,G] belongs to X, it follows from Theorem 3.27 of [10] and
from Lemma 4.7, Lemma 4.6 and Lemma 3.3 of [5] that G is an XC-group for all our
choices of X.

Our next aim is to characterize linear groups G such that G/ζk(G) belongs to a
group class X for some integer k > 1.

Let X be any group class. Put XC0 = X and suppose by induction that the group
class XCk has been defined for some non-negative integer k; then we use the symbol
XCk+1 for the class consisting of all groups G such that G/CG(〈g〉G) belongs toXCk

for each element g of G. Clearly, the properties XC and XC1 coincide. Moreover, if
the group class X is Q-closed, then XCk contains all X-groups and all groups which
are X over the k-th centre. If we choose as X the class F of all finite groups, we obtain
the class FCk = FCk that was introduced and studied in [4], where it was proved that
many interesting properties concerning FC-groups can be generalized to FCk-groups
for k > 1. It turns out for instance that if G is any FCk-group, the subgroup γk+1(G)

is periodic, so that in particular a torsion-free group has the FCk-property if and only
if it is nilpotent of class at most k.
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Our next result is an extension of Lemma 2.1.

Theorem 2.7 Let X be an R0-closed class of groups and let G be a linear XCk-group
for some non-negative integer k. Then G/ζk(G) belongs to X.

Proof The statement is obvious for k = 0, so suppose k > 0. Since G satisfies the
minimal condition on closed subgroups, there are finitely many elements g1, . . . , gm
of G such that

m⋂

i=1

CG
(〈gi G〉) = ζ1(G).

For each i = 1, . . . ,m, the linear group G/CG
(〈gi G〉) has the XCk−1-property and

hence by induction on k the group G/Zi belongs to X, where

Zi/CG
(〈gi G〉) = ζk−1

(
G/CG

(〈gi G〉)).

If Z is the intersection of all Zi ’s, we have

[Z ,k−1 G] ≤
m⋂

i=1

[Zi ,k−1 G] ≤
m⋂

i=1

CG
(〈gi G〉) = ζ1(G)

and hence Z = ζk(G). It follows now from the R0-closure of X that G/ζk(G) is
an X-group. �	
Corollary 2.8 Let X be a group class which is Q and R0-closed. A linear group G
is XCk for some non-negative integer k if and only if G/ζk(G) belongs to X.

Notice that the above results apply in particular to the classes of finite, Černikov,
polycyclic-by-finite, π -minimax, finite rank groups and hence they provide a further
characterization of linear groups G for which G/ζk(G) is finite, Černikov, polycyclic-
by-finite, π -minimax or of finite rank, respectively. Although the classM�

π of soluble-
by-finite reduced π -minimax groups is not Q-closed (with the obvious exception
π = ∅), even within the universe of linear groups, we can prove for this class a result
similar to Corollary 2.8 in the context of connected linear groups. To this aim, we need
the following lemma which holds in particular for soluble connected linear groups by
the Lie-Kolchin theorem. The proof of this auxiliary result makes use of the Jordan
decomposition. Recall that, if G is a linear group of degree n over an algebraically
closed field K and g is any element of G, then GL(n,K) contains a unique unipotent
element gu and a unique diagonalizable element gd such that g = gugd = gdgu : this
is called the Jordan decomposition of g (see for instance [13], Theorem 7.2). Put

Gu = {gu | g ∈ G} and Gd = {gd | g ∈ G}.

If G is locally nilpotent, then Gu and Gd are subgroups of GL(n,K) and

G ≤ 〈Gu,Gd〉 = Gu × Gd = GuG = GGd

123



Linear Groups with Restricted Conjugacy Classes 185

(see [13], 7.14). Notice that Gu is unitriangularizable (see [13], Corollary 1.21) and
hence it is either primary or torsion-free, according to the characteristic.

Lemma 2.9 Let G ≤ Tr(n,K), where K is a field and n is a positive integer. Then
the largest divisible subgroup of ζk+1(G)/ζk(G) is torsion-free for every positive
integer k.

Proof Of course, we may suppose K algebraically closed. Let J/ζk(G) be the largest
periodic divisible subgroup of ζk+1(G)/ζk(G) and put

G∗ = G
(
ζk+1(G)u × ζk+1(G)d

)
,

where ζk+1(G)u and ζk+1(G)d are respectively the unipotent and the diagonalizable
components of ζk+1(G) determined by the Jordan decomposition of its elements.
Clearly, G∗ ≤ Tr(n,K) and ζk+1(G∗)d is G-invariant. Moreover,

Jd ≤ ζk+1(G)d ≤ ζk+1(G
∗)d

(see [13], Lemma 7.17), so that [Jd ,G] = {1} and hence Jd ≤ ζ1(G∗) ≤ ζk(G∗) = Z .

Then

J Z/Z ≤ Ju Jd Z/Z = Ju Z/Z .

But Ju Z/Z is unipotent and as such is torsion-free or has finite exponent. On the other
hand, ζk(G) ≤ Z again by Lemma 7.17 of [13], so that J Z/Z is divisible periodic
and hence trivial. Therefore J ≤ G ∩ Z ≤ ζk(G) and the statement is proved. �	

The above lemma should be seen in relation to the well known fact that the factor
group ζk+1(G)/ζk(G) is reduced for any periodic group G and any positive integer k.

Theorem 2.10 Let π be a set of primes. If G is a connected linear group and k is a
positive integer, then the following statements are equivalent.

(a) G/ζk(G) is π -minimax.
(b) G/ζk(G) is reduced π -minimax.
(c) G is an M�

πC
k-group.

Proof Suppose that G/ζk(G) is π -minimax. Since ζk(G) is closed, the factor group
G/ζk(G) is linear and so soluble-by-finite. Then G itself is soluble-by-finite and
hence even soluble. Let J/ζk(G) denote the finite residual of G/ζk(G), so that G/J
is reduced π -minimax. The connected group G/ζk(G) centralizes every element with
finitely many conjugates, so that

J/ζk(G) ≤ ζ1
(
G/ζk(G)

) = ζk+1(G)/ζk(G).

Application of Lemma 2.9 yields that J = ζk(G) and hence G/ζk(G) is reduced
π -minimax. It now follows that (a) and (b) are equivalent.
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Now (c) implies (b) by Theorem 2.7 and so we need only to prove that (c) is
a consequence of (b). Suppose G/ζk(G) is reduced π -minimax and induct on k.
If k = 1 then (c) holds by the comments after Corollary 2.6. Assume k ≥ 2. Let g ∈ G
and set C = CG(〈g〉G) and G = G/C . Obviously, ζ1(G) ≤ C , so ζk(G)C/C lies
in ζk−1(G) and hence G/ζk−1(G) is at least π -minimax. But C is closed in G, so G
is isomorphic to a connected linear group and thence G/ζk−1(G) is reduced π -mini-
max because (a) and (b) are equivalent. By induction G belongs to M�

πC
k−1 and

therefore G is anM�
πC

k-group. The proof is complete. �	
Corollary 2.11 Letπ be a set of primes. If G is a linear groupwithG/ζk(G) π -minimax
for some positive integer k, then G is a finite extension of anM�

πC
k-group.

Proof Since G0 ∩ ζk(G) ≤ ζk(G0), the factor group G0/ζk(G0) is π -minimax and so
the connected group G0 has the M�

πC
k-property by Theorem 2.10. The statement is

proved. �	

3 Layers

In this section we study linear groups with restrictions on their layers. Recall that if
G is a group and k is an element of the set N∪ {∞}, the subgroup Gk generated by all
elements of G of order k is called the k-layer of G. If X is any group class, a group G
is called an XL-group if all its layers belong to X. Notice that if G is an XL-group
and g is an element of infinite order of G, the subgroup 〈g, ζ1(G)〉 is generated by
its elements of infinite order and so is contained in the ∞-layer G∞; in particular we
have the following result.

Lemma 3.1 Let X be a subgroup closed group class and let G be a non-periodic
XL-group. Then the centre ζ1(G) belongs to X.

Groups with Černikov layers are usually calledCL-groups. Clearly, anyCL-group
has a covering consisting of Černikov normal subgroups and hence is a perio-
dic CC-group. Moreover, it is clear that in a CL-group all subgroups of finite
exponent are finite and hence the Sylow p-subgroups of any group with Černikov
layers are Černikov. The following easy consequence of Corollary 2.6 characterizes
linear CL-groups.

Corollary 3.2 A group G is linear and has the CL-property if and only if G = A×C,
where A is a periodic abelian subgroup of finite rank, C is a Černikov subgroup and
π(A) ∩ π(C) = ∅.

Using the above corollary, we may also characterize linear FL-groups, i.e. linear
groups with finite layers. In fact, every such group has finite conjugacy classes and in
particular every abelian-by-finite FL-group is finite over its centre.

Corollary 3.3 A group G is linear and has the FL-property if and only if G = A×C,
where A is a periodic abelian group of finite rank, C is a Černikov central-by-finite
group and π(A) ∩ π(C) = ∅.
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The following result shows that the study of linear groups with minimax layers
essentially can be reduced to that of CL-groups.

Corollary 3.4 Let π be a set of primes and let G be a linear group with π -minimax
(reduced π -minimax) layers. Then either G is π -minimax (reduced π -minimax) or it
has Černikov layers (finite layers).

Proof For each element g of G the subgroup [g,G] ≤ 〈g〉G is (reduced) π -minimax,
so that also the linear groupG/ζ1(G) is (reduced) π -minimax (see the discussion after
Corollary 2.6). It follows now from Lemma 3.1 that either G is periodic or ζ1(G) is
(reduced) π -minimax; in the former case, G has Černikov layers, or even finite if they
are reduced. The statement is proved. �	

If in the above statementwe chooseπ = ∅, we obtain the following characterization
of linear groups with polycyclic-by-finite layers.

Corollary 3.5 Let G be a linear group with polycyclic-by-finite layers. Then either G
is polycyclic-by-finite or it is an FL-group.

It is easy to see that a soluble group with layers of finite rank need not have in
general finite rank itself, the group

Dr
p∈P(Cp × . . . × Cp←− p times−→ )

being a counterexample, where P is the set of all prime numbers and Cp is a group of
order p for any prime p. Our final result shows that once again the situation is better
for linear groups.

Theorem 3.6 Let G be a linear group whose layers have finite rank. Then G has finite
rank.

Proof Let S be the largest soluble normal subgroup of G. Then S is closed, so G/S is
linear. Moreover, G/S is covered by finite normal subgroups because every layer of
G is soluble-by-finite. Thus G/S is FC , central-by-finite and so even finite. It follows
that G is soluble-by-finite and, without loss of generality, we may suppose that G is
soluble.

Let A be any abelian subgroup of G. The assumption on the layers of G yields that
A has finite p-rank for each p = 0 or a prime. ThereforeG has finite abelian subgroup
rank and so it has finite rank by a combination of results in [2] and Lemma 3.1 of [5]. �	
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