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Abstract
Single hidden layer feedforward neural networks can represent multivariate functions
that are sums of ridge functions. These ridge functions are defined via an activation
function and customizable weights. The paper deals with best non-linear approxima-
tion by such sums of ridge functions. Error bounds are presented in terms of moduli
of smoothness. The main focus, however, is to prove that the bounds are best possible.
To this end, counterexamples are constructed with a non-linear, quantitative extension
of the uniform boundedness principle. They show sharpness with respect to Lips-
chitz classes for the logistic activation function and for certain piecewise polynomial
activation functions. The paper is based on univariate results in Goebbels (Res Math
75(3):1–35, 2020. https://rdcu.be/b5mKH)

Keywords Neural networks · Sharpness of error bounds · Counterexamples · Rates
of convergence · Uniform boundedness principle
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1 Introduction

A feedforward neural network with an activation function σ : R → R, d input nodes,
one output node, and one hidden layer of n neurons implements a multivariate real-
valued function g : Rd → R of type

g(x) ∈ Mn := Mn,σ :=
{

n∑
k=1

akσ(wk · x + ck) : ak, ck ∈ R,wk ∈ R
d

}
, (1)
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634 S. Goebbels

see Fig. 1. For vectors wk = (wk,1, . . . , wk,d) and x = (x1, . . . , xd),

wk · x =
d∑
j=1

wk, j x j

is the standard inner product of wk, x ∈ R
d . Summands σ(wk · x + ck) are ridge

functions. They are constant on hyperplanes wk · x = c, c ∈ R.
For non-constant bounded monotonically increasing and continuous activation

functions σ the universal approximation property holds, see the paper of Funahashi
[14]: Given a continuous function f on a compact set then for each ε > 0 there exists
n ∈ N and a function gn ∈ Mn such that the sup-norm of f − gn is less than ε.
Cybenko showed this property in [10] for a different class of continuous activation
functions that do not have to be monotone. Leshno et al. proved for continuous activa-
tion functions σ in [23] (cf. [6]) that the universal approximation property is equivalent
to σ being not an algebraic polynomial. Continuity is not a necessary prerequisite for
the universal approximation property, see [21].

We discuss error bounds for best approximation by functions of Mn in terms of
moduli of smoothness for an arbitrary number d of input nodes in Sect. 2. These
results are quantitative extensions of the qualitative universal approximation property.
They introduce convergence orders that depend on the smoothness of functions to be
approximated.

Many papers deal with the univariate case d = 1. In [11], Debao proved an estimate
against a first oder modulus for general sigmoid activation functions. An overview
of other estimates against first order moduli is given in doctoral thesis [7], cf. [8].
Under additional assumptions on activation functions, estimates against higher order
moduli are possible. For example, one can easily extend the first order estimate of
Ritter for approximation with “nearly exponential” activation functions in [29] to
higher moduli, see [16]. Similar results can be obtained for activation functions that
are arbitrarily often differentiable on some open interval such that they are not an

Fig. 1 One hidden layer neural network that computes
∑n

k=1 akσ(wk · x + ck )
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algebraic polynomial on that interval, see [28, Theorem 6.8, p. 176] in combination
with [16].

With respect to the general multivariate case, Barron applied Fourier methods in
[4] to establish a convergence rate for a certain class of smooth functions in the L2-
norm. Approximation errors for multi-dimensional bell shaped activation functions
were estimated by first order moduli of smoothness or related Lipschitz classes by
Anastassiou (e.g. [2]) and Costarelli and Spigler (see e.g. [9] including a literature
overview). However, discussed neural network spaces differ from (1). They do not
consist of linear combinations of ridge functions. A special network with four layers
is introduced in [24] to obtain a Jackson estimate in terms of a first order modulus of
smoothness.

Maiorov and Ratsby established an upper bound for functions in Sobolev spaces
based on pseudo-dimension in [25, Theorem 2]. Pseudo-dimension is an upper bound
of the Vapnik-Chervonenkis dimension (VC dimension) that will also be used in this
paper to obtain lower bounds.

With respect to neural network spaces (1) of ridge functions, we apply results of
Pinkus [28] and Maiorov and Meir [27] to obtain error bounds for a large class of
activation functions either based on K-functional techniques or on known estimates
for best approximation with multivariate polynomials in Sect. 2. Both L p- and sup-
norms are considered.

In Sect. 3, we prove for the logistic activation function that counterexamples fα
exist for all α > 0 such that sup-norm as well as L p-norm bounds are in O(n−α) but
the error of best approximation is not in O(n−β) forβ > α. This result is amultivariate
extension of univariate counterexamples (d = 1, one single input node, sup-norm) in
[16]. A similar result is shown for piecewise polynomial activation functions with
respect to an L2-norm bound.

In fact, the non-linear variant of a quantitative uniformboundedness principle in [16]
can be applied to construct univariate andmultivariate counterexamples. This principle
is based on theorems of Dickmeis, Nessel and vanWickeren, cf. [13], that can be used
to analyze error bounds of linear approximation processes. Its application, both in
a linear and in the given non-linear context, requires the construction of a resonance
sequence. To this end, a known result [5] on theVCdimension of networkswith logistic
activation is used. Theorem 5 in Sect. 3 is formulated as a general means to derive
discussed counterexamples fromVC dimension estimates. Also, [27] already provides
sequences of counterexamples that can be condensed to a single counterexample with
the uniform boundedness principle.

There are some published attempts to show sharpness of error bounds for neural
network approximation in terms of moduli of smoothness based on inverse theorems.
Inverse and equivalence theorems estimate the values of moduli of smoothness by
approximation rates. For example, they determine membership to certain Lipschitz
classes from known approximation errors. However, the letter [15] proves that the
inverse theorem for neural network approximation in [31] as well as the inverse the-
orems in some related papers are wrong. Smoothness is one feature that favors high
approximation rates. But in this non-linear situation, other features (e.g., the “nearly
exponential” property or similarity to certain derivatives of the activation function, cf.
[22]) also contribute to convergence rates. Such features cannot be sufficiently mea-
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636 S. Goebbels

sured by moduli of smoothness, cf. sequence of counterexamples in [15]. This is the
motivation to work with counterexamples instead of inverse or equivalence theorems
in Sect. 3.

2 Notation and direct estimates

Let Ω ⊂ R
d be an open set. By X p(Ω) := L p(Ω) with norm

‖ f ‖L p(Ω) := p

√∫
Ω

| f (x)|pdx

for 1 ≤ p < ∞ and X∞(Ω) := C(Ω) with sup-norm ‖ f ‖C(Ω) := sup{| f (x)| : x ∈
Ω} we denote the usual Banach spaces.

For a multi-index α = (α1, . . . , αd) ∈ N
d
0 with non-negative integer components,

let |α| := ∑d
j=1 α j be its sum of components. We write xα := ∏d

j=1 x
α j
j . With Pk we

denote the set of multivariate polynomials with degree at most k, i.e., each polynomial
in Pk is a linear combination of homogeneous polynomials of degree l ∈ {0, . . . , k}.
To this end, let

Hl :=

⎧⎪⎨
⎪⎩ f : Rd → R : f (x) =

∑
α∈Nd

0 , |α|=l

cαxα

⎫⎪⎬
⎪⎭

be the space of homogeneous polynomials of degree l.
The set of all univariate polynomials with degree at most k is denoted by Πk , i.e.,

Πk = Pk for d = 1. Let

s := dim Hk =
(
d + k − 1

k

)
≤ (k + 1)d−1.

To obtain the upper estimate, we choose exponents α1, . . . , αd−1 in xα independently
from the set {0, . . . , k}. If the sum of these exponents does not exceed k then αd =
k − ∑d−1

j=1 α j . Otherwise, we have counted a polynomial with degree greater than k.
Thus, the estimate is a coarse upper bound only.

Multivariate polynomials can be represented by univariate polynomials, cf. [28,
p. 164]: for a given degree k ∈ N there exist s ≤ (k + 1)d−1 vectorsw1, . . . ,ws ∈ R

d

such that

Pk =
⎧⎨
⎩

s∑
j=1

p j (w j · x) : p j ∈ Πk

⎫⎬
⎭ . (2)

Weuse the result [28, p. 176], cf. [19]: Letσ : R → Rbe arbitrarily often differentiable
on some open interval I ⊂ R, i.e. σ ∈ C∞(I ), and let σ be no algebraic polynomial
on that interval. Then univariate polynomials of degree at most k can be uniformly
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approximated arbitrarily well on compact sets by choosing parameters a j , b j , c j ∈ R

in

k+1∑
j=1

a jσ(b j x + c j ).

Thus due to (2), alsomultivariate polynomials of degree at most k can be approximated
by functions of Ms(k+1) arbitrarily well on compact sets, i.e., in the sup-norm

Pk ⊂ Ms(k+1). (3)

Theorem 3.1 in [22] even describes a more general class of multivariate functions that
can be approximated arbitrarily well like polynomials.

There holds following lemma from [19, Proposition 4] that extends (3) to simulta-
neous approximation.

Lemma 1 Let σ : R → R be arbitrarily often differentiable on an open interval
around the origin with σ (i)(0) �= 0, i ∈ N0. Then for any polynomial π ∈ Pk of
degree at most k, any compact set I ⊂ R

d , and each ε > 0 there exists a sufficiently
often differentiable function g ∈ Ms(k+1) such that simultaneously for all α ∈ N

d
0 ,|α| ≤ k,

∥∥∥∥ ∂ |α|

∂xα1
1 . . . ∂xαd

d

(π(x) − g(x))

∥∥∥∥
C(I )

< ε.

The requirement that derivatives at zero must not be zero can be replaced by the
requirement that σ is no algebraic polynomial on the open interval, see [19].

With n summands of the activation function, polynomials of degree k and their
derivatives can be simultaneously approximated arbitrarily well for such values of k
that fulfill n ≥ (k + 1)d , i.e. k ≤ d

√
n − 1, because (k + 1)d = (k + 1)d−1(k + 1) ≥

s(k + 1). Especially, polynomials of degree at most

k := � d
√
n� − 1 (4)

can be approximated arbitrarily well.
Let f ∈ X p(Ω), h ∈ R

d , r ∈ N0 und t ∈ R. The r th radial difference (with
direction h) is given via

Δr
h f (x) :=

r∑
j=0

(−1)r− j
(
r

j

)
f (x + jh)

(if defined). Thus, Δr
h f = Δr−1

h Δ1
h f = Δ1

hΔ
r−1
h f . Let

Ω(h) := {x ∈ Ω : x + th ∈ Ω, 0 ≤ t ≤ 1}.
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Then the r th radial modulus of smoothness of a function f ∈ L p(Ω), 1 ≤ p < ∞,
or f ∈ C(Ω) is defined via

ωr ( f , δ)p,Ω := sup{‖Δr
h f ‖X p(Ω(rh)) : h ∈ R

d , |h| ≤ δ}.

Our aim is to discuss errors E of best approximation. For S ⊂ X p(Ω) and f ∈
X p(Ω) let

E(S, f )p,Ω := inf{‖ f − g‖X p(Ω) : g ∈ S}.

Thus, E(S, f )p,Ω is the distance between f and S.
As an application of a multivariate equivalence theorem between K-functional and

moduli of smoothness, an estimate for best polynomial approximation is proved on
Lipschitz graph domains (LG-domains) in [20, Corollary 4, p. 139]. For the definition
of not necessarily bounded LG-domains, see [1, p. 66]. For bounded domains, the LG
property is equivalent to a Lipschitz boundary. Especially, later discussed bounded
d-dimensional open intervals like (0, 1)d := (0, 1) × · · · × (0, 1) and the unit ball
{x ∈ R

d : |x| < 1} are examples for LG-domains.
Let Ω be a bounded LG-domain in Rn and 1 ≤ p ≤ ∞, then

E(Pk, f )p,Ω ≤ Crωr

(
f ,

1

k

)
p,Ω

(5)

with a constant Cr that is independent of f and k, see [20].

Theorem 1 (Arbitrarily Often Differentiable Functions) Let σ : R → R be arbitrarily
often differentiable on some open interval in R, and let σ be no algebraic polynomial
on that interval, f ∈ X p(Ω) for an LG-domain Ω ∈ R

d , 1 ≤ p ≤ ∞, and r ∈ N.
For n ≥ 4d there exists a constant C that is independent of f and k such that

E(Mn, f )p,Ω ≤ Cωr

(
f ,

1
d
√
n

)
p,Ω

.

Proof We combine (3) and (4) with (5) to get

E(Mn, f )p,Ω ≤ Crωr

(
f ,

1

� d
√
n� − 1

)
p,Ω

≤ Crωr

(
f ,

1
d
√
n − 2

)
p,Ω

≤ Crωr

⎛
⎝ f ,

1

d
√
n − d√n

2

⎞
⎠

p,Ω

= Crωr

(
f ,

2
d
√
n

)
p,Ω

≤ Cr2
r︸︷︷︸

C

ωr

(
f ,

1
d
√
n

)
p,Ω

.

�
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By using an error bound for best polynomial approximation we are not able to consider
advantages of non-linear approximation. However, we will see in the next section
that non-linear neural network approximation does not really perform better than
polynomial approximation in the worst case.

Most important activation functions, that are not piecewise polynomials, fulfill the
requirements of Theorem 1. For example, it provides an error bound for approximation
with the sigmoid activation function based on inverse tangent

σ(x) = 1

2
+ 1

π
arctan(x),

the logistic function

σ(x) = 1

1 + e−x
= 1

2

(
1 + tanh

( x
2

))
,

and ”Exponential Linear Unit” (ELU) activation function

σ(x) =
{

α(ex − 1), x < 0
x, x ≥ 0

for α �= 0.
A direct bound for simultaneous approximation of a function and its partial deriva-

tives in the sup-norm can be obtained similarly based on a corresponding estimate for
simultaneous approximation by polynomials using a Jackson estimate from [3]:

Lemma 2 Let f : Rd → R be a function with compact support such that all partial
derivatives up to order k ∈ N0 are continuous. Let Ω ⊂ R

d be a compact set that
contains the support of f . Then there exists a constant C ∈ R (independent of n and
f ) such that for each n ∈ N a polynomial π ∈ Pn can be found such that for all
α ∈ N

d
0 with |α| ≤ min{k, n}

∥∥∥∥∂ |α|( f (x) − π(x))

∂xα1
1 . . . ∂xαd

d

∥∥∥∥
C(Ω)

≤ C

nk−|α| max
β∈Nd

0 ,|β|=k
ω1

(
∂k f

∂xβ1
1 . . . ∂xβd

d

,
1

n

)
∞,Ω

.

Similar to the proof of Theorem 1, we combine this cited result with Lemma 1 to
obtain (cf. [32]).

Theorem 2 (Synchronous Sup-Norm Approximation) Let σ : R → R be arbitrarily
often differentiable without being a polynomial. For each function f : Rd → R with
compact support and continuous partial derivatives up to order k ∈ N0 and each
compact set Ω ⊂ R

d containing the support of f following estimate holds true: For
each n ∈ N, n ≥ 4d , there exists a constant C ∈ R (independent of n and f ) such that
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640 S. Goebbels

for all α ∈ N
d
0 with |α| ≤ min{k, d

√
n − 1}

inf

{∥∥∥∥∂ |α|( f (x) − g(x))

∂xα1
1 . . . ∂xαd

d

∥∥∥∥
C(Ω)

: g ∈ Mn

}

≤ C

n
k−|α|
d

max
β∈Nd

0 ,|β|=k
ω1

(
∂k f

∂xβ1
1 . . . ∂xβd

d

,
1
d
√
n

)
∞,Ω

. (6)

Requirements of Theorems 1 and 2 are not fulfilled for activation functions that are
of type

σ(x) =
{

0, x < 0
xk, x ≥ 0

(7)

for k ∈ N. The often used ReLU function is obtained for k = 1. Corollary 6.11 in [28,
p. 178] is an L2-norm Jackson estimate for this class of functions. To work with this
estimate, we need to introduce Sobolev spaces.

Let Wr
p(Ω), 1 ≤ p < ∞, be the L p-Sobolev space of r -times (in the weak sense)

partially differentiable functions on Ω ⊂ R
d with semi-norms

| f |Wr
p(Ω) =

∑
α∈Nd

0 :|α|=r

∥∥∥∥ ∂r f

∂xα1
1 . . . ∂xαd

d

∥∥∥∥
L p(Ω)

and norm ‖ f ‖Wr
p(Ω) = ∑r

k=0 | f |Wr
p(Ω). For r -times continuously differentiable func-

tions f (case p = ∞) or functions f ∈ Wr
p(Ω) on LG-domains Ω , 1 ≤ p < ∞, the

estimate

ωr ( f , δ)p,Ω ≤ Crδ
r

∑
α∈Nd

0 :|α|=r

∥∥∥∥ ∂r f

∂xα1
1 . . . ∂xαd

d

∥∥∥∥
X p(Ω)

(8)

holds true, see [20].
According to the Jackson estimate for activation functions (7) in [28, p. 178], let

d ≥ 2 andΩ ⊂ R
d be the d-dimensional unit ball. Then there exists a constantC > 0

such that for all f ∈ Wr
2 (Ω) with ‖ f ‖Wr

2 (Ω) ≤ 1 and r ∈ N with r < k + 1+ d−1
2 (k

being the exponent in (7))

E(Mn, f )2,Ω ≤ C
1

n
r
d
.

Thus, for all f ∈ Wr
2 (Ω) without restriction ‖ f ‖Wr

2 (Ω) ≤ 1 there holds true

E(Mn, f )2,Ω ≤ C‖ f ‖Wr
2 (Ω)n

− r
d . Due to [1, p. 75], a constant C1 exists indepen-

dently of f such that ‖ f ‖Wr
2 (Ω) ≤ C1[‖ f ‖L2(Ω) + | f |Wr

2 (Ω)]. Together we obtain

E(Mn, f )2,Ω ≤ C
[
‖ f ‖L2(Ω) + | f |Wr

2 (Ω)

] 1

n
r
d
. (9)

This estimate can be extended tomoduli of smoothness usingK-functional techniques.
To this end, we introduce some definitions that will also be needed in the next section
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On sharpness of error bounds for multivariate neural… 641

for discussing sharpness. A functional T on a normed space X , i.e., T maps X into R,
is non-negative-valued, sub-linear, and bounded, iff for all f , g ∈ X , c ∈ R

T ( f ) ≥ 0,

T ( f + g) ≤ T ( f ) + T (g),

T (c f ) = |c|T ( f ),

‖T ‖X∼ := sup{T ( f ) : f ∈ X , ‖ f ‖X ≤ 1} < ∞.

The set X∼ consists of all non-negative-valued, sub-linear, bounded functionals T on
X .

Since we deal with non-linear approximation, error functionals will not be sub-
linear. Instead we discuss remainders (En)

∞
n=1, En : X → [0,∞) that fulfill following

conditions for m ∈ N, f , f1, f2, . . . , fm ∈ X , and constants c ∈ R:

Em·n

(
m∑

k=1

fk

)
≤

m∑
k=1

En( fk), (10)

En(c f ) = |c|En( f ), (11)

En( f ) ≤ Dn‖ f ‖X , (12)

En( f ) ≥ En+1( f ). (13)

Constant Dn is independent of f . These conditions are fulfilled for En( f ) :=
E(Mn, f )p,Ω .

Lemma 3 (K-functional) Let functionals (En)
∞
n=1, En : X → [0,∞) fulfill (10) and

(13). The functionals should also fulfill not only (12) but a stability inequality: Let
constant Dn in (12) be independent of n, i.e.,

En( f ) ≤ D0‖ f ‖X (14)

for a constant D0 > 0 and all n ∈ N. Also, a Jackson-type inequality (0 < ϕ(n) ≤ 1)

En(g) ≤ D1ϕ(n)[‖g‖X + |g|U ], (15)

D1 > 0, is required that holds for all functions g in a subspaceU ⊂ X with semi-norm
| · |U . For n ≥ 2 and a constant D2 > 0, the sequence (ϕ(n))∞n=1 has to fulfill

ϕ
(⌊n

2

⌋)
≤ D2ϕ(n). (16)

Via the Peetre K-functional

K (δ, f , X ,U ) := inf{‖ f − g‖X + δ|g|U : g ∈ U }
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642 S. Goebbels

one can estimate

En( f ) ≤ C [K (ϕ(n), f , X ,U ) + ϕ(n)‖ f ‖X ]

for n ≥ 2 with a constant C that is independent of f and n.

Proof Let g ∈ U . Then

E2n( f ) = E2n( f − g + g)
(10)≤ En( f − g) + En(g)

(14),(15)≤ D0‖ f − g‖X + D1ϕ(n)[‖g‖X + |g|U ]
≤ D0‖ f − g‖X + D1ϕ(n)[‖ f ‖X + ‖g − f ‖X + |g|U ]
≤ (D0 + D1)‖ f − g‖X + D1ϕ(n)|g|U + D1ϕ(n)‖ f ‖X ,

thus for n ≥ 2:

En( f )
(13)≤ E2� n

2 �( f )

≤ (D0 + D1)
[
inf

{
‖ f − g‖X + ϕ

(⌊n
2

⌋)
|g|U : g ∈ U

}
+ ϕ

(⌊n
2

⌋)
‖ f ‖X

]
(16)≤ (D0 + D1) [inf {‖ f − g‖X +D2ϕ(n)|g|U : g ∈ U } + D2ϕ(n)‖ f ‖X ]
≤ (D0 + D1)max{1, D2} [K (ϕ(n), f , X ,U ) + ϕ(n)‖ f ‖X ] .

�

We apply the lemma to (9) with X = L2(Ω), U = Wr
2 (Ω), ϕ(n) = n− r

d . Error
functional E(Mn, f )2,Ω fulfills all prerequisites. In connection with the equivalence
between K-functionals and moduli of smoothness [20, p. 120] we get

Theorem 3 (Piecewise Polynomial Functions) Let d ≥ 2, Ω ⊂ R
d be the d-

dimensional unit ball and σ a piecewise polynomial activation function of type (7).
Constants C1,C2 ∈ R exist such that for each f ∈ L2(Ω), n ≥ 2, r < k + 1 + d−1

2 :

E(Mn, f )2,Ω ≤ C1

[
K

(
1

n
r
d
, f , L2(Ω),Wr

2 (Ω)

)
+ 1

n
r
d
‖ f ‖L2(Ω)

]

≤ C2

[
ωr

(
f ,

1
d
√
n

)
2,Ω

+ 1

n
r
d
‖ f ‖L2(Ω)

]
. (17)

The saturation order of the modulus is n− r
d , so term n− r

d ‖ f ‖L2(Ω) is only technical.
The estimate also holds for ReLU (k = 1) with only one (d = 1) input node for r = 2,
see [16]. It can be extended to the cut activation function because cut can be written
as a difference of ReLU and translated ReLU.
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3 Sharpness due to counterexamples

A coarse lower estimate can be obtained for all integrable activation functions in the
L2-norm based on an estimate for ridge functions in [26]. However, the general setting
leads to an exponent r

d−1 instead of r
d .

The space of all measurable, real-valued functions that are integrable on every
compact subset of R is denoted by L(R).

Lemma 4 Let σ be an arbitrary activation function in L(R) and r ∈ N, d ≥ 2. Let Ω
be the d-dimensional unit ball.

Then there exists a sequence ( fn)∞n=1, fn ∈ Wr
2 (Ω), with ‖ fn‖Wr

2 (Ω) ≤ C0, and a
constant c > 0 such that (cf. Theorem 1)

ωr

(
fn,

1
d
√
n

)
2,Ω

= O

(
1

n
r
d

)
and E(Mn, fn)2,Ω ≥ c

n
r

d−1
.

Proof This is a direct corollary of Theorem 1 in [26]: For A ⊂ R
d with cardinality

|A| let R(A) be the linear space that is spanned by all functions h(w · x), h ∈ L(R),
w ∈ A. Thus in contrast to one activation function, different nearly arbitrary functions
h are allowed to be used with different vectors w in linear combinations. Let Rn :=⋃

A⊂Rd :|A|≤n R(A)be the space of functions that can be represented as
∑n

k=1 akhk(wk ·
x), ak ∈ R, hk ∈ L(R), wk ∈ R

d . Then for all activation functions σ ∈ L(R) one has
hk(x) := σ(x + ck) ∈ L(R) for ck ∈ R, i.e.Mn ⊂ Rn . According to [26], for d ≥ 2
there exist constants 0 < c ≤ C independently of n such that

c

n
r

d−1
≤ sup

f ∈Wr
2 (Ω),‖ f ‖Wr

2 (Ω)≤C0

inf
h∈Rn

‖ f − h‖L2(Ω) ≤ C

n
r

d−1
.

From this condition, we obtain functions fn ∈ Wr
2 (Ω), ‖ fn‖Wr

2 (Ω) ≤ C0, such that

1

2

c

n
r

d−1
≤ inf

h∈Rn

‖ fn − h‖L2(Ω) ≤ inf
h∈Mn

‖ fn − h‖L2(Ω) = E(Mn, fn)2,Ω,

and (see (8))

ωr

(
fn,

1
d
√
n

)
2,Ω

≤ C1
1

n
r
d

∑
α∈Nd

0 :|α|=r

∥∥∥∥ ∂r fn
∂xα1

1 . . . ∂xαd
d

∥∥∥∥
L2(Ω)

≤ C2(r , d)
1

n
r
d
.

�
By considering properties of the activation function, better lower estimates are

possible. For the logistic activation function and activation functions that are splines
of fixed polynomial degree with finite number of knots like (7), Maiorov and Meir
showed that there exists a sequence ( fn)∞n=2, fn ∈ Wr

p(Ω), r ∈ N, with ‖ fn‖Wr
p(Ω)
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uniformly bounded, and a constant c > 0 (independent of n ≥ 2) such that (see [27,
Theorems 4 and 5, p. 99, Corollary 2, p. 100])

E(Mn, fn)p,Ω ≥ c

(n log2(n))
r
d

(18)

for 1 ≤ p < ∞ (and L∞(Ω), but we consider C(Ω) due to the definition of moduli
of smoothness). Without explicitly saying so, the proof is based on a VC dimension
argument similar to the proof of Theorem 5 that follows in this section. It uses [27,
Lemma 7, p. 99]. The formula in line 4 on page 98 of [27] shows that (by choosing
parameter m as in the proof of [27, Theorem 4]) one additionally has

‖ fn‖L p(Ω) ≤ C

(n log2(n))
r
d

= C

(n(1 + log2(n)))
r
d

[
1 + log2(n)

log2(n)

] r
d

≤ 2
r
d C

(n(1 + log2(n)))
r
d
. (19)

This result was proved for Ω being the unit ball. But similar to Theorem 5 below, a
grid is used that can also be adjusted to Ω = (0, 1)d .

We now apply a resonance principle from [16] that is a straight-forward extension of
a general theorem by Dickmeis, Nessel and vanWickern, see [13]. With this principle,
we condense sequences ( fn)∞n=1 like the one in (18) to single counterexamples.

To measure convergence rates, abstract moduli of smoothness ω are often used, see
[30, p. 96ff]. An abstract modulus of smoothness is a continuous, increasing function
ω : [0,∞) → [0,∞) such that for δ1, δ2 > 0

0 = ω(0) < ω(δ1) ≤ ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2). (20)

Typically, Lipschitz classes are defined via ω(δ) := δα , 0 < α ≤ 1.

Theorem 4 (Adapted Uniform Boundedness Principle, see [16]) Let (En)
∞
n=1 be a

sequence of remainders that map elements of a real Banach space X to non-negative
numbers, i.e.,

En : X → [0,∞).

The sequence has to fulfill conditions (10)–(13). Also, a family of sub-linear bounded
functionals Sδ ∈ X∼ for all δ > 0 is given. These functionals will represent moduli of
smoothness. To express convergence rates, let

μ : (0,∞) → (0,∞) and ϕ : [1,∞) → (0,∞)

be strictly decreasing with limx→∞ ϕ(x) = 0. Since remainder functionals En are not
required to be sub-linear, ϕ also has to fulfill following condition. For each 0 < λ < 1
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there has to be a real number X0 = X0(λ) ≥ λ−1 and constant Cλ > 0 such that for
all x > X0 there holds

ϕ(λx) ≤ Cλϕ(x). (21)

If test elements hn ∈ X and a number n0 ∈ N exist such that for all n ∈ N with
n ≥ n0 and for all δ > 0

‖hn‖X ≤ C1, (22)

Sδ(hn) ≤ C2 min

{
1,

μ(δ)

ϕ(n)

}
, (23)

E4n(hn) ≥ c3 > 0, (24)

then for each abstract modulus of smoothness ω satisfying (20) and

lim
δ→0+

ω(δ)

δ
= ∞ (25)

a counterexample fω ∈ X exists such that

Sδ( fω) = O (ω(μ(δ))) for δ → 0+

and

En( fω) �= o(ω(ϕ(n))) for n → ∞, i.e., lim sup
n→∞

En( fω)

ω(ϕ(n))
> 0.

When dealing with the sup-norm, one can generally apply the resonance theorem in
connection with known VC dimensions of indicator functions. The general definition
of VC dimension based on sets is as follows.

Let X be a finite set and A ⊂ P(X) a family of subsets of X . Set S ⊂ X is said
to be shattered by A iff each subset B ⊂ S can be represented as B = S ∩ A for a
family member A ∈ A. Thus, the set {S ∩ A : A ∈ A} has 2|S| elements, |S| denoting
the cardinality S.

VC-dim(A) := sup{k ∈ N : ∃S ⊂ X with cardinality

|S| = k such that S is shattered by A}

is called the VC dimension of A.
For our purpose, we discuss a (non-linear) set V of functions g : X → R on a set

X ⊂ R
m . Using Heaviside-function H : R → {0, 1},

H(x) :=
{
0, x < 0
1, x ≥ 0,

let

A := {A ⊂ X : ∃g ∈ V : (∀x ∈ A : H(g(x)) = 1) ∧ (∀x ∈ X \ A : H(g(x)) = 0)}.
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Then one typically defines VC-dim(V ) := VC-dim(A). Thus, k := VC-dim(V ) is the
largest cardinality of a subset S = {x1, . . . , xk} ⊂ X such that for each sign sequence
s1, . . . , sk ∈ {−1, 1} a function g ∈ V can be found that fulfills (cf. [5])

H(g(xi )) = H(si ), 1 ≤ i ≤ k.

Theorem 5 (Sharpness due to VC Dimension) Let (Vn)∞n=1 be a sequence of (non-
linear) function spaces Vn of bounded real-valued functions on [0, 1]d such that

En( f ) := inf{‖ f − g‖C([0,1]d ) : g ∈ Vn} (26)

fulfills conditions (10)–(13) on Banach space C([0, 1]d). An equidistant grid Xn ⊂
[0, 1]d with a step size 1

τ(n)
, τ : N → N, is given via

Xn :=
{

j

τ(n)
: j ∈ {0, 1, . . . , τ (n)}

}
× · · · ×

{
j

τ(n)
: j ∈ {0, 1, . . . , τ (n)}

}
.

Let

Vn,τ (n) := {h : Xn → R : a function g ∈ Vn exists with h(x) = g(x) for all x ∈ Xn}

be the set of functions that are generated by restricting functions of Vn to this grid.
As in Theorem 4, convergence rates are expressed via a function ϕ(x) that fulfills the
requirements of Theorem 4 including condition (21). Let VC dimension of Vn,τ (n) and
function values of τ and ϕ be coupled via inequalities

VC-dim(Vn,τ (n)) < [τ(n)]d , (27)

τ(4n) ≤ C

ϕ(n)
, (28)

for all n ≥ n0 ∈ N with a constant C > 0 that is independent of n.
Then, for r ∈ N and each abstract modulus of smoothness ω satisfying (20) and

(25), there exists a counterexample fω ∈ C([0, 1]d) such that for δ → 0+ and n → ∞

ωr ( fω, δ)∞,(0,1)d = O
(
ω(δr )

)
and En( fω) �= o

(
ω
([ϕ(n)]r )) .

Proof Condition (27) implies for 4n ≥ n0 that a sequence of signs sz ∈ {−1, 1} for
points z ∈ X4n exists such that no function in V4n can reproduce the sign of the
sequence in each point of X4n , i.e., for each g ∈ V4n there exists a point z0 ∈ X4n
such that

H(g(z0)) �= H(sz0).

Based on this sign sequence,we construct an arbitrarily often partially differentiable
resonance function hn such that its function values equal the signs on the grid X4n .
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To this end, we use the arbitrarily often differentiable function

h(x) :=
{
exp

(
1 − 1

1−x2

)
for |x | < 1,

0 for |x | ≥ 1,

with properties h(0) = 1 and ‖h‖B(R) = 1. Based on h, we define hn :

hn(x) :=
∑
z∈X4n

sz ·
d∏

k=1

h (2 · τ(4n) · (xk − zk)) .

Scaling factors 2 · τ(4n) are chosen such that supports of summands only intersect at
their borders. Therefore, ‖hn‖C([0,1]d ) ≤ 1 and hn(z) = sz for all z ∈ X4n .

All partial derivatives of order up to r are in O([ϕ(n)]−r ) because of (28). Addi-
tionally to hn , we choose parameters in Theorem 4 as follows:

X = C([0, 1]d), Sδ( f ) := ωr ( f , δ)∞,(0,1)d , μ(δ) := δr ,

and En( f ) as in (26). We do not directly use ϕ(x) with Theorem 4. Instead, function
[ϕ(x)]r fulfills the requirements of the function also called ϕ(x) in Theorem 4.

Requirements (22) and (23) can be easily shown due to the sup-norms of hn and its
partial derivatives, cf. (8).

Resonance condition (24) is fulfilled due to the definition of hn : For each g ∈ V4n
there exits at least one point z0 ∈ X4n such that

H(g(z0)) �= H(sz0) = H(hn(z0)).

Function hn is defined to fulfill |hn(z0)| = |sz0 | = 1. Thus,

‖hn − g‖C([0,1]d ) ≥ |hn(z0) − g(z0)| ≥ 1,

and E4nhn ≥ 1.
All preliminaries of Theorem 4 are fulfilled such that counterexamples exist as

stated. �
Theorem 6 (Sharpness for Logistic Function Approximation in Sup-Norm) Let σ be
the logistic function and r ∈ N. For each abstract modulus of smoothness ω satisfying
(20) and (25), a counterexample fω ∈ C([0, 1]d) exists such that for δ → 0+

ωr ( fω, δ)∞,(0,1)d = O
(
ω(δr )

)
and for n → ∞

E(Mn, fω)∞,(0,1)d �= o

(
ω

(
1

(n[1 + log2(n)]) r
d

))
.
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For univariate approximation, i.e., d = 1, the theorem is proved in [16]. This proof
can be generalized as follows.

Proof Let D ∈ N. In [5], an upper bound for the VC dimension of function spaces

Δn := {
g : {−D,−D + 1, . . . , D}d → R :

g(x) = a0 +
n∑

k=1

akσ(wk · x + ck), a0, ak, ck ∈ R,wk ∈ R
d}

is derived. Functions are defined on a discrete set with (2D + 1)d points. Please note
that the constant function a0 is not consistent with the definition of Mn . It provides
an additional degree of freedom.

We apply Theorem 2 in [5]: There exists n∗ ∈ N such that for all n ≥ n∗ the VC
dimension of Δn is upper bounded by

2 · (nd + 2n + 1) · log2(24e(nd + 2n + 1)D),

i.e., there exists an n0 ≥ max{2, n∗}, n0 ∈ N, and a constant Cd > 0, dependent on
d, such that for all n ≥ n0

VC-dim(Δn) ≤ Cd n[log2(n) + log2(D)].

Let constant E > 1 be chosen such that

1 + log2(E)

E
<

1

4Cd
, i.e, 4Cd [1 + log2(E)] < E . (29)

This is possible because

lim
E→∞

1 + log2(E)

E
= 0.

Now we choose a suitable value of D = D(n) such that the VC dimension of Δn is
less than [D(n)]d . To this end, let

D = D(n) :=
⌊

d
√
En(1 + log2(n))

⌋
.

Then we get for n ≥ n0 with (29):

VC-dim(Δn) ≤ Cd n[log2(n) + log2(
d
√
En(1 + log2(n)))]

= Cd n[log2(n) + d−1 log2(En(1 + log2(n)))]
≤ Cd n[2 log2(n) + log2(E) + log2(2 log2(n)))]
≤ Cd n[3 log2(n) + log2(E) + 1)] ≤ 4Cd n log2(n)[1 + log2(E)]
< En log2(n) ≤

⌊
d
√
En(1 + log2(n))

⌋d = [D(n)]d .
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One canmap interval [−D, D]d to [0, 1]d with an affine transform.By also omitting
constant a0, we estimate the VC dimension of Vn,τ (n) with parameters Vn := Mn and
τ(n) := 2D(n) :

VC-dim(Vn,τ (n)) < [D(n)]d < [2D(n)]d = [τ(n)]d .

Thus, (27) is fulfilled. Conditions (10)–(13) are chosen such that they fit with error
functionals

En := E(Mn, ·)∞,(0,1)d .

For strictly decreasing function

ϕ(x) := 1/ d
√
x[1 + log2(x)]

conditions limx→∞ ϕ(x) = 0 and (21) hold. Latter can be shown for x > X0(λ) :=
λ−2 because log2(λ) > − log2(x)/2 and

ϕ(λx) = 1
d
√

λ

1
d
√
x(1 + log2(x) + log2(λ))

≤ 1
d
√

λ

1

d
√
x(1 + 1

2 log2(x))
<

d

√
2

λ
ϕ(x).

Finally, (28) follows from

τ(4n) = 2D(4n) ≤ 2 d
√
E4n(1 + log2(4n)) <

2 d
√
4E(1 + log2(4))

ϕ(n)
= 2 d

√
12E

ϕ(n)
.

Thus, Theorem 5 can be applied to obtain the counterexample. �

The theorem can also be proved based on the sequence ( fn)∞n=1 from [27] with
properties (18) and (19). We use this sequence to obtain the sharpness in L p norms
for approximation with piecewise polynomial activation functions as well as with the
logistic function.

Theorem 1 in [25] provides a general means to obtain such bounded sequences in
Sobolev spaces for which approximation by functions in Mn is lower bounded with
respect to pseudo-dimension.

We condense sequence ( fn)∞n=1 to a single counterexample with the next theorem.

Theorem 7 (Sharpness with L p-Norms) Let σ be either the logistic function or a
piecewise polynomial activation function of type (7) and r ∈ N. Let Ω be the d-
dimensional unit ball, d ∈ N, 1 ≤ p < ∞. For each abstract modulus of smoothness
ω satisfying (20) and (25), a counterexample fω ∈ L p(Ω) exists such that for δ → 0+

ωr ( fω, δ)p,Ω = O
(
ω(δr )

)
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and for n → ∞

E(Mn, fω)p,Ω �= o

(
ω

(
1

(n[1 + log2(n)]) r
d

))
.

Proof We apply Theorem 4 with following parameters for n ≥ 2:

En( f ) := E(Mn, f )p,Ω, X = L p(Ω), Sδ( f ) = ωr ( f , δ)p,Ω,

ϕ(x) = 1

[x(1 + log2(x))]
r
d
, μ(δ) = δr .

Function ϕ(x) satisfies the prerequisites of Theorem 4 similarly to the proof of The-
orem 6. Also, conditions (10)–(13) hold true for En . For r ∈ N, we use the sequence
( fn)∞n=2 of (18) to define resonance elements

hn := 1

ϕ(4n)
· f4n

such that functions hn are uniformly bounded in L p(Ω) due to (19) in L p(Ω). Thus,
(22) is fulfilled. From (18) we obtain resonance condition (24)

E(M4n, hn)p,Ω ≥ [4n(1 + log2(4n))] r
d · c

(4n(log2(4n))
r
d

≥ c > 0.

Since (‖ fn‖Wr
p(Ω))

∞
n=2 is bounded, estimate (8) yields (23):

ωr (hn, δ)p,Ω = 1

ϕ(4n)
ωr ( f4n, δ)p,Ω ≤ C

δr

ϕ(4n)
≤ 12

r
d C

μ(δ)

ϕ(n)
.

Thus, all prerequisites of Theorem 4 are fulfilled such that counterexamples exist as
stated. �

With respect to error bound (6) for synchronous approximation, counterexamples
can be obtained due to the following observation for α ∈ N

d
0 , |α| = k:

inf

{∥∥∥∥∂ |α|( f (x) − g(x))

∂xα1
1 . . . ∂xαd

d

∥∥∥∥
X p(Ω)

: g ∈ Mn,σ

}
≥ E

(
Mn,σ (k) ,

∂ |α| f (x)
∂xα1

1 . . . ∂xαd
d

)
p,Ω

.

In the univariate case d = 1, a counterexample for approximation with σ (k) can
be integrated to become a counterexample that shows sharpness of (6). For exam-
ple, σ(x) = 1

2 + 1
π
arctan(x) is discussed in [16, Corollary 4.2]. The given proof

shows that for each abstract modulus of smoothness ω satisfying (20) and (25),
a continuous counterexample f ′

ω exists such that ω1( f ′
ω, δ)∞,Ω = O (ω(δ)) and

E(Mn,σ ′ f ′
ω)∞,Ω �= o

(
ω
( 1
n

))
. Thus, one can choose fω(x) := ∫ x

0 f ′
ω(t) dt . In the

multivariate case however, integration with respect to one variable does not lead to
sufficient smoothness with regard to other variables.
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4 Conclusions

By setting ω(δ) := δα d
r , we have shown the following for the logistic function. For

each 0 < α < r
d condition (25) is fulfilled, and according to Theorem 6 there exists a

counterexample fω ∈ C([0, 1]d) with

ωr ( fω, δ)∞,(0,1)d = O
(
δdα

)
and E(Mn, fω)∞,(0,1)d = O

(
1

nα

)

such that for all β > α

E(Mn, fω)∞,(0,1)d �= O

(
1

nβ

)
because

1

nβ
= o

(
1

(n[1 + log2(n)])α
)

.

With Theorem 7, similar L p estimates for the logistic function and L2 estimates
for piecewise polynomial activation functions (7) hold true, see direct L2-norm esti-
mate (17). With one input node (d = 1), a lower estimate for piecewise polynomial
activation functions without the log-factor can be proved easily, see [16]. Thus, the
bound in Theorem 7 might be improvable.

Future work can deal with sharpness of error bound (6) for synchronous approxima-
tion in themultivariate case.By extendingquantitative uniformboundedness principles
with multiple error functionals (cf. [12,17,18]) to non-linear approximation (cf. proof
of Theorem 4 in [16]), one might be able to show simultaneous sharpness in different
(semi-) norms like this conjecture: Under the preliminaries of Theorem 2, the follow-
ing might hold true for the logistic activation function: For each abstract modulus of
continuity ω fulfilling (25) there exists a k-times continuously differentiable coun-
terexample fω such that for each r ∈ {0, . . . , k} it simultaneously fulfills (δ → 0+,
n → ∞)

ω1

(
∂k fω

∂xβ1
1 . . . ∂xβd

d

, δ

)
∞,Ω

= O (ω (δ)) for all β ∈ N
d
0 , |β| = k,

max
α∈Nd

0 , |α|=r
inf

{∥∥∥∥∂ |α|( fω(x) − g(x))

∂xα1
1 . . . ∂xαd

d

∥∥∥∥
C(Ω)

: g ∈ Mn

}

�= o

(
1

(n(1 + log2(n))
k−r
d

· ω

(
1

d
√
n(1 + log2(n))

))
.
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