
Ricerche di Matematica (2023) 72:529–564
https://doi.org/10.1007/s11587-020-00548-y

A generalized Gompertz growth model with applications
and related birth-death processes

Majid Asadi1,2 · Antonio Di Crescenzo3 · Farkhondeh A. Sajadi1 ·
Serena Spina3

Received: 28 May 2020 / Revised: 4 October 2020 / Accepted: 16 November 2020 /
Published online: 23 December 2020
© The Author(s) 2020

Abstract
In this paper, we propose a flexible growthmodel that constitutes a suitable generaliza-
tion of the well-knownGompertz model.We perform an analysis of various features of
interest, including a sensitivity analysis of the initial value and the three parameters of
themodel.We show that the consideredmodel provides a good fit to some real datasets
concerning the growth of the number of individuals infected during the COVID-19
outbreak, and software failure data. The goodness of fit is established on the ground
of the ISRP metric and the d2-distance. We also analyze two time-inhomogeneous
stochastic processes, namely a birth-death process and a birth process, whose means
are equal to the proposed growth curve. In the first case we obtain the probability
of ultimate extinction, being 0 an absorbing endpoint. We also deal with a threshold
crossing problem both for the proposed growth curve and the corresponding birth
process. A simulation procedure for the latter process is also exploited.

Keywords Gompertz model · Birth-death process · Ultimate extinction probability ·
First-passage-time problem

1 Introduction

Constructing growth curves describing dynamic evolutions is relevant to several
applied fields. Indeed, growth dynamics are exhibited by a large number of real sys-
tems, such as the number of individual infected during an epidemic, the size of a living
body during juvenility, other indicators associated with population growth, etc. The
basic reference in this respect is the well-known Malthusian model, governed by the
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differential equation
d NM (t)

dt
= r NM (t), t > 0, (1)

where NM (t) represents the population size and r > 0 is the growth rate. This leads to
exponential curve, adopted often in population ecology to describe growth in absence
of constraints. Mathematical models associated to phenomena governed by growth
tendency are based on suitable refinements of the exponential curve, such as the logistic
and its generalizations treated in Tsoularis and Wallace [35]. Indeed, the traditional
models are not always appropriate to describe certain growth phenomena since they
involve few parameters. On the contrary, models involving more parameters are much
more flexible and provide in general a better fit of the observed data. In this framework
it is worth mentioning the contribution by Wu et al. [37], that adopted a model based
on the generalized Richards curve for the COVID-19 outbreak. The latter curve is
governed by the differential equation

d NR(t)

dt
= r [NR(t)]p

[
1 −

(
NR(t)

C

)α]
, t > 0,

where NR(t) represents the cumulative number of cases at time t , r is the growth rate
at the early stage, C is the carrying capacity (i.e., the final epidemic size), p ∈ [0, 1]
and α are suitable shape parameters. Other forms of generalized growth models can be
found in further investigations. For instance, Rincón et al. [29] analyzed a generalized
Fujikawa’s growth model described by the equation

d NF (t)

dt
= r [NF (t)]α

[
1 −

(
NF (t)

C

)γ ] [
1 −

(
Nm

NF (t)

)c]
, t > 0,

where r , α, γ , c, C and Nm are constants, with r > 0, K > Nm > 0, and C is the
carrying capacity. Another case of interest has been treated recently by Chakraborty et
al. [9] to propose a generalization of simple equationsmodeling the growthmechanism
of biological processes, and finalized to generate more flexible shapes. Furthermore,
a detailed treatment of extensions of the Gompertz-type equation in modern science
has been presented in the book by Kyurkchiev and Iliev [24].

Along the lines of the above mentioned researches, the present paper is aimed to
propose a suitable extension of the celebrated Gompertz model. This is a well-known
growth model that is frequently adopted among the sigmoid models for fitting real
data, and is governed by the following differential equation:

d NG(t)

dt
= NG(t)

(
α − β log

NG(t)

y

)
, t > 0, NG(0) = y > 0, (2)

with α, β > 0. Various re-parametrisations of this model have been considered by
Tjørve and Tjørve [34]. The generalization proposed herewith is based on a suitable
exponentiation of the term in parenthesis on the right-hand-side of (2). This leads to
a more flexible growth model, which includes a variety of cases for the asymptotic
analysis. Indeed, it may tend to infinity, or to a finite limit (the carrying capacity), or
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to zero. The resulting model provides also a generalization of a modified Korf model
investigated recently in Di Crescenzo and Spina [12]. For a complete analysis of the
model we study various features of interest, such as the correction factor, the relative
growth rate, the inflection point, the maximum specific growth rate and the lag time.
For the proposed model we also face a threshold crossing problem and perform a
sensitivity analysis of the parameters.

We purpose to analyze also a stochastic counterpart of the proposed model. This is
motivated by the need of describing growth phenomena subject to random perturba-
tions by means of mathematical models based on stochastic processes. Specifically, a
desirable characteristics is that the mean evolution of the process coincides with the
deterministic curve of the proposed model. In this framework, stochastic processes for
the modeling of real growth phenomena have been largely considered in the literature.
We recall the well-known approach based on diffusion processes for the stochastic
model of tumor growth, such as that exploited in Albano and Giorno [1], Giorno et al.
[18], Giorno and Nobile [16], Hanson and Tier [20], Spina et al. [31]. Other studies
including Gompertz and logistic growth models based on stochastic diffusions can
be found in Campillo et al. [8], Himadri Ghosh and Prajneshu [22], and Yoshioka et
al. [38]. Recent advances involving fractional Gompertz growth models in biological
contexts have been analyzed in Ascione and Pirozzi [4], Dewanji et al. [11], Frunzo
et al. [15], and in Meoli et al. [25]. Nevertheless, our analysis will be restricted to the
case of birth-death processes. The usefulness of this family of stochastic processes
in the applications to sciences has been described recently in Crawford and Suchard
[10]. We recall some previous investigations oriented to the analysis of birth-death
processes for logistic and Gompertz stochastic growth, such as Di Crescenzo and
Paraggio [13], Parthasarathy and Krishna Kumar [27], Swift [32] and Tan [33]. Var-
ious computational issues and a first-passage-time problem for time-inhomogeneous
birth-death processes are investigated in Giorno and Nobile [17].

First we study an inhomogeneous birth-death process with linear time-dependent
birth and death rates. The analysis is also developed towards the more interesting case
of a time-inhomogeneous linear birth process. In both cases we specify the conditions
that allow themean of the process to be identical to the proposed generalizedGompertz
growth curve.

In order to pinpoint the usefulness of the proposed model and the given results we
focus on some applications to real data. Indeed, we show that the considered growth
model is able to provide a good fit to various datasets in real cases of interest. As a first
application we consider the data of the active and of the total number of contagions
over a given period of the COVID-19 outbreak spread in Iran and Italy. Specifically, we
analyze the proposed model, the Gompertz model and the logistic model as candidates
to fit the considered data. We show that, among the cases under investigation, in many
instances the proposed model provides the better fit under two comparison criteria.
Indeed, in order to assess the goodness of the curve fitting, we adopt the ISRP metric
(introduced recently in [5]) and the d2-distance. We point out that this investigation is
finalized to perform a detailed investigation on an extended Gompertz growth model,
rather than to solve the complex problem of finding a proper mathematical model to
describe the evolution of the COVID-19 outbreak. The second application is devoted
to software failure data from Tandem Computers. Also in this case, it is shown that the
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proposed model provides the better fit of the considered data under the ISRP metric
and the d2-distance. This confirms that the model is effective for various instances of
growth dynamics.

Let us now describe the plan of the paper. In Sect. 2 we introduce the model and
illustrate its mean features, including the different shapes exhibited by the growth
curve according to the parameters. Section 3 is devoted to a detailed analysis of the
relevant features of themodel. In Sect. 4we then provide the announced applications of
the proposed model to the number of outbreak contagions and to software failure data.
In Sect. 5 we analyze a special inhomogeneous linear birth-death process, and provide
a condition on the time dependent terms of the birth and death rates such that the mean
of the process is equal to the proposed growth curve. A special case is treated in Sect. 6,
where the case of a pure time-inhomogeneous birth process is considered. We also
face the first-passage-time problem of this process through constant boundaries and
time-varying boundaries. The latter case is developed by means of a simulation-based
approach. To this aim a procedure able to simulate the birth times of the process is
sketched. Some concluding remarks are finally provided in Sect. 7.

2 The proposedmodel

In this paper, we propose and study the growth model NGPD(t), which is solution of
the following differential equation:

d NGPD(t)

dt
= NGPD(t) A

(
1 − 1

Ab
log

NGPD(t)

y

)1+a

, t > 0, NGPD(0) = y,

(3)
with y > 0, A > 0, a > −1, a �= 0 and b > 0. This is a suitable extension of the
Gompertzmodel governed byEq. (2).Moreover, such amodel is included in the family
of growth models N (t), t > 0, that are described by a different kind of differential
equation, namely

d N (t)

dt
= ξ(t)N (t), t > 0, (4)

where N (t) denotes the size of a population at time t and ξ(t) > 0 is a time-dependent
growth rate function. Suitable choices of the growth rate ξ(t) allow us to define a
variety of models of interest. For instance,

• the constant rate ξ(t) = r yields the classical Malthusian growth (cf. Eq. (1)):

NM (t) = yert , t > 0, NM (0) = y > 0;

• the rate ξ(t) = ξG(t) := αe−βt refers to theGompertz growthmodel (cf.Gompertz
[19])

NG(t) = y exp

{
α

β
(1 − e−βt )

}
, t > 0, NG(0) = y > 0, α, β > 0; (5)
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• the rate ξ(t) = ξK (t) := αt−(β+1) is concerning the Korf growth model (cf. Korf
[23])

NK (t) = y exp

{
α

β
(1 − t−β)

}
, t > 0, NK (0) = 0, α, β > 0; (6)

• the rate ξ(t) = ξDS(t) := α(1 + t)−(β+1) ≡ ξK (1 + t), with α, β > 0, leads to a
recently proposed growth model (cf. Di Crescenzo and Spina [12])

NDS(t) = y exp

{
α

β

[
1 − (1 + t)−β

]}
, t > 0, NDS(0) = y > 0. (7)

Let us now consider a suitable family of growthmodels, whose growth rate function
is defined as follows:

ξ(t) = A F̄(t), t > 0, (8)

where F̄(t) = P(X > t) is the survival function of a given nonnegative continuous
random variable X , and A > 0 is a constant. From the differential equation (4) and
Eq. (8), we have that the corresponding growth curve is given by

N (t) = y exp

{
A

∫ t

0
F̄(τ ) dτ

}
, t > 0, N (0) = y > 0. (9)

Hereafter we show that the representation (9) allows to express some properties of
N (t) in terms of the distribution of X .

Remark 1 The ultimate behaviour of the model (9) depends on the nature of the expec-
tation of X , denoted as m := E[X ] = ∫ ∞

0 F̄(τ ) dτ . Indeed, one has

N (t)
t→+∞→

{+∞, if m = +∞,

yeAm =: C, if m < +∞,

where C is finite and denotes the carrying capacity of N (t).

Let us now recall the notion of increasing concave ordering (see Section 4.A of
Shaked and Shanthikumar [30]). Given two random variables Xi , i = 1, 2, having
distribution functions Fi (t) = 1 − F̄i (t), i = 1, 2, we say that X1 is smaller than
X2 in the increasing concave order (denoted by X1 ≤icv X2) if

∫ t
−∞ F1(τ ) dτ ≥∫ t

−∞ F2(τ ) dτ for all t ∈ R. Roughly speaking, this means that X1 is both “smaller”
and “more variable” than X2 in some stochastic sense.

Remark 2 The increasing concave order allows to compare growth models of the form
(9). For i = 1, 2, let

Ni (t) = yi exp

{
Ai

∫ t

0
F̄i (τ ) dτ

}
, t > 0, Ni (0) = yi > 0.

It is not hard to see that if y1 ≤ y2, A1 ≤ A2, and X1 ≤icv X2, then N1(t) ≤ N2(t)
for all t ≥ 0.
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In order to propose a flexible growth model representing a generalization of various
previous instances, we assume that X has a generalized Pareto distribution (GPD)with
survival function

F̄(t) =
(

b

at + b

) 1
a +1

, t ≥ 0, (10)

where a > −1, a �= 0, b > 0.We recall that some characterization results on the GPD
can be found in Asadi et al. [3], in Section 4 of Hashemi et al. [21] and in Section 3.1
of Arriaza et al. [2]. In particular, this family includes three distributions, depending
on the values of a:

– the Pareto distribution, when a > 0;
– the Power distribution, when −1 < a < 0 (in this case the distribution is bounded
above); in particular, the distribution is Uniform if a = 1

2 ;
– the Exponential distribution, when a → 0.

Let A > 0, a > −1, a �= 0, b > 0. Due to Eqs. (8) and (9), the model driven by
the GPD survival function (10) has respectively growth rate function

ξ(t) = A

(
b

at + b

) 1
a +1

, t > 0, (11)

and growth curve

NGPD(t) = y exp

{
Ab

[
1 −

(
b

at + b

) 1
a
]}

, t > 0, (12)

with initial value NGPD(0) = y > 0. Moreover, the function (12) is the solution of
(3).

By taking A = α > 0, a = b = 1/β in (12), one obtains the growth model NDS(t)
given in (7). Moreover, if A = α > 0, b = 1/β and a tends to 0, then the proposed
model (12) gives the Gompertz curve (5).

We point out that the curve (12) exhibits different behavior according to the value
of a > −1, a �= 0. In particular, by studying the derivative

d NGPD(t)

dt
= A NGPD(t)

(
b

at + b

) 1
a +1

, t > 0 (13)

the following cases arise:

(i) If a > 0, the curve (12) is well defined for all t ∈ (0,+∞); it is an increasing
function for all t > 0; for t → +∞ it tends to the carrying capacity

C = y eAb. (14)

(ii) If −1 < a < 0 and 1
|a| is an odd integer, NGPD(t) defined in (12) is well defined

for all t ∈ (0,+∞), with NGPD( b
|a| ) = C = y eAb; moreover, the curve NGPD(t)

is increasing for all t > 0, and it goes to infinity for t → +∞.
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Fig. 1 The curve NGPD(t), given in (12), is plotted for y = 1, A = 1, b = 1 and a = −0.5 (solid),
a = −0.3 (dashed), a = −0.2 (dot-dashed), a = 1 (dotted)

(iii) When −1 < a < 0 and 1
|a| is an even integer, NGPD(t) is well defined for all

t ∈ (0,+∞). Specifically, NGPD(t) is increasing in 0 < t ≤ b
|a| , with maximum

NGPD( b
|a| ) = C = y eAb, then it is decreasing for t ≥ b

|a| and tends to zero for
t → +∞.

(iv) If −1 < a < 0 and 1
a is a non-integer real number, NGPD(t) is defined only for

t ∈ (0, b
|a| ), with limt→

(
b
|a|

)− NGPD(t) = C = yeAb. In this case NGPD(t) is an

increasing function for 0 < t < b
|a| .

In Fig. 1, the curve (12) is plotted for different choices of a, with case (i) for a = 1,
case (ii) for a = −0.2, case (iii) for a = −0.5, and case (iv) for a = −0.3. Note that
when a = −0.3, for case (iv), the curve is defined only in 0 < t < 3.3̄ = b/|a| as
specified above. Moreover, if a = −0.5, the random variable X considered in (8) is
uniformly distributed; in this case the population size NGPD(t) tends to zero, i.e. to
the extinction.

Remark 3 From (10) it is not hard to see that for the GPD distribution one has that∫ t
0 F(τ ) dτ is increasing in a ∈ (−1, 0) ∪ (0,+∞) and is decreasing in b ∈ (0,+∞)

for all t ≥ 0. Hence, denoting by NGPD,i (t) the growth model (12) characterized by
parameters yi , Ai , ai , bi , i = 1, 2, due to Remark 2 we have that if y1 ≤ y2, A1 ≤ A2,
a1 ≥ a2 and b1 ≤ b2, then

NGPD,1(t) ≤ NGPD,2(t) for all t ≥ 0.

3 Analysis of the growthmodel

In this section we discuss various features of the generalized Gompertz growth model
proposed in (12).
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Fig. 2 The correction factor for model (12) (solid line), for y = 0.1, A = 3, a = b = 10 on the left and
A = 2, a = b = 1 on the right, compared with f (z) = 1 (dashed line) for the exponential growth

3.1 The correction factor and the relative growth rate

In the context of growth analysis, interest is given to models governed by equations
of the following form:

d N (t)

dt
= A N (t) f [N (t)] , t > 0.

The function f is a function of t only through the population size N (t), and is named
a size covariate model. It allows to express the density dependent growth of the curve,
and it is strictly related to the relative growth rate g (see Tsoularis and Wallace [35])
through the following relation:

g[N (t)] := 1

N (t)

d N (t)

dt
≡ A f [N (t)], t > 0.

Weremark that an extension of the relative growth rate, namedmodified relative growth
rate, has been proposed and studied recently in Pal et al. [26] for the data analysis of
growth models. Moreover, the function f is also called correction factor because
it provides information about the deviation of a growth model from the classical
exponential growth (for which f (z) = 1, z ≥ 0). From Eqs. (3) one has that for the
GPD model the correction factor is given by

f (z) =
(
1 − 1

Ab
log

z

y

)1+a

, z > 0.

As example, Fig. 2 shows some plots of the correction factor for model (12).
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3.2 The inflection point

The monotonicity of the proposed model (12) has been studied in Sect. 2. Now we
focus on the second derivative of NGPD(t) in order to compute the inflection point,
when existing. From (13), the second derivative of NGPD(t), t > 0, results:

d2NGPD(t)

dt2
= A NGPD(t)

(
b

at + b

) 1
a +1

[
A

(
b

at + b

) 1
a +1

− a + 1

at + b

]
. (15)

For the study of the sign of (15), by considering the analysis shown in Sect. 2 we
report two cases:

– If Ab > a + 1, in cases (i), (iii) and (iv), the curve NGPD(t) is sigmoidal with the
inflection point given by

tI := b

a

[(
Ab

a + 1

)a

− 1

]
. (16)

On the contrary, in case (ii) the curve NGPD(t) has two inflection points, i.e. tI
and b

|a| , with tI < b
|a| . In particular, it has an upward concavity up to t = tI , a

downward concavity between tI and b
|a| , then an upward concavity.

– If Ab < a + 1, in cases (i), (iii) and (iv), the curve NGPD(t) has a downward
concavity for all t > 0, whereas in case (ii), NGPD(t) has a downward concavity
up to the inflection point b

|a| , then it has an upward concavity.

Furthermore, in all the interesting cases, the population at time t = tI is given by

NGPD (tI ) = C e−(a+1),

where C is given in (14).

3.3 Themaximum specific growth rate and the lag time

The study of a growth curve that exhibits a sigmoidal behaviour in proximity of its
inflection point (by approximating the curve in that point with a line) can be of interest
in many phenomena that show lag, growth, and asymptotic phases. Due to the results
of Sect. 3.2, we focus only on the instances of interest, that are cases (i), (iii) and (iv)
analysed in Sect. 2, when Ab > a + 1.

We consider the maximum specific growth rate, say μ, which is the coefficient of
the tangent to the curve NGPD(t) given in (12) in the inflection point tI shown in (16):

μ := d NGPD(t)

dt

∣∣∣
t=tI

= Ay

(
a + 1

Ab

)1+a

eAb−(a+1). (17)
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Fig. 3 The tangent lines (dotted curves) and the lag times (black point) with y = 0.1, A = 3, a = b = 2
on the left and A = 3, a = b = 1.7 on the right

Moreover, recalling the expressions of tI and NGPD(tI ), the tangent to the curve
NGPD(t) in (tI , NGPD(tI )) is

n := μt + yeAb−a−1
[(

a + 1

Ab

)a a + 1

a
− 1

a

]
, (18)

with μ expressed in (17). (For notation clarity, we denote by n the y-axis). Moreover,
we introduce the lag time λ as the x-axis intercept of the tangent line. The lag time λ

for the model (12) is the t-axis intercept of (18), that is

λ = b

a

[(
Ab

a + 1

)a 1

a + 1
− 1

]
. (19)

Note thatλ is positivewhen Ab > (a+1)
1
a +1. Hence, the sigmoidal function NGPD(t)

evolves with a growth rate that starts at zero and then accelerates to the maximal value
μ, given in (17), in the time period resulting in the lag time λ shown in (19). Examples
of tangent lines (dotted curves) and lag times (black point) are plotted in Fig. 3.

3.4 Threshold crossing

In several contexts of population evolution, it is relevant to know how long time the
population spends below (or above) a certain preassigned value, which can represent
a control threshold or a boundary in the evolution of the given phenomenon. Let
us denote by S such a threshold for a growth model N (t). We are interested in the
time instant in which N (t) reaches S, with S > N (0) = y. Taking into account the
various behaviours that the curve NGPD(t)may have for different choices of a, we are
interested in a generic threshold S > y if the curve grows to infinity, or on a percentage
p of the carrying capacity C = yeAb, or on a percentage of the size of the population
at the inflection point tI given in (16). For a generic S, to obtain the crossing time
instant θ S of NGPD(t) through S, we solve the equation N (θ S) = S, recalling (12).
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Fig. 4 The threshold crossing times θC (p) (on the left) and θI (p) (on the right) are plotted as function of
p, with y = 0.1, a = 2, b = 4 and A = 2, 1.5, 1, from top to bottom

Thus we get the solution

θ S = b

a

[(
1 − 1

Ab
log

S

y

)−a

− 1

]
, S > y. (20)

If S is a percentage 0 < p < 1 of the carrying capacity C = y eAb, substituting
S = pC in (20), the time of interest is

θC (p) = b

a

[(
− 1

Ab
log p

)−a

− 1

]
, e−Ab < p < 1.

Moreover, when S is a percentage 0 < p < 1 of NGPD(tI ), i.e. S = p y eAb−a−1,
one has that the crossing time is:

θI (p)= b

a

[(
− 1

Ab
(log p − a − 1)

)−a

− 1

]
, e−Ab+a+1< p<1, Ab>a+1.

In Fig. 4, the quantities θC (p) and θI (p) are plotted as a function of p, with some
choices of the parameters.

3.5 Sensitivity analysis

This section is devoted to analyze how the perturbation on each parameter involved in
the model (12) influences the growth of NGPD(t). The parameters are the initial state
y > 0, then A > 0, a > −1, a �= 0, and b > 0. Recalling the study performed in
Sect. 2 about the conditions for the existence, the following analysis can be performed
on NGPD(t), that hereafter will be denoted by N ν

GPD to emphasize the dependence on
a generic parameter ν. Specifically, starting from (12) we expand N ν+ε

GPD in a Taylor
series evaluated at ν, with ε > 0, for ν = y, A, a and b.
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– Perturbation on y

N y+ε
GPD − N y

GPD ≈ ε exp

{
Ab

[
1 −

(
b

at + b

) 1
a
]}

.

The latter term is positive for all t > 0.
– Perturbation on A

N A+ε
GPD − N A

GPD ≈ ε N A
GPD b

[
1 −

(
b

at + b

) 1
a
]

.

The latter term is positive for all t > 0.
– Perturbation on a

Na+ε
GPD − Na

GPD ≈ ε Na
GPD

A

a2

(
b

at + b

)1
a +1[

at + (at + b) log

(
b

at + b

)]
.

(21)
To study the sign of (21), we note that due to the analysis performed in Sect. 2, it
is not hard to see that

(
b

at + b

) 1
a +1

> 0, at + (at + b) log

(
b

at + b

)
< 0,

where the time domain is t > 0 if a > 0, and 0 < t < b
|a| if −1 < a < 0. Hence,

the right-hand-side of (21) is negative for all t > 0.
– Perturbation on b

Nb+ε
GPD − Nb

GPD ≈ ε Nb
GPD A

[
1 −

(
b

at + b

) 1
a
(
1 + t

at + b

)]
. (22)

The sign of the right-hand-side of (22) is equal to that of the function

h(t) := 1 −
(

b

at + b

) 1
a
(
1 + t

at + b

)
.

We have h(0) = 0. The first derivative h′(t) is positive for all t > 0 in cases (i),
(iii) and (iv) analyzed in Sect. 2; hence, in these cases one has h(t) > 0 for all
t > 0. In the remaining case (ii), we have h′(t) > 0 for 0 < t < b

|a| , and h
′(t) < 0

for t > b
|a| . Hence, the function h(t) is surely positive up to t = b

|a| . Noting that

limt→+∞ h(t) = −∞, from the continuity of h we have that there exists a t̄ > b
|a|

such that h(t̄) < 0 for all t > t̄ .

As example, in Fig. 5 we show the curve NGPD(t) and the effect of the perturbation
ε = 0.1 on the parameter y (on the left) and on A (on the right). The same is show in
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Fig. 5 On the left, the curve NGPD(t) for initial value y = 1 (solid) and y = 1.1 (dashed), with A = 1,
a = 0.2, b = 3. On the right, NGPD(t) is plotted for A = 1 (solid) and A = 1.1 (dashed), with y = 0.1,
a = 0.2, b = 3

Fig. 6 On the left, the curve NGPD(t) for a = 0.3 (solid) and a = 0.4 (dashed), with y = 0.1, A = 1,
b = 3. On the right, the same curve is plotted for a = −0.5 (solid) and a = −0.4 (dashed), with y = 0.1,
A = 1, b = 3

Fig. 7 On the left, NGPD(t) for b = 3 (solid) and b + ε = 3.1 (dashed), with y = 0.1, A = 1, a = −0.1.
On the right, NGPD(t) is plotted for b = 3 (solid) and b + ε = 3.1 (dashed), with y = 0.1, A = 1,
a = −0.2

Fig. 6 for the parameter a, when a > 0 (on the left) and −1 < a < 0 (on the right),
and finally in Fig. 7 for the parameter b in case (iii) (on the left) and in case (ii) (on
the right).
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4 Applications to real data

The usefulness of the results presented in the previous part of the paper emerges in
various contexts in which the proposed generalization of the Gompertz model may
be employed to obtain proper fit of real data. Indeed, in this section we show that the
proposed GPD model (12) is able to fit well some datasets of interest. Two suitable
criteria are then adopted in order to discuss the goodness of fit, by taking into account
also other popular growth curves, i.e. the Gompertz model (5) and the logistic model

NL(t) = C

1 +
(
C−y
y

)
e−r t

, t > 0, C, r , y > 0. (23)

The considered data analytic examples are related to epidemiology and reliability
contexts. Indeed, the three considered models are used to fit the dataset related to

(a) the active number and the total number of COVID-19 contagions from the 25th
February to the 1st April 2020 in Iran and Italy (cf. [39] and [40], respectively);

(b) a set of Release #1 failure data coming from software products at Tandem Com-
puters (cf. Wood [36]), reported in Table 11.

We use the nonlinear regression to fit the data, in particular the routine lsqcurvefit
of Matlab®, to solve nonlinear curve-fitting (data-fitting) problems in least-squares
sense leading to the parameters estimation. Note that, we do not consider the Korf
model (6) because for both datasets it does not perform a good fit, due to the fact that
such a model has a slower growth when time increases. Moreover, we do not show the
results related to the DS model (7) since it is a special case of the new model NGPD ,
and thus the fitting is better for the latter one.

Aiming to identify the best fitting model, we use two procedures to estimate param-
eters and check the goodness. In particular, we compute the sum of squared residuals
(SSR) with the routine lsqcurvefit and then we estimate the parameters by means of
ISRP metric. Further we calculate the d2-distance (in the euclidean norm) between
ISRP and the constant parameter. We recall that the ISRP growth metric has been
introduced recently in [5] aiming to determine the true growth curve that best fits the
data (statistically). Indeed, such a metric provides an estimate of the rate parameter
corresponding to the identified growth model in specific time intervals. The ISRP for
the three considered models are respectively:

I SRPG = β

e−βt − e−β(t+Δt)
log

(
NG(t + Δt)

NG(t)

)
,

I SRPL = 1

Δt
log

[ c y
C−y

1
NL (t) − 1

c y
C−y

1
NL (t+Δt) − 1

]
,

I SRPGPD = 1

b

[(
b

at+b

) 1
a −

(
b

a(t+Δt)+b

) 1
a
] log

(
NGPD(t + Δt)

NGPD(t)

)
,

with reference to the growth parameter α, r , A.
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(a) We consider two data collections: (a1) consists of COVID-19 data n(i) collected
every day from February 25th to April 1st, 2020, whereas (a2) is formed by
the mobile mean of data collected in 3 days, i.e. data(i) = n(i)+n(i+1)+n(i+2)

3 ,
i = 1, 2, . . . , 35. The analysis of the mobile mean is suggested by the fact that the
reliability of data on infected by COVID-19 is subject to high variability caused
by external factors, such as fluctuations in the availability of test devices and in
the test response times.

(a1) We show the interpolation of the dataset (a1), for three time intervals, where
Figs. 8 and 9 refer to Italy and Figs. 10 and 11 refer to Iran. In all cases we
have reasonably good fit. In Tables 1, 2 and 3, we report the SSR and the
d2-distance between ISRP and the constant parameter, for the given datasets
(a1). The notation e+05, for example, means ×105. In Table 4, Total and
Active Coronavirus Cases in Italy (March 29-April 1) are compared with
the prediction done with the GPD model (12). The parameters used for the
prediction at i-th day come from the estimation performed until up to the
(i − 1)-th day, with the routine lsqcurvefit ofMatlab®. The same analysis is
shown in Table 5 for Iran, whose Total and Active Coronavirus Cases (March
25-March 29) are compared with the prediction done with the GPD model
(12).

(a2) We show the interpolation of the dataset (a2), for three time intervals, for
Italy in Figs. 12 and 13, and for Iran in Figs. 14 and 15. In all cases we
have reasonably good fit. In Tables 6, 7 and 8, we report the SSR and the
d2-distance between ISRP and the constant parameter, for the given dataset
(a2). In Table 9, Total and Active Coronavirus Cases in Italy (March 28-
March 31) are compared with the prediction done with the GPD model (12).
The parameters used for the prediction at i-th day come from the estimation
performed up to the (i−1)-th day. The same analysis is performed in Table 10,
where Total and Active Coronavirus Cases in Iran (March 28-March 31) are
compared with the prediction done with the GPD model (12).

We report in Tables 11 and 12 the estimates of the parameters for Figs. 8, 9, 10,
11, 12, 13, 14 and 15, and datasets (a1) and (a2), respectively, obtained by means
of the routine lsqcurvefit ofMatlab®. By comparing the SSR and d2 indexes of
the two performed analysis, i.e. cases (a1) and (a2), we observe that (a2) provides
better results. Indeed (a2) takes into account the running average of the data over
3 days. We find that according to the different intervals of time, and the adopted
criteria (SSR and d2), there is a variety in the detection of the best fitting model.
Nevertheless, in the most of cases our proposed GPD model gives the best fitting.

(b) We show in Table 13 the considered data, and in Fig. 16 we interpolate the data
with the Gompertz, the Logistic and the GPD models. In Table 13 we report also
the SSR and the d2-distance between ISRP and the constant parameters A, α, r ,
respectively. In these cases, we can observe that the GPD model fits better than
the others.

123



544 M. Asadi et al.

0 5 10 15 20
t

0

0.5

1

1.5

2

2.5

N
(t)

104

(a)
TOTAL Italy Feb 25-Mar 15
Gompertz
Logistic
GPD

0 5 10 15 20 25 30
t

0

1

2

3

4

5

6

7

8

N
(t)

104

(b)
TOTAL Italy Feb 25-Mar 25
Gompertz
Logistic
GPD

0 5 10 15 20 25 30 35 40
t

0

2

4

6

8

10

12

N
(t)

104

(c)
TOTAL Italy Feb 25-Apr 1
Gompertz
Logistic
GPD

Fig. 8 Interpolation of dataset (a1) for the total case in Italy under the Gompertz (5), logistic (23) and GPD
(12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st April
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Fig. 9 Interpolation of dataset (a1) for the active case in Italy under the Gompertz (5), logistic (23) and
GPD (12) models. From left to right, the data for a 25-th Feb/15-th March, b 25-th Feb/25-th March, c
25-th Feb/1-st April
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Fig. 10 Interpolation of dataset (a1) for the total case in Iran under the Gompertz (5), logistic (23) and GPD
(12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st April

5 Analysis of a special inhomogeneous linear birth-death process

Birth-death processes are largely used to model random evolution. See Callaert and
Keilson [6,7] for the spectral structure of such processes. In this section, we consider a
stochastic counterpart of the growthmodel introduced in (12) by studying an evolution-
ary model based on a birth-death process. We will consider a continuous-timeMarkov
chain having an infinite state-space to mimics the growth curve (12) which can reach
any high level when A is large. In particular, we consider a time-inhomogeneous linear
birth-death process {X(t); t ≥ 0} having state space N0, and the absorbing endpoint
0. Denoting by
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Fig. 11 Interpolation of dataset (a1) for the active case in Iran under the Gompertz (5), logistic (23) and
GPD (12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st
April

Table 1 The SSR and
d2-distance between ISRP and
the constant parameter, for data
(a1) in the time interval 25-th
Feb/15-th March

GPD Gompertz Logistic

Total Italy

SSR 7.96e+06 5.28e+05 8.15e+05

d2 0.51 0.27 0.92

Active Italy

SSR 3.92e+06 6.92e+05 8.24e+05

d2 0.51 0.33 0.92

Total Iran

SSR 8.61e+05 1.25e+06 2.94e+06

d2 0.93 3.01 1.88

Active Iran

SSR 1.38e+05 4.18e+05 1.42e+05

d2 2.42 4.06 2.23

Table 2 The SSR and
d2-distance between ISRP and
the constant parameter, for data
(a1) in the time interval 25-th
Feb/25-th March

GPD Gompertz Logistic

Total Italy

SSR 9.35e+07 1.26e+07 7.32e+06

d2 0.29 0.42 1.03

Active Italy

SSR 8.11e+07 9.28e+06 5.94e+06

d2 0.34 0.53 1.02

Total Iran

SSR 2.75e+06 1.48e+06 4.63e+06

d2 1.13 0.85 0.94

Active Iran

SSR 3.29e+06 1.55e+06 3.18e+06

d2 2.14 2.11 1.15

123



546 M. Asadi et al.

Table 3 The SSR and
d2-distance between ISRP and
the constant parameter, for data
(a1) in the time interval 25-th
Feb/1-st April

GPD Gompertz Logistic

Total Italy

SSR 9.01+06 3.53e+07 1.74e+07

d2 0.31 0.84 3.22

Active Italy

SSR 7.47e+06 3.35e+07 1.05e+07

d2 0.42 1.11 1.08

Total Iran

SSR 6.97e+07 3.31e+07 3.61e+07

d2 1.56 1.06 0.52

Active Iran

SSR 6.40e+07 3.30e+07 3.60+07

d2 1.56 0.52 1.06

Table 4 Total and active coronavirus cases in Italy versus the prediction done with the GPD model based
on data (a1)

Day 29-th March 30-th March 31-th March 1-st April

Predicted total 96,789 102,153 106,058 109,279

Real total 97,689 101,739 105,792 110,574

Predicted active 75,748 76,713 78,268 80,375

Real active 73,880 75,528 77,635 80,672

Table 5 Total and active coronavirus cases in Iran versus the prediction done with the GPD model based
on data (a1)

Day 29-th March 30-th March 31-th March 1-st April

Predicted total 37,260 39,870 43,477 46,974

Real total 38,309 41,495 44,605 47,593

Predicted active 21,754 23,481 25,128 27,094

Real active 23,278 24,827 27,051 29,084
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Fig. 12 Interpolation of dataset (a2) for the total case in Italy under the Gompertz (5), logistic (23) and
GPD (12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st
April
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Fig. 13 Interpolation of dataset (a2) for the active case in Italy under the Gompertz (5), logistic (23) and
GPD (12) models. From left to right, the data for a 25-th Feb/15-th March, b 25-th Feb/25-th March, c
25-th Feb/1-st April
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Fig. 14 Interpolation of dataset (a2) for the total case in Iran under the Gompertz (5), logistic (23) and GPD
(12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st April
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Fig. 15 Interpolation of dataset (a2) for the active case in Iran under the Gompertz (5), logistic (23) and
GPD (12) models. From left to right, a 25-th Feb/15-th March, b 25-th Feb/25-th March, c 25-th Feb/1-st
April

qi, j (t) = lim
h→0

1

h
P[X(t + h) = j | X(t) = i], i, j ∈ N0

the time-dependent transition rates of X(t), we assume that

qi, j (t) =
{
i λ(t), j = i + 1, i ∈ N0 (birth rate),
i μ(t), j = i − 1, i ∈ N (death rate),

(24)

where λ(t) and μ(t) are positive functions, integrable on (0, t) for any finite t > 0.
Note that the rates (24) are linear in i , hence the intensities of new births and deaths
are proportional to the population size at the current time, and to the time-dependent
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Table 6 The SSR and the ISRP
metric for data (a2) in the time
interval 25-th Feb/15-th March

GPD Gompertz Logistic

Total Italy

SSR 2.1e+05 2.84e+05 3.09e+05

d2 0.12 0.11 0.94

Active Italy

SSR 1.36e+06 3.11e+05 2.33e+05

d2 0.15 0.15 0.93

Total Iran

SSR 6.91e+05 9.42e+05 2.68e+06

d2 0.72 0.42 1.06

Active Iran

SSR 5.21e+05 9.83e+05 1.91e+06

d2 0.77 0.63 1.01

Table 7 The SSR and the ISRP
metric for data (a2) in the time
interval 25-th Feb/25-th March

GPD Gompertz Logistic

Total Italy

SSR 3.17e+06 1.06e+07 5.03e+06

d2 0.15 0.29 1.02

Active Italy

SSR 2.4e+06 7.28e+06 3.81e+06

d2 0.17 0.34 1.01

Total Iran

SSR 1.06e+07 8.97e+06 1.99e+07

d2 1.05 0.7 0.84

Active Iran

SSR 4.01e+06 6.23e+06 1.05e+07

d2 0.96 0.95 0.83

functions λ(t) and μ(t), respectively. Clearly, λ(t) and μ(t) represent the individual
birth rate and death rate at time t , respectively. We denote with Py,x (t) the transition
probability of X(t), for all t ≥ 0, x ∈ N0 and y ∈ N, i.e. the probability that
the population, starting from y, reaches level x at time t . Note that, we consider
X(0) = y ∈ N as for the growth model (12) the initial state is positive. Taking into
account the results obtained in [12], the process X(t) with rates (24) has transition
probabilities, for y ∈ N,

Py,0(t) =
(
1 − 1

ψ + φ

)y

, (25)

Py,x (t) =
(

φ

ψ + φ

)x m∑
i=0

(
y

i

)(
y + x − i − 1

y − 1

)
(φ−1 − 1)i

(
1 − 1

ψ + φ

)y−i

,

x ∈ N, (26)
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Table 8 The SSR and the ISRP
metric for data (a2) in the time
interval 25-th Feb/1-st April

GPD Gompertz Logistic

Total Italy

SSR 4.82+06 2.5e+07 1.21e+07

d2 0.14 1.04 0.58

Active Italy

SSR 3.30e+06 2.23e+07 6.33e+06

d2 0.18 0.7 1.05

Total Iran

SSR 5.85e+07 4.05e+07 5.71e+07

d2 1.2 0.78 0.62

Active Iran

SSR 3.84e+07 2.84e+07 3.15+07

d2 0.86 0.87 0.51

Table 9 Total and active coronavirus cases in Italy versus the prediction done with the GPD model based
on data (a2)

Day 28-th March 29-th March 30-th March 31-th March

Predicted total 93,332 98,091 102,302 106,001

Real total 92,472 97,689 101,739 105,792

Predicted active 71,690 74,328 76,954 77,082

Real active 70,065 73,880 75,528 77,635

Table 10 Total and active coronavirus cases in Iran versus the prediction done with the GPD model based
on data (a2)

Day 28-th March 29-th March 30-th March 31-th March

Predicted total 36,827 39,694 42,775 45,031

Real total 35,408 38,309 41,495 44,605

Predicted active 20,366 21,734 22,628 24,787

Real active 21,212 23,278 24,827 27,051

with m = min {y, x}, where ψ = ψ(t) and φ = φ(t) are given by:

ψ(t) = exp

{
−

∫ t

0
[λ(τ) − μ(τ)] dτ

}
, φ(t) =

∫ t

0
λ(τ)ψ(τ) dτ. (27)

Moreover, the conditional mean Ey(t) = E[X(t)|X(0) = y] and the conditional
variance Vy(t) = Var[X(t)|X(0) = y] of X(t) are respectively

Ey(t) = y

ψ(t)
, Vy(t) = y

[ψ(t) + 2φ(t) − 1]
ψ2(t)

, t ≥ 0. (28)
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Table 11 The estimates of the parameters for Figs. 8, 9, 10 and 11 and dataset (a1)

Model parameters GPD Gompertz Logistic
y, A, a, b y, α, β y, r , C

Figure 8

(a) 33.86, 0.99, 5.54, 24.94 312.57, 0.29, 0.03 441.71, 0.22, 108083

(b) 68.21, 0.61, 0.64, 16.11 127.05, 0.43, 0.05 595.98, 0.19, 335555

(c) 37.05, 0.84, 1.36, 14.12 31.92, 0.62, 0.07 763.65, 0.18, 308078

Figure 9

(a) 48.46, 0.76, 2.61, 20.61 287.61, 0.28, 0.03 397.25, 0.21, 75702

(b) 19.83, 1.06, 1.83, 12.43 114.12, 0.43, 0.05 531.59, 0.19, 299301

(c) 266.05, 0.29, −0.49, 19.75 21.95, 0.67, 0.07 620.14, 0.18, 250126

Figure 10

(a) 0.78, 7.45, 5.64, 2.69 72.12, 0.63, 0.1 295.58, 0.26, 22478

(b) 2.09, 5.81, 7.36, 3.82 215.37, 0.4, 0.07 696.55, 0.17, 48793

(c) 0.44, 12.29, 11.94, 2.68 1033.1, 0.2, 0.01 1615.1, 0.1, 35572700

Figure 11

(a) 1.69, 6.67, 8.97, 3.6 70.59, 0.59, 0.11 247.51, 0.25, 15931

(b) 1.4, 6.74, 7.11, 3.05 160.89, 0.4, 0.08 478.46, 0.17, 14322

(c) 1.19, 7.27, 11.54, 4.12 992.7, 0.11, 0.01 1265, 0.1, 27863500

Table 12 The estimates of the parameters for Figs. 12, 13, 14 and 15 and dataset (a2)

Model parameters GPD Gompertz Logistic
y, A, a, b y, α, β y, r , C

Figure 12

(a) 450.76, 0.25, −0.74, 17.65 375.96, 0.31, 0.03 547.59, 0.22, 133991

(b) 486.89, 0.25, −0.61, 20.42 174.97, 0.42, 0.05 767.64, 0.19, 431844

(c) 384, 0.29, −0.47, 19.74 77.57, 0.54, 0.06 911.76, 0.18, 367830

Figure 13

(a) 446.41, 0.24, −0.78, 17.12 341.83, 0.3, 0.03 490.2, 0.22, 119948

(b) 433.66, 0.25, −0.59, 19.83 159.42, 0.42, 0.05 681.83, 0.19, 383891

(c) 375.33, 0.27, −0.50, 19.39 60.42, 0.56, 0.07 758.03, 0.18, 305811

Figure 14

(a) 0.67, 11.11, 9.73, 2.49 157.82, 0.52, 0.1 438.91, 0.24, 23963

(b) 1.37, 7.87, 10.57, 3.67 437.34, 0.31, 0.06 1001.4, 0.2, 48584400

(c) 0.45, 12.75, 12.8, 2.71 1157.9, 0.2, 0.01 1759.6, 0.1, 38757800

Figure 15

(a) 1.53, 8.18, 13.38, 3.93 150.05, 0.48, 0.10 360.52, 0.23, 16661

(b) 1.88, 7.24, 10.75, 3.67 346.72, 0.29, 0.06 716.36, 0.15, 30460

(c) 0.77, 10.7, 13.54, 3.11 1091.6, 0.1, 0.01 1389.6, 0.1, 3060800
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Table 13 Data (b): Tandem Computers software failure Data; SSR and d2-distance between ISRP and the
constant parameter

Testing times (weeks) 1 2 3 4 5 6 7 8 9 10

Defects found 16 24 27 33 41 49 54 58 69 75

Testing times (weeks) 11 12 13 14 15 16 17 18 19 20

Defects found 81 86 90 93 96 98 99 100 100 100

Data (b) GPD Gompertz Logistic

SSR 39.79 79.34 63.55

d2 0.55 0.71 1.32
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20

30

40

50

60

70

80

90

100

110

N
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Data (b)
Gompertz
Logistic
GPD

Fig. 16 Interpolation of dataset (b)

Recalling the birth and death rates (24), the population mean satisfies the following
differential equation:

d Ey(t)

dt
= ξ(t)Ey(t), t > 0, (29)

where ξ(t) is the net growth rate per capita of individuals, i.e.

ξ(t) = λ(t) − μ(t), t ≥ 0. (30)

Hence, by noting that equations (29) and (4) have the same form, we get that the
mean of the process X(t) is equal to the growth curve proposed in (12), under the
assumptions (11) and (30). Some properties of Ey(t) and Vy(t) are provided in Table
4 of [12]. Finally, we observe that Py,0(t) is the probability that the population reaches
the extinction prior to time t , being 0 an absorbing endpoint. In particular, from (25)
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the probability of ultimate extinction, conditional by the initial size y, is

πy,0 := lim
t→∞ Py,0(t) =

(
1 − 1

ψ̃ + φ̃

)y

, y ∈ N, (31)

where

ψ̃ = lim
t→∞ ψ(t), φ̃ = lim

t→∞ φ(t), λ̃ = lim
t→∞

∫ t

0
λ(τ) dτ, μ̃ = lim

t→∞

∫ t

0
μ(τ) dτ.

(32)
Obviously, if μ̃ − λ̃ = ∞ or φ̃ = ∞, then πy,0 = 1, i.e. the ultimate extinction is
certain.

5.1 Analysis of a special case

In the following we assume that a > 0, that corresponds to the case (i) of the analysis
performed in Sect. 2. This choice leads to a process X(t) having an increasing behavior
and tending to a carrying capacity. As observed before, the conditional mean of X(t)
verifies the same law of the growth model (12), under Eqs. (11) and (30). In this
section, we focus our attention on this special case.

Proposition 1 The linear birth-death process X(t) with rates specified in (24) has
conditional mean

Ey(t) = y exp

{
Ab

[
1 −

(
b

at + b

) 1
a
]}

, t ≥ 0 (33)

if and only if

λ(t) − μ(t) = A

(
b

at + b

) 1
a +1

, t ≥ 0. (34)

Proof We substitute the first equation of (27) in (28) and we obtain

Ey(t) = y exp

{∫ t

0
[λ(τ) − μ(τ)] dτ

}
, t ≥ 0.

Hence, the expression (33) holds if and only if

∫ t

0
[λ(τ) − μ(τ)] dτ = Ab

[
1 −

(
b

at + b

) 1
a
]

, t ≥ 0, (35)

that is equivalent to (34). �
We now investigate on the process X(t) taking into account the relation (34). In

this case, we have λ(t) > μ(t), and thus the net growth rate ξ(t) defined in (30)
is decreasing and tends to 0 following a power law. Therefore, a population whose
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conditional mean has a S-shape is well described in this case. Moreover, for (27), the
mean Ey(t) is identical to the curve N (t) given in (12). Hence, due to (34), from (35)
one obtains λ̃ − μ̃ = Ab, with λ̃ and μ̃ defined in (32). From the results shown in
Table 4 of [12], we have that Ey(t) is strictly increasing, and it tends to the carrying
capacity defined in (14), i.e. limt→∞ Ey(t) = yeAb ≡ C . Moreover, we have

ψ(t) = exp

{
−Ab

[
1 −

(
b

at + b

) 1
a
]}

, t ≥ 0, (36)

with ψ̃ = e−Ab, so that Vy(t) is strictly increasing in t .

Example 1 Under the validity of Eq. (34), we now consider various choices of the
function μ(t) listed in Table 14. The transition probabilities (25) and (26) are plotted
in Fig. 17 for y = 1, x = 0 and x = 1, and for some choices of the parameters. In
Table 14 the last column is dedicated to the asymptotic absorption probability (31).

(a) We considerμ(t) = c, with c > 0, i.e. the individual death rate of the populations
is constant. From (27) one has, for t > 0,

φa(t) = c b e−Ab(−Ab)a γa(t) + 1 − exp

{
−Ab

[
1 −

(
b

at + b

) 1
a
]}

, (37)

with γa(t) = Γ

(
−a,−Ab

(
b

at+b

) 1
a
)

−Γ (−a,−Ab), whereΓ (·, ·) is the upper
incomplete Gamma function. The expression of the variance follows from (28),
where ψ is given in (36).

(b) We considerμ(t) = c+d (t−t0)I{t≥t0}, with c > 0, d > 0 and t0 > 0, where IA is
the indicator function, such that IA = 1 if A is true, and 0 otherwise. In this case the
individual death rate is constant until time t0 and is linear increasing afterwards,
for instance due to worsening of the environmental or individual conditions. From
(27) one has

φb(t) = φa(t) + d eAb b (−Ab)a (γb2(t) − γb1(t)) ,

where φa(t) is defined in (37) and

γb1(t) = Γ [−a, k(t)] − Γ [−a, k(t0)] ,

γb2(t) = (−Ab)a {Γ [−2a, k(t)] − Γ [−2a, k(t0)]} + Γ [−a, k(t0)]

−Γ [−a, k(t)] ,

with k(t) = −Ab
(

b
at+b

) 1
a
. The expression of the variance follows from (28).

(c) Let μ(t) = c + d sin
(
2π
Q t

)
, where Q > 0 and c > |d| > 0. This case describes

populations subject to individual sinusoidal death rate, due to i.e. periodic increase
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Table 14 Some choices of μ(t)
and the corresponding extinction
probabilities (31)

Case μ(t) πy,0

(a) c 1

(b) c + d (t − t0)I{t≥t0} 1

(c) c + d sin
(
2π
Q t

)
1

(d) c
(

b
at+b

) 1
a +1

[
c
A

(
1−e−Ab

)
c
A

(
1−e−Ab

)+1

]y

Parameters c, d, Q and t0 are positive constants

Fig. 17 Probabilities P1,0(t) and P1,1(t) for the cases specified in Table 13, where c = 2.00001 in all
cases, with a (full line), b d = 1, t0 = 1 (dashed line), c d = 2, Q = 1 (dotted line), d (dot-dashed line)

and decrease of mortality. The function (27) can be expressed in integral form,
and also the variance (28).

(d) Let μ(t) = c
(

b
at+b

) 1
a +1

, with c > 0; in this case the individual birth and death

rates are proportional; the function (27) becomes

φd(t) =
( c
a

+ 1
) (

1 − exp

{
−Ab

[
1 −

(
b

at + b

) 1
a
]})

,

and the variance is obtained from (28).

In the first three cases of Table 14 one has ψ̃ = +∞ because μ̃ = +∞, therefore
πy,0 = 1, i.e. the ultimate extinction is certain. On the contrary, μ̃ < +∞ in case (d),
and thus ψ̃ < +∞, so that πy,0 < 1. Moreover, we note that the variance diverges
as t → ∞ for cases (a), (b) and (c), whereas it converges to a constant in case (d). In
Fig. 18 we show some plots of Vy(t), depending on μ(t).

6 Analysis of a special time-inhomogeneous linear birth process

In the previous section, we considered a birth-death process with conditional mean
identical to the growth curve (12). Nevertheless the sample paths of that process may
not reflect the behavior of the growth curve since they can be absorbed at zero (see the
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Fig. 18 For y = 1, A = 2, a, b = 2, the variance Vy(t) is plotted for the cases of Table 13. In case
(a): c = 0.4, 0.8, 1 (from bottom to top). In case (b): c = 1, d = 1, t0 = 5 (solid line) and t0 = 10
(dashed line). In case (c): c = 2.00001, d = 2, Q = 1 (solid line) and Q = 2 (dashed line). In case (d):
c = 0.4, 0.8, 1 (from bottom to top)

probabilities given inEqs. (25) and (31)). In order to dealwith a stochastic processmore
suitable to describe a growth phenomenon, we remove the possibility of downward
jumps by assuming that μ(t) ≡ 0 in Eq. (24). This leads to a time-inhomogeneous
linear birth process {X(t); t ≥ 0}, that possesses non-decreasing sample paths, and is
characterized by time-dependent birth rates

qk,k+1(t) = k λ(t), k ∈ S. (38)

Here, S = {y, y + 1, . . .} is the state space and X(0) = y ∈ N is the initial state.
Clearly, the function λ(t) is continuous, positive and integrable on (0, t), for any
t > 0. As usual, we denote with Py,x (t) = P[X(t) = x | X(0) = y] the transition
probabilities of X(t). For y ∈ N and x ∈ S, one has (see, for example, [28]):

Py,x (t) =
(
x − 1

y − 1

)
e−yΛ(t)

(
1 − e−Λ(t)

)x−y
, t ≥ 0, (39)

where

Λ(t) =
∫ t

0
λ(τ) dτ, t ≥ 0 (40)

is the individual time-dependent cumulative birth intensity. By recalling Proposition
3 of Di Crescenzo and Spina [12] and the time-dependent growth rate (11), for a > 0,
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Fig. 19 The mean (45), on the left, and the variance (46), on the right, are plotted for the estimated
values of Fig. 8 (reported in Table 11) for model GPD, from top to bottom for the cases (a), (b) and
(c). On the left, one has Ey(∞) = 1.74 × 1012, 9.62 × 106, 5.23 × 106; on the right, it is Vy(∞) =
9.21 × 1022, 1.36 × 1012, 7.41 × 1011, for the cases (a), (b) and (c), respectively

we have that the linear birth process with rates (38) has conditional mean

Ey(t) = y exp

{
Ab

[
1 −

(
b

at + b

)1/a
]}

, t ≥ 0 (41)

if and only if

λ(t) = A

(
b

at + b

) 1
a +1

, t ≥ 0. (42)

This condition allows the conditional mean of the time-inhomogeneous birth process
{X(t); t ≥ 0} to be equal to the growth curve given in Eq. (12). Moreover, from (40)
and (42) we have

Λ(t) = Ab

[
1 −

(
b

at + b

)1/a
]

, (43)

and

Λ(t)
t→+∞→ Ab =

∫ ∞

0
λ(τ) dτ. (44)

This property reflects that the births occur with decreasing time inputs, which is typical
for environments with limited resources. Indeed, under condition a > 0 the process
{X(t); t ≥ 0} reaches a mean saturation level. This is confirmed by the fact that the
conditional mean (41) and the related variance are strictly increasing, with finite limits

Ey(t) = y eΛ(t) t→+∞→ Ey(∞) ≡ yeAb, (45)

Vy(t) = yeΛ(t)
(
eΛ(t) − 1

)
t→+∞→ Vy(∞) ≡ yeAb

(
eAb − 1

)
, (46)

for Λ(t) given in (43). In Fig. 19 the mean (45) and the variance (46) are plotted for
suitable choices of the parameters taken from the data considered in Sect. 4.We remark
that the mean and variance exhibit a greater growth for the parameters considered in
the time interval (a), that refers to a case in which the lockdown effects were not yet
prevailing.
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For this process, we also obtain the Fano factor (i.e. the index of dispersion, defined
as the variance over the mean). Indeed, due to Eqs. (45) and (46), the following results
hold:

Dy(t) := Vy(t)

Ey(t)
= eΛ(t) − 1

t→+∞→ eAb − 1. (47)

We thus obtain that Dy(t) is monotonic increasing in t , with Dy(0) = 0. Moreover,
by analysing (47), we note that:

(i) If 0 < A < 1
b log 2 then X(t) is underdispersed, i.e. Dy(t) < 1 for all t ≥ 0; in

this case the occurrence of births is more regular than a Poisson process.
(ii) If A > 1

b log 2 then X(t) is underdispersed for t < t∗, and overdispersed for
t > t∗, where

t∗ := b

a

[(
1 − log 2

Ab

)−a

− 1

]
;

therefore there is more irregularity in the distribution of births with respect to a
Poisson process, for large times.

Nowwe consider the coefficient of variation of X(t), that from (45) and (46) results:

σy(t) =
√
Vy(t)

Ey(t)
= y−1/2

√
1 − e−Λ(t), t ≥ 0,

where Λ(t) is given in (43); so σy(t) is increasing in t , in A, a and b. Moreover, the
following limiting behaviors are obtained:

σy(t)
t→+∞→ y−1/2

√
1 − e−Ab,

lim
A→0

σy(t) = 0, lim
A→+∞ σy(t) = y−1/2,

lim
a→0

σy(t) = y−1/2
√
1 − e−Abe−t/b

, lim
a→+∞ σy(t) = y−1/2

√
1 − e−Ab,

lim
b→0

σy(t) = 0, lim
b→+∞ σy(t) = y−1/2.

Therefore, when A → 0 or b → 0 there is a good correspondence between the
deterministic law (12) and the stochastic process with birth rates (38). Clearly, if
A → 0 or b → 0, then λ(t) → 0. This yields that for a low birth rate the two models
exhibit a good agreement.

It is worth mentioning that the knowledge of the transition probabilities (39) allows
to perform a stochastic comparison for the birth processes considered in this section.
To this aim we recall the following notion: Given two discrete random variables Xi ,
i = 1, 2, we say that X1 is smaller than X2 in the likelihood ratio order (denoted by
X1 ≤lr X2) if P(X2 = x)/P(X1 = x) increases in x over the union of the supports of
X1 and X2 (see Section 1.C of [30]). Then, in analogy with Remark 3 we are able to
provide the following result.
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Remark 4 From (10) it is not hard to see that for the GPD distribution one has that∫ t
0 F(τ ) dτ is increasing in a ∈ (−1, 0) ∪ (0,+∞) and is decreasing in b ∈ (0,+∞)

for all t ≥ 0. Hence, denoting by NGPD,i (t) the growth model (12) characterized by
parameters yi , Ai , ai , bi , i = 1, 2, due to Remark 2 we have that if y1 ≤ y2, A1 ≤ A2,
a1 ≥ a2 and b1 ≤ b2, then

NGPD,1(t) ≤ NGPD,2(t) for all t ≥ 0.

6.1 First-passage-time problem

In Sect. 3.4, we considered the threshold crossing problem for the deterministic growth
curve. Now, we analyze the similar first-passage-time problem of the considered
stochastic process through certain thresholds. This is important to analyze relevant
information on the reaching of critical levels in applied contexts. Let y ∈ S be the ini-
tial value and k ∈ N a threshold, with k > y. Aiming to analyze the first-passage-time
random variable

Ty,k = inf{t ≥ 0 : X(t) = k}, X(0) = y,

we denote by gy,k(t) = d P(Ty,k ≤ t)/dt its probability density function (pdf). As in
[12], we have

gy,k(t) = (k − 1)λ(t)Py,k−1(t), t ≥ 0, (48)

where λ(t) and Py,k(t) are given in (42) and (39), respectively. For the behavior of
gy,k(t) in proximity of t = 0 one has:

lim
t→0

gy,k(t) =
{
A y , if k = y + 1
0, otherwise.

As example, in Fig. 20, the density (48) is plotted for some choices of the parameters.
Moreover, Fig. 21 provides some instances of the mean of Ty,k .

For the first-passage-time problem of X(t) through a time-varying boundary we
consider the continuous function t �→ β(t), where β(0) > y, and define

Ty,β = inf{t ≥ 0 : X(t) = β}, X(0) = y,

If β(t) is monotone nonincreasing, then similarly as in Proposition 3 of Di Crescenzo
and Pellerey [14] we have

P[Ty,β > t] =
�β(t)−�∑
n=0

Py,n(t), t ≥ 0,

with Py,n(t) given in (39). Inmore general cases the determination of the first-passage-
time pdf gy,β(t) := d P(Ty,β ≤ t)/dt can be handled by means of computational
methods. In the next section we discuss a simulation procedure for X(t) which can be
used to obtain estimates of first-passage-time pdf’s.
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Fig. 20 Density (48) for A = 2, a = b = 2; on the left: k = 2, 3, 4 (solid, dashed, dot-dashed line) and
y = 1; on the right: k = 3, 4, 5 (solid, dashed, dot-dashed line) and y = 2

k 2

k 3

k 4

k 5

k 6

1 2 3 4 5 6 7
A

1

2

3

4

5
E Ty,k

Fig. 21 For y = 1, the mean of Ty,k is plotted as function of A with a = b = 1

6.2 Simulation

For the birth process {X(t); t ≥ 0}, characterized by time-dependent birth rates (38)
and initial state X(0) = y ∈ N, we can construct a customary event-based simulation
procedure. Denoting by Tk the k-th increment (birth) of the process, with T0 = 0, for
all k ∈ N one has

P(Tk+1 > t | Tk = τ) = e−(k+y)[Λ(t)−Λ(τ)], t > τ ≥ 0,

where Λ(t) is given in (43). This is not a bona fide distribution since, due to Eq. (44),

P(Tk+1 > t | Tk = τ)
t→+∞→ e−(k+y)[Ab−Λ(τ)] =: �.

Hence, given that Tk = τ ≥ 0, the next birth occurs at a finite time t = Tk+1 with
probability 1− �, and thus the simulation of Tk+1 can be performed through the steps
indicated hereafter:

1. generate a random variable, say U , uniformly distributed in (0, 1);
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Fig. 22 Simulated sample paths of the birth process X(t), with A = 1, b = 3, (a, y) = (0.5, 7), (1, 5),
(2, 3), (3, 1), from left to right on the top of the figure

2. if U ≤ � then Tk+1 does not occur at a finite time,

else, with U taking value in (�, 1), set

t = Tk+1 = Λ−1
(

Λ(τ) − 1

k + y
logU

)
,

where, with A, a, b > 0, the inverse of Λ(t) is given by

Λ−1(s) = b

a

[(
1 − s

Ab

)−a − 1

]
, s ≥ 0.

Figure 22 shows examples of simulated sample paths of X(t) obtained by means
of the above sketched procedure. The latter may be used to develop a simulation-
based approach to the first-passage-time problem of the birth process X(t) through a
time-varying boundary β(t). Indeed, estimates of the pdf gy,β(t) can be constructed
in terms of histograms obtained by means of extensive simulations based on the above
procedure. As example, we consider the same case study treated in Sect. 4.1 of [14], for
the boundaries (a) β(t) = log(t +1)+2 and (b) β(t) = 2 sin(π t/5)+7. Estimates of
the corresponding first-passage-time pdf’s have been obtained through 105 simulated
sample paths of X(t) performed by use of MATHEMATICA®. See Fig. 23 for the
corresponding histograms. As in similar cases exploited in the past, in case (a) the
histogram exhibit changes of shapes when the boundary takes integer values, whereas
in the case (b) the histogram reflects the periodicity of the periodic boundary.Moreover,
we point out that the ratio of simulated sample paths of X(t) that reach the boundaries
in the two cases is (a) 0.033 and (b) 0.202, respectively.
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(a) (b)

Fig. 23 Histogramsof simulatedfirst-passage times of the birth process X(t) through aβ(t) = log(t+1)+2,
and b β(t) = 2 sin(π t/5) + 7, for A = 1, a = 0.5, b = 3, and y = 1

7 Concluding remarks

The choice of a suitable curve to describe a growth phenomenon is always a crucial
task, since not all features of the relevant physical model and of the observed data can
be captured by a given function. In many cases modelers are forced to perform the
analysis on the ground of several curves aiming to compare the pertaining results and
thus to detect the best choice on the basis of suitable statistical indexes. In some cases
the presence of several parameters in the model allow to obtain a better fit of data,
but an excess of parameters leads to a lack of correspondence between the considered
model and the physical reality of the growth event. Hence, a proper compromise
is required between the complexity of the model and its correspondence with the
observed phenomenon.

On the ground of these remarks, in this paper we proposed a growth model that
provides a suitable generalization of the celebratedGompertzmodel, but it is not exces-
sively complex. Indeed, it involves three parameters, other than the initial (positive)
value of the growth curve. After a thorough analysis of useful characteristics, we also
focused on applications of the growth curve to real data concerning epidemiological
and reliability contexts, where the proposed model is found very suitable to describe
the observed dynamics under the ISRP metric and the d2-distance. We developed and
analyzed two stochastic counterparts of the proposed model. They are based on an
inhomogeneous linear birth-death process and a linear birth process. In both cases the
correspondence between the growth curve and the mean of such stochastic processes
is insured by a special choice of time-varying coefficients for the birth and death rates.
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