
Ricerche di Matematica (2022) 71:493–509
https://doi.org/10.1007/s11587-020-00543-3

A two-weight Sobolev inequality for Carnot-Carathéodory
spaces

Angela Alberico1 · Patrizia Di Gironimo2

Received: 3 August 2020 / Revised: 10 October 2020 / Accepted: 15 October 2020 /
Published online: 4 November 2020
© The Author(s) 2020

Abstract
Let X = {X1, X2, . . . , Xm} be a system of smooth vector fields in R

n satisfying the
Hörmander’s finite rank condition. We prove the following Sobolev inequality with
reciprocal weights in Carnot-Carathéodory space G associated to system X

(
1∫

BR
K (x) dx

∫
BR

|u|t K (x) dx

)1/t

≤ C R

(
1∫

BR

1
K (x)

dx

∫
BR

|Xu|2
K (x)

dx

)1/2

,

where Xu denotes the horizontal gradient of u with respect to X . We assume that the
weight K belongs to Muckenhoupt’s class A2 and Gehring’s class Gτ , where τ is a
suitable exponent related to the homogeneous dimension.

Keywords Carnot-Carathéodory spaces · Weighted Sobolev inequalities ·
Muckenhoupt and Gehring weights

Mathematics Subject Classification 35R03 · 39B62

1 Introduction

This paper is devoted to study some basic functional and geometric properties of
general families of vector fields that include the Hörmander’s type as a special case.
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Similar to their Euclidean counterparts, such properties play an important role in the
analysis of the relevant differential operators (both linear and nonlinear).

We are concernedwith a two-weight Sobolev type inequality onG, whereG denotes
the Carnot-Carathèodory space (�, d) (suitably defined - see Sect. 2.1) associated
to a system of smooth vector fields X = {X1, X2, . . . , Xm} on R

n satisfying the
Hörmander’s finite rank condition. This fact introduces a kind of degeneracy different
from that Euclidean one. Here, � is an open (Euclidean) bounded and connected set
of Rn , n ≥ 2, and d is the metric generated by X .

Let u ∈ Lip (G). We denote by Xu = (X1u, . . . , Xmu) the horizontal gradient of
u with respect to the system X , where X j plays the role of the first order differential
operator acting on u given by

X j u(x) = 〈X j (x),∇u(x)〉 for j = 1, . . . , m.

Set

|Xu| =
( m∑

j=1

(X j u)2
)1/2

,

the length of the horizontal gradient of u. We refer to [5,12] for more details.
In our paper we prove a two-weight Sobolev type inequality where the weights K

and K −1 form a 2-admissible pair (K −1, K ), namely

1) K is locally doubling in � and K −1 belongs to A2(G).
2) Given a compact set V ⊂ � there exist t > 2 and C ≥ 1 such that, for every ball

B with center in V and 0 < r < 1, it holds

r

(∫
r B K (x) dx∫
B K (x) dx

)1/t

≤ C

(∫
r B K −1(x) dx∫
B K −1(x) dx

)1/2

. (1.1)

Note that inequality (1.1) is the Chanillo-Wheeden condition (see [8]), with expo-
nents t and 2, adapted to the Carnot-Carathèodory geometry (see [18]).

Our main result reads as follows.

Theorem 1.1 Let K be in A2(G) ∩ Gτ (G) with τ = 1+ 2(Q−1)
n+2−Q . Let t > 2. Then, for

every u ∈ C10(BR), there exists a constant C ≥ 1 such that

(
1∫

BR
K (x) dx

∫
BR

|u|t K (x) dx

)1/t

≤ C R

(
1∫

BR

1
K (x)

dx

∫
BR

|Xu|2
K (x)

dx

)1/2

(1.2)
with

C = c(Q, n, t, q) C [K −1]
1
2
A2

[K ]
1
t ′ − 1

q′
A2

,

where C is the constant in (1.1), 2 < q < t , and BR denotes the ball centered at the
origin with radius R > 0. Here, [K −1]A2 and [K ]A2 stand for A2 constants of K −1

and K , respectively.
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By properties of Muchenoupt’s class Ap(G), we have that since K ∈ A2(G), then
K −1 ∈ A2(G). Moreover, by [12, Theorem 4.8], the assumption that K belongs to
A2(G) ∩ Gτ (G), with τ = 1 + 2(Q−1)

n+2−Q , guarantees that the pair
(
K −1, K

)
satisfies

condition (1.1). Thus, one deduces that
(
K −1, K

)
is a 2-admissible pair in �. We

emphasize that the 2-admissible property of
(
K −1, K

)
will be used in the proof of

Theorem 1.1.
The tools used to obtain inequality (1.2) are the classical ones of the Euclidean case.

Neverthless, here we deal with a degeneracy into the geometry due to the presence of
a differential operator Xu different from the classical gradient ∇u. In particular, this
fact causes a change of metric on Rn and consequently some of the results valid for
Euclidean metric have been enlarged to Carnot-Carathèodory metric.

Let us emphasize that more general weighted inequalities for Euclidean case have
been extensively investigated, and are the subject of a rich literature (see e.g. [1–4,6,8–
11,14,15,26]).

In the Euclidean setting, Theorem 1.1 generalizes similar result contained in [2],
where the authors prove a weighted Sobolev inequality of the same type as (1.2), with
the weight K (x) related to the function |u|t and the weight K −1(x) to the gradient
|∇u|2.

Problems of this kind, involving weighted Sobolev inequalities for Carnot-
Carathèodory space G, have been systematically studied in the literature (see e.g.
[7,12,16,17,19]).

The result of Theorem 1.1 is a particular case of that contained in [12, Corollary
3.4] with v(x) replaced by K (x) and w(x) replaced by K −1(x). In [12] the authors
show the following more general weighted Sobolev inequality

(
1∫

BR
v(x) dx

∫
BR

|u|tv(x) dx

)1/t

≤ C R

(
1∫

BR
w(x) dx

∫
BR

|Xu|pw(x) dx

)1/p

, (1.3)

where 1 < p < t < ∞, C > 0 is a constant, and (w, v) is a p-admissible pair in
�. Herein, we prove inequality (1.2) by using different techniques which rely upon
a combination of an estimate for fractional integral of first order with other some
properties of A2(G) and Gτ (G) classes. Moreover, in contrast with the result in [12,
Corollary 3.4], we give the explicit value of constant C in our inequality (1.2).

Our paper is organized as follows. In Sect. 2 we give some preliminary results.
Actually, in Sect. 2.1 we recall definition and basic properties of Hörmander vector
fields, including Carnot-Carathèodory spaces; in Sect. 2.2 we discuss the theory of
Muckenhoupt’s and Gehring’s weights. In Sect. 3 we present the machinery we need
to work with the inequality we are interested in. Finally, we prove our main theorem.
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2 Preliminary results

2.1 Carnot Carathéodory spaces

Let � be an open (Euclidean) bounded and connected subset in R
n , with n ≥ 2. Let

X = {X1, . . . , Xm} be a system of C∞ vector fields on R
n .

We denote by Lie [X1, . . . , Xm] the Lie algebra generated by X1, . . . , Xm and by
their commutators of any order. We say that a field Z belongs to Lie [X1, . . . , Xm] if
and only if Z is a finite linear combination of terms of this type

[Xi1[Xi2 , . . . , [Xik−1 , Xik ]]]

for k ∈ N, 1 ≤ ih ≤ m, 1 ≤ h ≤ k.
We define, for any fixed x ∈ R

n , the Lie rank as

rank Lie [X1, . . . , Xm] = dim V (x),

where V (x) = {Z(x) : Z ∈ Lie [X1, . . . , Xm]} is a subspace of Rn . Henceforth, we
assume that X satisfies the following Hörmander’s finite rank condition in �

rank Lie [X1, . . . , Xm] = n, (2.1)

namely there exist a neighborhood �0 of � and m ∈ N such that the family of
commutators of the vector fields in X up to length m span Rn at every point of �0.

Let CX be the family of absolutely continuous curves γ : [a, b] → R
n such that

there exist measurable functions c j : [a, b] → R, with j = 1, . . . , m, fulfilling

m∑
j=1

c j (t)
2 ≤ 1 and γ ′(t) =

m∑
j=1

c j (t)X j (γ (t)) for a.e. t ∈ [a, b].

We define Carnot-Carathéodory distance d as

d(x, y) = inf{T > 0 : ∃ γ ∈ CX , γ (0) = x, γ (T ) = y} for x, y ∈ �. (2.2)

Note that, owing to Hörmander’s finite rank condition (2.1), d is a metric. This fact is
not true in general. The Carnot-Carathéodory space G is the pair (�, d) associated
to a system of C∞ vector fields X = {X1, · · · , Xm} on Rn fulfilling (2.1).

For x ∈ R
n and R > 0, set B(x, R) = {y ∈ R

n : d(x, y) < R}. The basic
properties of these balls have been obtained by Nagel, Stein and Wainger in [25]. In
particular, in the following proposition, the authors prove that the metric d is locally
Hölder continuous with respect to the Euclidean metric.

Proposition 2.1 ([25, Proposition 1.1]) Let X1, · · · Xm be as above. Then, for any
compact set E ⊂⊂ �, there are positive constants c1, c2 and λ ∈ (0, 1] such that

c1|x − y| ≤ d(x, y) ≤ c2|x − y|λ
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A two-weight Sobolev inequality for Carnot-Carathéodory spaces 497

for every x, y ∈ E.

Thanks to Proposition 2.1, the topology of Carnot-Carathéodory induced by d on�

coincides with the Euclidean ones. In the sequel, all the distances will be understood
in the sense of the Carnot-Carathéodory metric d. In particular, all the balls will be
defined with respect to d.

We denote by | · | the Lebesgue measure in (Rn, d) and, by−∫B f (x) dx , the average
of a function f on the ball B, i.e.

−
∫

B
f (x) dx = 1

|B|
∫

B
f (x) dx .

Note that the Lebesgue measure locally satisfies the following doubling condition
(see e.g. [25]).

Proposition 2.2 For any compact set E ⊂⊂ �, if x0 ∈ E, there exist a constant
Cd ≥ 1, called doubling constant, and R0 > 0 such that

|B(x0, 2R)| ≤ Cd |B(x0, R)|

for 0 < R < R0.

Let Y1, . . . , Yl be the collection of the X j ’s and of those commutators which are
needed to generate R

n . To each Yi it is associated a formal “degree” deg(Yi ) ≥ 1,
namely the corresponding order of the commutator. Set I = (i1, . . . , in), with 1 ≤
i j ≤ l, an n-tuple of integers. We define (see also [25]) the degree of I as

d̃(I ) =
n∑

j=1

deg(Yi j ).

For a given compact set E ⊂ R
n , we define Q by

Q = sup{d̃(I ) : |aI (x)| �= 0, x ∈ E},

the local homogeneous dimension of E with respect to system X , where aI (x) =
det(Yi1 , . . . , Yin ).

We define by
Q(x) = inf{d̃(I ) : |aI (x)| �= 0}

the homogeneous dimension at x ∈ R
n with respect to X . It is obvious that 3 ≤ n ≤

Q(x) ≤ Q.
Just to give an idea, we consider in R3 the system (see [13])

X = {X1, X2, X3} =
{ ∂

∂x1
,

∂

∂x2
, x1

∂

∂x3

}
.
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It is easy to see that l = 4 and

{Y1, Y2, Y3, Y4} = {X1, X2, X3, [X1, X3]}.

Moreover, Q(x) = 3 for all x �= 0, whereas for any compact set E containing the
origin, Q(0) = Q = 4.

Let Y be a metric space and μ a Borel measure in Y . Assume μ finite on bounded
sets and satisfying the doubling condition on every open, bounded subset � in Y . We
say that Q is a homogeneous dimension relative to�, if there exists a positive constant
C such that

μ(B)

μ(B0)
≥ C

(
R

R0

)Q

for any ball B0 having center in � and radius R0 < diam, and any ball B centered in
x0 ∈ B0 and having radius R ≤ R0.

It is well known that the doubling condition implies the existence of the homoge-
neous dimension Q. However, Q is not unique and it may change with �. Obviously,
any Q′ ≥ Q it is also a homogeneous dimension.

For a bounded open set� containing a family of vector fields satisfying theHörman-
der’s finite rank condition, the homogeneous dimension of the Carnot-Carathéodory
space G, defined with the Lebesgue measure, is given by Q = log2 Cd , where Cd is
the doubling constant.

2.2 Some properties of Ap and Gq classes

In this section, we recall a few properties of Muckenhoupt’s and Gehring’s classes
(see [22,24,27,28]).

We recall that a weight is a positive function in L1
loc(R

n). We say that a weight w

is doubling in � if ∫
2B

w(x) dx ≤ C
∫

B
w(x) dx,

where the constant C is independent by the ball B ⊂ �.
We say that w is locally doubling in � if for each compact set V ⊂ � and R̄ > 0

there exists CV ,R̄ such that

∫
2B

w(x) dx ≤ CV ,R̄

∫
B

w(x) dx,

where the ball B has center in V and radius R < R̄ and 2B is the ball concentric with
B and having radius 2-times that of B.

We say that a weight w belongs to the class Ap(G) (briefly, w ∈ Ap(G)) for some
p ∈ (1,+∞) if

[w]Ap = sup
B

(
−
∫

B
w(x) dx

)(
−
∫

B
w(x)1−p′

dx

)p−1

(2.3)
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A two-weight Sobolev inequality for Carnot-Carathéodory spaces 499

is finite, where the supremum is taken over all balls B ⊂ �. Here, p′ denotes the
Hölder conjugate of p. The quantity [w]Ap is called the Ap constant of w.

When p = 1, we say that w ∈ A1(G) if there exists a constant c ≥ 1 such that, for
every ball B ⊂ �, ∫

B
w(x) dx ≤ c ess inf

B
w.

If a weight belongs to a class Ap, it is called a Muckenhoupt weight.
A weight w is said to belong to the class Gq(G) (briefly, w ∈ Gq(G)) for some

q ∈ (1,+∞) if

[w]Gq = sup
B

(
−
∫

B
w(x)q dx

) 1
q

−
∫

B
w(x) dx

is finite. The quantity [w]Gq is called the Gq constant of w.
If a weight belongs to a class Gq , it is called a Gehring weight.
Here, we recall some properties of Ap classes with respect to dyadic cubes which

we will be used to prove Theorem 1.1.
We use a grid Dh of dyadic cubes Q, which are “almost balls”, where h is a large

negative integer which indexes the edgelengths l(Q) of the smallest cubes Q ∈ Dh .
In other words, the smallest edgelengths are λh for an appropriate geometric constant
λ > 1 and each cube in the grid has edgelength λk for some k ≥ h.

In particular, we will make use of a grid of dyadic cubes in the ball BR in the same
spirit of [29], where it is proved that there exists a constant λ > 1 such that, for every
h ∈ Z, there are points xk

j ∈ BR and a family of cubes Dh = {Qk
j } for j ∈ N and

k = h, h + 1, . . . such that

i) B(xk
j , λ

k) ⊂ Qk
j ⊂ B(xk

j , λ
k+1).

ii) For each k = h, h + 1, . . . , the family {Qk
j } is pairwise disjoint in j and BR =⋃

j Qk
j .

iii) If h ≤ k < l, then eitherQk
j ∩ Ql

j = ∅ or Qk
j ⊂ Ql

j .

We call the familyD = ⋃
h∈ZDh a dyadic cube decomposition of BR and we refer

to its sets as dyadic cubes which will be denoted by Q. We observe explicitly that
being D a decomposition of BR , then any dyadic cubeQ ∈ D is contained in the ball
BR .

By [29], making use of (2.3), one can deduce the following lemma.

Lemma 2.3 Let w ∈ A2(G) and let Q and Q0 dyadic cubes in R
n such that Q ⊂ Q0.

If β > 1, then

∑
Q⊂Q0

(∫
Q

w dx

)β

≤ (
c(Q, n)[w]A2

)β−1
(∫

Q0

w dx

)β

. (2.4)

Another important property of Ap(G) classes is given by the following proposition
(see [20], [30, Chapter 5, p. 195]).
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Proposition 2.4 If w ∈ Ap(G), then, for any nonnegative f ,

(
1

|Q|
∫
Q

f (x) dx

)p

≤ [w]Ap

1∫
Q w(x) dx

∫
Q

| f (x)|pw(x) dx ∀Q ⊂ G.

(2.5)

2.3 Some preliminary estimates

In order to prove our main theorem, let us prove some preliminary results.
The first lemma yields an estimate of the fractional integral of order 1 (see e.g. [5]).

In general, the fractional integral of order α ∈ (0, Q) of a locally integrable function
g in Rn is defined as

Iαg(x) =
∫
Rn

g(y)

d(x, y)Q−α
dy for x ∈ R

n . (2.6)

Lemma 2.5 Let g ∈ L1
loc(G) and assume that g ≥ 0. Then

I1g(x) ≤ c0
∑
Q∈D

(
|Q| 1

Q −1
∫
3Q

g(y) dy

)
χQ(x) ∀x ∈ �, (2.7)

where c0 is an absolute constant.

Proof Thanks to a dyadic cube decomposition, we discretize the operator I1

I1g(x) =
∑
k∈Z

(∫
2k−1<d(x,y)≤2k

g(y)

d(x, y)Q−1 dy

)

≤ c0
∑
k∈Z

∑
Q∈D

l(Q)=2k

[(
1

l(Q)Q−1

∫
d(x,y)≤l(Q)

g(y)dy

)
χQ(x)

]

≤ c0
∑
Q∈D

[(
|Q| 1−Q

Q

∫
3Q

g(y)dy

)
χQ(x)

]
,

where the last inequality follows by |Q| = l(Q)Q and, moreover, by B(x, l(Q)) ⊂ 3Q
if x ∈ Q. Hence, inequality (2.7) is proved. ��

Let us consider a Dirichlet problem in this form⎧⎨
⎩


Gϕ = f (x) in BR

ϕ = 0 on ∂ BR,

(2.8)

where 
G denotes the canonical sub-Laplacian operator defined as 
G = ∑m
j=1 X2

j ,
with {X1, ..., Xm} the family of smooth vector fields onRn satisfying the Hörmander’s
finite rank condition.
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Let Fα(BR) be the anisotropic Hölder space, with α ∈ (0, 1), defined by

Fα(BR) =
{

f : BR → R : sup
x,y∈BR

x �=y

f (x) − f (y)

d(x, y)α
< ∞

}
, (2.9)

where d is the Carnot-Carathéodory distance given by (2.2).
In [21, Theorem 3.2], the authors proved that, if f ∈ Fα(BR), then there exists a

unique solution ϕ ∈ C2(BR) ∩ C1(BR) to problem (2.8), represented by the formula

ϕ(x) =
∫

BR


G ϕ �x (y) dy. (2.10)

Here, �x (y) is the fundamental solution of the sub-Laplacian. Thanks to [21, The-
orem 2.2], there exists a positive constant c such that

�x (y) = c d(x, y)2−Q . (2.11)

Consequently, combining (2.10) and (2.11) yields

ϕ(x) = c
∫

BR

f (y)

d(x, y)Q−2 dy. (2.12)

The next lemma gives an estimate of the gradient of the solution to problem (2.8)
through the fractional integral of order 1.

Lemma 2.6 Let f ∈ Fα(BR) and let ϕ be the solution to problem (2.8). Then, there
exists a positive constant c such that

|Xϕ(x)| ≤ c I1 f (x), (2.13)

where I1( f ) denotes the fractional integral of order 1 of f .

Proof Owing to (2.12), it follows that

X jϕ(x) = c
∫

BR

f (y)

d(x, y)Q−1 X j (d(x, y))dy. (2.14)

Thus,

|Xϕ(x)| =
( n∑

j=1

|X jϕ(x)|2
) 1

2

=
( n∑

j=1

∣∣∣c ∫
BR

f (y)

d(x, y)Q−1 X j (d(x, y))dy
∣∣∣2) 1

2
. (2.15)
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Since
∣∣∣X j (d(x, y))

∣∣∣ = 1 (see [23]), by (2.15) and (2.6) one can deduce that

|Xϕ(x)| ≤
⎛
⎝ n∑

j=1

∣∣∣c ∫
BR

f (y)

d(x, y)Q−1 dy
∣∣∣2
⎞
⎠

1
2

≤ n c
∫

BR

f (y)

d(x, y)Q−1 dy = c I1 f (x), (2.16)

where the second inequality is due to the fact that a2 + b2 ≤ (a + b)2. ��

3 Proof of main result

The following preliminary lemma will be use in the proof of Theorem 1.1.

Lemma 3.1 If K ∈ A2(G) and u ∈ C10(BR), then

S1 =
⎡
⎣∑
Q∈D

(∫
Q

K (x) dx

) q′
t ′
(

1∫
Q K (x) dx

∫
3Q

|u|t−1K (x) dx

)q ′⎤
⎦

1
q′

≤ C

(∫
BR

|u|t K (x) dx

) 1
t ′
, (3.1)

where 2 < q < t and C = c(Q, n, t, q)[K ]
1
t ′ − 1

q′
A2

.

Proof For each h ∈ Z, we set

Ch =
{
Q dyadic cube : 2h <

1∫
Q K (x) dx

∫
Q

|u|t−1K (x) dx ≤ 2h+1

}
. (3.2)

Note that, if Q is any dyadic cube such that |u|t−1K (x) is not identically zero on Q,
then Q belongs to only one collection Ch .

For each h ∈ Z, let us build the collection {Qh
j } j of pairwise disjoint maximal

dyadic cubes (maximal with respect to inclusion) in Ch . If Q ∈ Ch , then there exists
j ∈ N such that Q ⊂ Qh

j . Note also that for each fixed h, the cubes Qh
j are disjoint

with respect to j . Nevertheless, they may not be disjoint for different values of h.
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By (3.2),

S1 ≤
⎛
⎝∑

h∈Z
2(h+1)q ′ ∑

Q∈Ch

(∫
Q

K (x) dx

) q′
t ′
⎞
⎠

1
q′

≤
⎛
⎜⎝∑

h∈Z
2(h+1)q ′ ∑

j∈N

∑
Q⊂Qh

j

(∫
Q

K (x) dx

) q′
t ′
⎞
⎟⎠

1
q′

. (3.3)

By Lemma 2.3, since
q ′

t ′
> 1, we have

∑
Q⊂Qh

j

(∫
Q

K (x) dx

) q′
t ′ ≤

(
c(Q, n)[K ]A2

) q′
t ′ −1

(∫
Qh

j

K (x) dx

) q′
t ′

. (3.4)

By (3.3) and (3.4), we deduce

S1 ≤
⎛
⎜⎝(c(Q, n)[K ]A2

) q′
t ′ −1∑

h∈Z
2(h+1)q ′ ∑

j∈N

(∫
Qh

j

K (x) dx

) q′
t ′
⎞
⎟⎠

1
q′

. (3.5)

Since Qh
j ∈ Ch , by (3.2)

1∫
Qh

j
K (x) dx

∫
Qh

j

|u|t−1K (x) dx > 2h .

Thus,
1∫

Qh
j

K (x) dx

∫
Qh

j ∩{x∈BR :|u|>2h−10}
|u|t−1K (x) dx ≥ C1 2

h, (3.6)

where C1 = C1(Q, n) is a constant. Consequently,

∫
Qh

j

K (x) dx ≤ C1 2
−h
∫
Qh

j ∩{x∈BR :|u|>2h−10}
|u|t−1K (x) dx . (3.7)

Owing to (3.5) and (3.7),

S1 ≤ C2

⎛
⎜⎝∑

h∈Z
2(h+1)q ′ ∑

j∈N

(
2−h

∫
Qh

j ∩{x∈BR : |u|>2h−10}
|u|t−1K (x) dx

) q′
t ′
⎞
⎟⎠

1
q′

,

(3.8)
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where C2 = C1(Q, n)
(
c(Q, n)[K ]A2

) 1
t ′ − 1

q′ .
By (3.8), we have

S1 ≤ C2

⎛
⎝∑

h∈Z
2(h+1)− h

t ′
∑
j∈N

∫
Qh

j ∩{x∈BR : |u|>2h−10}
|u|t−1K (x) dx

⎞
⎠

1
t ′

= 2
1
t ′ C2

⎛
⎝∑

h∈Z
2

h
t
∑
j∈N

∫
Qh

j ∩{x∈BR : |u|>2h−10}
|u|t−1K (x) dx

⎞
⎠

1
t ′

≤ 2
1
t ′ C2

(∑
h∈Z

2h
∫

{x∈BR : |u|>2h−10}
|u|t−1K (x) dx

) 1
t ′

= 2
1
t ′ C2

⎛
⎝∫

BR

|u|t−1K (x)
∑

{h∈Z: 2h<210|u|}
2h dx

⎞
⎠

1
t ′

, (3.9)

where the first inequality is a consequence of the fact that
∑

h a
q′
t ′

h ≤ [∑
h ah

] q′
t ′ , the

third one holds because, fixed h ∈ Z, Qh
j are disjoint in j , the fourth one is due to

Fubini’s type Theorem. To conclude the proof, we have to evaluate the quantity

∑
{h∈Z: 2h<210|u|}

2h . (3.10)

Set H = log2 (210|u|). Thus, (3.10) yields

H∑
h=−∞

2h =
+∞∑

h=−H

(
1

2

)h

=
+∞∑

h=−H

(
1

2

)h+H−H

=
(
1

2

)−H ∞∑
h=−H

(
1

2

)h+H

=
(
1

2

)−H +∞∑
m=0

(
1

2

)m

=
(
1

2

)−H

2 = 2log2 (210|u|) 2 = 211|u|. (3.11)

Then, by (3.9) and (3.11), we obtain

S1 ≤ C3

(∫
BR

|u|t K (x) dx

) 1
t ′

,

with C3 = 2
1
t ′ +11C1(Q, n)

(
c(Q, n)[K ]A2

) 1
t ′ − 1

q′ and inequality (3.1) is proved. ��
Now we are in position to prove our main result.
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Proof of Theorem 1.1. ByTheorem3.2 of [21], there exists a solutionϕ to the following
Dirichlet problem for sub-Laplacian

⎧⎨
⎩


Gϕ = |u|t−1K (x) in BR

ϕ = 0 on ∂ BR,

with u ∈ C10(BR). By Lemma 2.6, we get

|Xϕ(x)| ≤ c I1(|u|t−1K (x)) ∀x ∈ BR, (3.12)

where c is a positive constant.
Thanks to Lemma 2.5, it follows that

I1(|u|t−1K )(x) ≤ c0
∑
Q∈D

(
|Q| 1n −1

∫
3Q

|u(y)|t−1K (y) dy

)
χQ(x) ∀x ∈ BR,

(3.13)
where c0 is an absolute constant.

Combining (3.12) and (3.13) yields

∫
BR

|u(x)|t K (x) dx

=
∫

BR

|u(x)||u(x)|t−1K (x) dx =
∫

BR

|u(x)|
Gϕ dx

≤
∫

BR

|Xu||Xϕ| dx ≤ c
∫

BR

|Xu|I1(|u|t−1K )(x) dx

≤ C6

∫
BR

|Xu(x)|
∑
Q∈D

(
|Q| 1n −1

∫
3Q

|u(y)|t−1K (y) dy

)
χQ(x) dx

= C6

∫
BR

∑
Q∈D

|Q| 1n −1 |Xu(x)| χQ(x)

(∫
3Q

|u(y)|t−1K (y) dy

)
dx

= C6

∑
Q∈D

|Q| 1n −1
∫

BR∩Q
|Xu(x)| dx

(∫
3Q

|u(y)|t−1K (y) dy

)

= C6

∑
Q∈D

|Q| 1n
(

1

|Q|
∫
Q

|Xu| dx

)(∫
3Q

|u(y)|t−1K (y) dy

)
, (3.14)

where C6 = c c0. Note that the last inequality is the consequence of the fact that
BR ∩ Q = Q.

By (2.5),

1

|Q|
∫
Q

|Xu| dx ≤
[

K −1
] 1
2

A2

(
1∫

Q
1

K (x)
dx

∫
Q

|Xu|2
K (x)

dx

) 1
2

. (3.15)
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Coupling inequalities (3.14) and (3.15) tells us that

∫
BR

|u|t K (x) dx N

≤ C6

[
K −1

] 1
2

A2

∑
Q∈D

|Q| 1n
(

1∫
Q

1
K (x)

dx

∫
Q

|Xu|2
K (x)

dx

) 1
2 (∫

3Q
|u|t−1K (y) dy

)
.

(3.16)

By (3.16), the following chain of inequality holds

∫
BR

|u|t K (x) dx

≤ C7|BR |1/n

(∫
BR

K (x) dx
)1/t

(∫
BR

1
K (x)

dx
)1/2 ∑

Q∈D

(∫
Q

K (x) dx

)−1/t (∫
Q

1

K (x)
dx

)1/2

×
(

1∫
Q

1
K (x)

dx

∫
Q

|Xu|2
K (x)

dx

)1/2 (∫
3Q

|u|t−1K (x) dx

)

= C7|BR |1/n

(∫
BR

K (x) dx
)1/t

(∫
BR

1
K (x)

dx
)1/2 ∑

Q∈D

(∫
Q

1

K (x)
dx

)1/2

(
1∫

Q
1

K (x)
dx

∫
Q

|Xu|2
K (x)

dx

)1/2

×
(∫

Q
K (x) dx

)1/t ′−1 ∫
3Q

|u|t−1K (x) dx

≤ C7|BR |1/n

(∫
BR

K (x) dx
)1/t

(∫
BR

1
K (x)

dx
)1/2

⎡
⎣∑
Q∈D

(∫
Q

1

K (x)
dx

)q/2

(
1∫

Q
1

K (x)
dx

∫
Q

|Xu|2
K (x)

dx

)q/2
⎤
⎦
1/q

×
⎡
⎣∑
Q∈D

(∫
Q

K (x) dx

)q ′/t ′ ( 1∫
Q K (x) dx

∫
3Q

|u|t−1K (x) dx

)q ′⎤
⎦
1/q ′

= C7|BR |1/n

(∫
BR

K (x) dx
)1/t

(∫
BR

1
K (x)

dx
)1/2

⎡
⎣∑
Q∈D

(∫
Q

|Xu|2
K (x)

dx

)q/2
⎤
⎦
1/q

[ ∑
Q∈D

(∫
Q

K (x) dx

)q ′/t ′ ( 1∫
Q K (x) dx

∫
3Q

|u|t−1K (x) dx

)q ′ ]1/q ′
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≤ C7|BR |1/n

(∫
BR

K (x) dx
)1/t

(∫
BR

1
K (x)

dx
)1/2

(∫
BR

|Xu|2
K (x)

dx

)1/2[ ∑
Q∈D

(∫
Q

K (x) dx

)q ′/t ′

(
1∫

Q K (x) dx

∫
3Q

|u|t−1K (x) dx

)q ′ ]1/q ′

= C7|BR |1/n

(∫
BR

K (x) dx
)1/t

(∫
BR

1
K (x)

dx
)1/2

(∫
BR

|Xu|2
K (x)

dx

)1/2

S1, (3.17)

where the first inequality follows byChanillo-Wheeden condition (1.1), the second one
holds since 1/t = 1− 1/t ′, the third one is due to Hölder’s inequality, for 2 < q < t ,
and the fifty one comes from the fact thatD is a decomposition of BR . Here, constant

C7 = C6 C
[
K −1

] 1
2
A2
. The quantity S1 is introduced in Lemma 3.1 above.

Combining (3.17) and (3.1) shows that

(∫
BR

|u|t K (x) dx

)1/t

≤ C8|BR |1/n

(∫
BR

K (x) dx

)1/t

(∫
BR

1

K (x)
dx

)1/2

(∫
BR

|Xu|2
K (x)

dx

)1/2

,

(3.18)

where C8 = c(Q, n, t, q) C [K −1]
1
2
A2

[K ]
1
t ′ − 1

q′
A2

. Then, inequality (1.2) follows. ��
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