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Abstract
The Cauchy problem for a class of hyperbolic operators with triple characteristics is
analyzed. Some a priori estimates in Sobolev spaces with negative indexes are proved.
Subsequently, an existence result for the Cauchy problem is obtained.
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1 Introduction

In the past, many authors studied widely hyperbolic operators with double character-
istics, both in the case when there is no transition between different types on the set
where the principal symbol vanishes of order 2 (see for instance [5,8] for a general
survey) and when there is transition (see [1–4]). The operators are called effectively
hyperbolic if the propagation cone C is transversal to the manifold of multiple points
(see [8]). Moreover, if this occurs and lower order terms satisfy a generic Ivrii-Petkov
vanishing condition, we have well posedness in C∞ (see [7]).

The aim of the paper is to analyze the following class of operators with triple
characteristics

P(x0, D) = D3
x0 − (D2

x1 + x21D
2
x2)Dx0 − bx31D

3
x2 , in Ω =]0,+∞[×R

2,

where Dx j = 1
i ∂x j , j = 0, 1, 2, under hyperbolicity assumptions, namely |b| ≤ 2

3 .
Such a class of operators has been considered in [6], for example operators whose
propagation cone is not transversal to the triple characteristic manifold. The authors
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prove a well posedness result in the Gevrey category for a simple hyperbolic operator
with triple characteristics and whose propagation cone is not transversal to the triple
manifold. Furthermore they estimate the precise Gevrey threshold, by exhibiting a
special class of solutions, through which we can violate weak necessary solvability
conditions. More precisely, let x = (x0, x ′) where x ′ = (x1, x2), let ξ = (ξ0, ξ

′),
where ξ ′ = (ξ1, ξ2). In [6], the authors study the well posedness of the following
Cauchy problem

{
Pu = 0, in Ω =]0,+∞[×R

2,

Dx j u(0, x ′) = φ j (x ′), j = 0, 1, 2,

with φ j (x ′) ∈ γ (s)(R2), j = 0, 1, 2, where γ (s)(R2) is the Gevrey s class. They
obtained that the Cauchy problem for P is well posed in the Gevrey 2 class assuming

that b2 < 4
27 . Moreover, if s > 2, it is possible to choose b ∈

]
0, 2

3
√
3

[
such that the

Cauchy problem for P is not locally solvable at the origin in the Gevrey s class.
In this paper, instead, we investigate on the well posedness of the Cauchy problem

{
Pu = f , in Ω,

Dx j u(0, x ′) = 0, j = 0, 1, 2,
(1)

with f ∈ Hr (Ω), in the Sobolev spaces, obtaining an existence result for solutions.
Let us set

Q = −∂3x0 +
(
∂2x1 + x21∂

2
x2

)
∂x0 + bx31∂

3
x2 , in Ω.

It results

Pu = i Qu, in Ω.

As a consequence, problem (1) becomes

{
Qu = g, in Ω,

∂x j u(0, x ′) = 0, j = 0, 1, 2,
(2)

where we set g = i f , in Ω , with g real function. The main result of the paper is the
following.

Theorem 1 Let f ∈ Hr
loc(Ω), with r ≥ 5. For every h, T > 0, the Cauchy problem

(1) admits a solution u ∈ Hr−2(Ωh,T ), where Ωh,T = [0, h[×] − T , T [2.
The rest of the paper is organized as follows. Section 2 deals with some preliminary

notations and definitions. In Sect. 3 some a priori estimates are established. Section 4
is devoted to obtain a priori estimates in Sobolev spaces with negative indexes. Finally,
the existence result for solutions to the Cauchy problem are proved in Sect. 5.
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2 Notations and preliminaries

Let α = (α0, α1, α2) ∈ N
3
0. Let ∂α be the derivative of order |α|, let ∂hx j be the

derivative of order h with respect to x j and let ∂hx j ,xp be the derivative of order h with
respect to x j and xp.

We indicate the L2-scalar product, the L2-norm and the Hr -norm (r ∈ N0) by (·, ·),
‖ · ‖ and ‖ · ‖Hr respectively.

Let Ω be an open subset of R3. Let C∞
0 (Ω) be the space of the restrictions to Ω

of functions belonging to C∞
0 (R3). For each K ⊆ Ω compact set, let C∞

0 (K ) be the
set of functions ϕ ∈ C∞

0 (Ω) having support contained in K . Let S(R3) be the space
of rapidly decreasing functions. In particular, let S(Ω) be the space of the restrictions
to Ω of functions belonging to S(R3).

Let Ω = [0,+∞[×]a1, b1[×] − ∞,+∞[ and let s ∈ R, let us denote by ‖ ·
‖H0,0,s (Ω) the norm given by

‖u‖2
H0,0,s (Ω)

=
∫ +∞

0
dx0

∫ b1

a1
dx1∫ +∞

−∞
1

2π
(1 + |ξ2|2)s |̂u(x0, x1, ξ2)|2dξ2, ∀u ∈ C∞

0 (Ω),

where the Fourier transform is performed only with respect to the variable x2. More-
over, let us denote by As the pseudodifferential operator given by

Asu(x) =
∫ +∞

−∞
1

2π
eix2·ξ2(1 + |ξ2|2) s

2 û(x0, x1, ξ2)dξ2, ∀u ∈ C∞
0 (Ω). (3)

Let us recall that As : C∞
0 (Ω) → C∞(Ω). For every ϕ(x2) ∈ C∞

0 (R), the operator

ϕAsu extends to a linear continuous operator from H0,0,r
comp.(Ω) to H0,0,r−s

loc (Ω), where
r , s ∈ R. In particular, in Ωk = [0, k[×]a1, b1[×] − ∞,+∞[, for k > 0, we denote
by H0,0,s(Ωk) the space of all u ∈ H0,0,s(Ω) such that supp u ⊆ Ωk . Moreover,
denoted by Ux2 the projection of supp u on the axis x2, if supp ϕ ⊆ R\Ux2 , then ϕAsu
is regularizing with respect to the variable x2, namely it results:

‖ϕAsu‖H0,0,r ≤ c‖u‖H0,0,r ′ , ∀r , r ′ ∈ R, u ∈ C∞(Ω).

The norms ‖u‖H0,0,s (Ω) and ‖Asu‖L2(Ω) are equivalent for any s ∈ R.
Let s ∈ R and p ≥ 0. Let H p,s(R3) be the space of distributions U into R

3 such
that

‖u‖2H p,s (R3)
= 1

2π

∑
|h|≤p

∫
R3

(1 + |ξ2|2)s |∂hx0,x1Û (x0, x1, ξ2)|2dx0dx1dξ2 < +∞.
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At last, let H p,s(Ω) be the space of the restrictions to Ω of elements of H p,s(R3)

endowed with the norm

‖u‖H p,s (Ω) = inf
U ∈ H p,s (R3)

U |Ω = u

‖U‖H p,s (R3).

3 A priori estimates

The following preliminary result holds (see [1], Lemma 3.1).

Lemma 1 Let u ∈ S(Ω) and let p, α0, α1, α2 ∈ N0. Then

‖x
p
2
0 ∂α0,α1,α2u‖ ≤ 2

p + 1
‖x

p+2
2

0 ∂α0+1,α1,α2u‖. (4)

Now, we establish a useful estimate.

Lemma 2 Let u ∈ C∞
0 ([0,+∞[×R

2) such that supp u ⊆ [0, h[×] − T , T [2. Let
ϕ ∈ C∞

0 (R) such that suppϕ ⊆ R\] − nT , nT [, with n ≥ 2. For every r ≤ 0, s ∈ R

and p ≥ s + r , it results

‖ϕAsu‖L2(Ω) ≤ cp,r ,s
[(n − 1)T ]p ‖u‖H0,0,r (Ω).

Proof In order to obtain the claim, we follow analogous techniques used in the proof
of Lemma 3.2 in [3]. For the reader’s convenience, we present the demonstration. We
have

(ϕAsu)(x) = 1

2π

∫ +∞

−∞
eix2ξ2ϕ(x2)(1 + |ξ2|2) s

2 û(x0, x1, ξ2)dξ2

= 1

2π

∫ ∫
R2

ei(x2−y2)ξ2ϕ(x2)(1 + |ξ2|2) s
2 u(x0, x1, y2)dy2dξ2

= im

2π

∫ ∫
R2

ei(x2−y2)ξ2 ϕ(x2)u(x0, x1, y2)

(x2 − y2)m
∂mξ2(1 + |ξ2|2) s

2 dy2dξ2

= imϕ(x2)

2π

∫ +∞

−∞
∂mξ2(1 + |ξ2|2) s

2 dξ2

∫ +∞

−∞
ei(x2−y2)ξ2

u(x0, x1, y2)
ψ

(
x2−y2
(n−1)T

)
(x2 − y2)m

dy2, (5)

where m ∈ N and ψ ∈ C∞(R) such that ψ(τ) = 1 if |τ | ≥ 1, ψ(τ) = 0 if |τ | ≤ 1
2 .
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By using (5), we get

(ϕAsu)(x) = imϕ(x2)

2π

∫ +∞

−∞
∂mξ2(1 + |ξ2|2) s

2 u(x0, x1, x2)

∗
(

ψ

(
x2

(n − 1)T

)
eix2ξ2

xm2

)
dξ2,

and also

Fx2(ϕAsu)(x0, x1, η2) = im ϕ̂(η2)

2π
∗

∫ +∞

−∞
∂mξ2(1 + |ξ2|2) s

2 û(x0, x1, η2)

·Fx2

(
ψ

(
x2

(n − 1)T

)
eix2ξ2

xm2

)
dξ2, (6)

where

Fx2

(
ψ

(
x2

(n − 1)T

)
eix2ξ2

xm2

)
=

∫ +∞

−∞
eix2(ξ2−η2)ψ

(
x2

(n − 1)T

)
1

xm2
dx2,

Easily, we deduce

(1 + (ξ2 − η2)
r )Fx2

(
ψ

(
x2

(n − 1)T

)
eix2ξ2

xm2

)

=
∫ +∞

−∞
eix2(ξ2−η2)ψ

(
x2

(n − 1)T

)
1

xm2
dx2

+ir
r∑
j=0

(
r
j

)∫ +∞

−∞
eix2(ξ2−η2)∂

j
x2ψ

(
x2

(n − 1)T

)
∂
r− j
x2

1

xm2
dx2,

and, then,

∣∣∣∣Fx2

(
ψ

(
x2

(n − 1)T

)
eix2ξ2

xm2

)∣∣∣∣ ≤ cr ,m

(1 + (ξ2 − η2)2)
r
2

(
1

(n − 1)T

)m−2

. (7)

Making use of (6) and (7), we obtain

‖ϕAsu‖ = ‖Fx2(ϕAsu)‖
≤ 1

2π
‖ϕ̂‖L1(R)

∥∥∥∥
∫ +∞

−∞
∂mξ2(1 + |ξ2|2) s

2 û(x0, x1, η2)

Fx2

(
ψ

(
x2

(n − 1)T

)
eix2ξ2

xm2

)
dξ2

∥∥∥∥
L2(Ω)

≤ c
∫ +∞

−∞

∥∥∥∂mξ2(1 + |ξ2|2) s
2 û(x0, x1, η2)
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Fx2

(
ψ

(
x2

(n − 1)T

)
eix2ξ2

xm2

)∥∥∥∥
L2(Ω)

dξ2

≤ cr ,m
[(n − 1)T ]m−2

∫ +∞

−∞

∥∥∥∂mξ2(1 + |ξ2|2) s
2 û(x0, x1, η2)

∥∥∥
L2(Ω)

(1 + (ξ2 − η2)2)
r
2

dξ2.

From the previous inequality and the Peetre inequality (see [9], pag. 17), it follows

‖ϕAsu‖L2(Ω) ≤ cr ,m,s

[(n − 1)T ]m−2

∫ +∞

−∞

∥∥∥(1 + |ξ2|2) s
2−m+1

2 û(x0, x1, η2)
∥∥∥
L2(Ω)

(1 + (ξ2 − η2)2)
r
2

dξ2. (8)

If m ≥ s + r + 2, setting p = m − 2 in (8), it results

‖ϕAsu‖L2(Ω) ≤ cp,r ,s
[(n − 1)T ]p ‖u‖H0,0,r (Ω),

where cp,r ,s is independent of n and T . 
�

Taking into account Lemma 2, we deduce

Lemma 3 Let ϕ ∈ C∞
0 (R) such that ϕ(τ) = 0, for |τ | ≤ 1. For every ε > 0, for every

r ≤ 0 and s ∈ R there exists n > 1 such that

∥∥∥∥ϕ

(
x2

(n − 1)T

)
Asu

∥∥∥∥
L2(Ω)

≤ ε‖u‖H0,0,r (Ω).

In the following, we establish a priori estimates in L2(ΩT ), where Ωh,T =
[0, h[×] − T , T [2, for functions belonging to C∞

0 (Ωh,T ).

Theorem 2 For every h, T > 0, there exists a positive constant c such that

‖∂x0u‖ + ‖u‖ ≤ c
(‖∂x1Qu‖ + ‖∂x2Qu‖) , ∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωh,T . (9)

Proof By means of a translation with respect to x2 in T , we consider the function

v(x0, x1, x2) = u(x0, x1, x2 − T ), in Ω ′
T =]0,+∞[×] − T , T [×]0, 2T [.

We extend the function v in even manner in ] − 2T , 2T [. It results

v(x0, x1,−x2) = v(x0, x1, x2), in Ω ′′
T =]0,+∞[×] − T , T [×] − 2T , 2T [.
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We consider the following Fourier development of the function v:

v(x0, x1, x2) =
+∞∑

n=−∞
cn(x0, x1)

einω0x2

2
√
T

=
+∞∑

n=−∞
vn(x0, x1, x2),

where ω0 = 2π
4T = π

2T and

cn(x0, x1) = 1

2
√
T

∫ 2T

−2T
v(x0, x1, x2)e

−inω0x2dx2.

We remark that the Fourier coefficients cn are real. We apply the operator Q to vn
obtaining

Qvn(x0, x1, x2) = einω0x2

2
√
T

[
− ∂3x0cn(x0, x1) + ∂2x1∂x0cn(x0, x1)

−n2ω2
0x

2
1∂x0cn(x0, x1) − in3ω3

0bx
3
1cn(x0, x1)

]
= Lncn(x0, x1)

einω0x2

2
√
T

,

where we set

Lncn(x0, x1) = −∂3x0cn(x0, x1) + ∂2x1∂x0cn(x0, x1) − n2ω2
0x

2
1∂x0cn(x0, x1)

−in3ω3
0bx

3
1cn(x0, x1).

It results

Qv(x0, x1, x2) =
+∞∑

n=−∞
Lncn(x0, x1)

einω0x2

2
√
T

.

We estimate the Fourier coefficients cn(x0, x1) by means of Lncn(x0, x1) in L2. To
this aim, let us consider the inner products

(Lncn, x0∂
2
x0cn) + (x0∂

2
x0cn, Lncn)

= −2(∂3x0cn, x0∂
2
x0cn) + 2(∂x0∂

2
x1cn, x0∂

2
x0cn) − 2n2ω2

0(x
2
1∂x0cn, x0∂

2
x0cn)

= 2‖∂2x0cn‖2 − 2(∂x1∂x0cn, x0∂
2
x0∂x1cn) + 2n2ω2

0‖x1∂x0cn‖2
= 2‖∂2x0cn‖2 + 2‖∂x1∂x0cn‖2 + 2n2ω2

0‖x1∂x0cn‖2. (10)
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From which we have

‖∂2x0cn‖2 + ‖∂x1∂x0cn‖2 + n2ω2
0‖x1∂x0cn‖2 ≤ c‖x0Lncn‖2. (11)

Let us evaluate the inner products

(Ln∂x1cn, x0∂
2
x0∂x1cn) + (x0∂

2
x0∂x1cn, Ln∂x1cn).

Proceeding as in (10), we obtain

‖∂2x0∂x1cn‖2 + ‖∂2x1∂x0cn‖2 + n2ω2
0‖x1∂x0∂x1cn‖2

= (Ln∂x1cn, x0∂
2
x0∂x1cn) + (x0∂

2
x0∂x1cn, Ln∂x1cn)

= (∂x1Lncn, x0∂
2
x0∂x1cn) + (x0∂

2
x0∂x1cn, ∂x1Lncn)

+4(x1n
2ω2

0∂x0cn, x0∂
2
x0∂x1cn).

Hence, we deduce

1

n2ω2
0

‖∂2x0∂x1cn‖2 + 1

n2ω2
0

‖∂2x1∂x0cn‖2 + ‖x1∂x0∂x1cn‖2

≤ 2

n2ω2
0

‖x0∂x1Lncn‖‖∂2x0∂x1cn‖ + 4‖x0x1∂x0cn‖‖∂2x0∂x1cn‖.

As a consequence, we have

1

n2ω2
0

‖∂2x0∂x1cn‖2 + 1

n2ω2
0

‖∂2x1∂x0cn‖2 + ‖x1∂x0∂x1cn‖2

≤ c

n2ω2
0

‖x0∂x1Lncn‖2 + cn2ω2
0‖x1∂x0cn‖2. (12)

Making use of (11) and (12), we get

‖∂2x0cn‖2 + ‖∂x1∂x0cn‖2 + n2ω2
0‖x1∂x0cn‖2

+ 1

n2ω2
0

‖∂2x0∂x1cn‖2 + 1

n2ω2
0

‖∂2x1∂x0cn‖2

+‖x1∂x0∂x1cn‖2 ≤ c‖x0Lncn‖2 + c

n2ω2
0

‖x0∂x1Lncn‖2

= c

n2ω2
0

‖x0∂x1Lncn‖2 + c

n2ω2
0

‖i x0nω0Lncn‖2. (13)

Let us consider v ∈ C∞
0 (]0,+∞[×] − T , T [×]0, 2T [) and we still denote by v its

even extension in ]0,+∞[×] − T , T [×] − 2T , 2T [. Let us develop v in Fourier’s
series with respect to x2:
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v(x0, x1, x2) =
+∞∑

n=−∞
cn(x0, x1)

einω0x2

2
√
T

,

from which it follows

Qv(x0, x1, x2) =
+∞∑

n=−∞
Lncn(x0, x1)

einω0x2

2
√
T

,

Hence, it results

x1∂x0∂x1v(x0, x1, x2) =
+∞∑

n=−∞
x1∂x0∂x1cn(x0, x1)

einω0x2

2
√
T

.

Applying the Parseval inequality, we have

‖x1∂x0∂x1v‖2 = ∥∥‖x1∂x0∂x1v‖2]−2T ,2T [
∥∥2]0,+∞[×]−T ,T [

=
∥∥∥∥∥

+∞∑
n=−∞

|x1∂x0∂x1cn|2
∥∥∥∥∥
2

]0,+∞[×]−T ,T [

≤
+∞∑

n=−∞
‖x1∂x0∂x1cn‖2. (14)

Taking into account (13) and (14), we obtain

‖x1∂x0∂x1v‖2 ≤
+∞∑

n=−∞
‖x1∂x0∂x1cn‖2

≤
+∞∑

n=−∞

[
c

n2ω2
0

‖x0∂x1Lncn‖2 + c

n2ω2
0

‖i x0nω0Lncn‖2
]

≤ c

ω2
0

+∞∑
n=−∞

1

n2

[
‖x0∂x1Lncn‖2 + ‖inx0ω0Lncn‖2

]
. (15)

We remark that

x0∂x1Qv(x0, x1, x2) =
+∞∑

n=−∞
x0∂x1Lncn(x0, x1)

einω0x2

2
√
T

.

For the Parseval inequality, it results

‖x0∂x1Qv‖2 = ∥∥‖x0∂x1Qv‖2]−2T ,2T [
∥∥2]0,+∞[×]−T ,T [

=
∥∥∥∥∥

+∞∑
n=−∞

|x0∂x1Lncn|2
∥∥∥∥∥
2

]0,+∞[×]−T ,T [
. (16)
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Moreover, we remark that

x0∂x2Qv(x0, x1, x2) =
+∞∑

n=−∞
inω0x0Lncn(x0, x1)

einω0x2

2
√
T

.

Applying, again, the Parseval inequality, we have

‖x0∂x2Qv‖2 = ∥∥‖x0∂x2Qv‖2]−2T ,2T [
∥∥2]0,+∞[×]−T ,T [

=
∥∥∥∥∥

+∞∑
n=−∞

|inω0x0Lncn|2
∥∥∥∥∥
2

]0,+∞[×]−T ,T [
. (17)

Making use of (15), (16) and (17), we obtain

‖x1∂x0∂x1v‖2 ≤ c
+∞∑

n=−∞

1

n2

[
‖x0∂x1Lncn‖2 + ‖inω0Lncn‖2

]

≤ c
[
‖x0∂x1Qv‖2 + ‖x0∂x2Qv‖2

]
(18)

On the other hand, it results

0 =
∫

Ω ′′
T

∂x1x1
(
∂x0v

)2
dx

=
∫

Ω ′′
T

(
∂x0v

)2
dx +

∫
Ω ′′

T

2x1∂x0v∂x0∂x1vdx .

From which it follows

‖∂x0v‖2 = −2
∫

Ω ′′
T

x1
(
∂x0v

) (
∂x0∂x1v

)
dx

≤ 2‖∂x0v‖‖x1∂x0∂x1v‖.

Hence, we have

‖∂x0v‖2 ≤ 4‖x1∂x0∂x1v‖2. (19)

From (18) and (19), we deduce

‖∂x0v‖2 ≤ c
(
‖x0∂x1Qv‖2 + ‖x0∂x2Qv‖2

)
.

By using Lemma 1, it results

‖∂x0v‖2 + ‖v‖2 ≤ c
(
‖x0∂x1Qv‖2 + ‖x0∂x2Qv‖2

)
. (20)
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Let us remark

x0∂x1Qv =
+∞∑

n=−∞
x0∂x1Lncn(x0, x1)

einω0x2

2
√
T

,

x0∂x2Qv =
+∞∑

n=−∞
inω0x0Lncn(x0, x1)

einω0x2

2
√
T

.

As a consequence, we have

‖x0∂x1Qv‖2]−2T ,2T [ =
+∞∑

n=−∞
|x0∂x1Lncn|2, (21)

‖x0∂x2Qv‖2]−2T ,2T [ =
+∞∑

n=−∞
|inω0x0Lncn|2. (22)

Furthermore, we obtain

(x0∂x1Qv)(x2) + (x0∂x1Qv)(−x2) =
+∞∑

n=−∞
2x0∂x1Lncn

cos(nω0x2)

2
√
T

, (23)

(x0∂x2Qv)(x2) + (x0∂x2Qv)(−x2) =
+∞∑

n=−∞
2inω0x0Lncn

cos(nω0x2)

2
√
T

. (24)

By using (21), (22), (23) and (24), we deduce

‖x0∂x1Qv‖2]−2T ,2T [ + ‖x0∂x2Qv‖2]−2T ,2T [

=
+∞∑

n=−∞
|x0∂x1Lncn|2 +

+∞∑
n=−∞

|inω0x0Lncn|2

= ‖x0(∂x1Qv)(x2) + x0(∂x1Qv)(−x2)‖2]−2T ,2T [
+‖x0(∂x2Qv)(x2) + x0(∂x2Qv)(−x2)‖2]−2T ,2T [

= 2‖x0(∂x1Qv)(x2) + x0(∂x1Qv)(−x2)‖2]0,2T [
+2‖x0(∂x2Qv)(x2) + x0(∂x2Qv)(−x2)‖2]0,2T [

≤ 2
(‖x0(∂x1Qv)(x2)‖2]0,2T [ + ‖x0(∂x1Qv)(−x2)‖2]0,2T [

+‖x0(∂x2Qv)(x2)‖2]0,2T [ + ‖x0(∂x2Qv)(−x2)‖2]0,2T [
)
. (25)

Now, we want to estimate directly the norms. Let us start from

x0
(
∂x1Qv

)
(x2) =

+∞∑
n=−∞

x0∂x1Lncn(x0, x1)
einω0x2

2
√
T

.
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It results

∥∥x0 (
∂x1Qv

)
(x2)

∥∥2]0,2T [

= 1

4T

+∞∑
n=−∞

+∞∑
h=−∞

x20∂x1Lncn(x0, x1)
(
∂x1Lhch(x0, x1)

)∗
∫ 2T

0
einω0x2e−ihω0x2dx2.

Let us compute the other norm remembering that

x0
(
∂x1Qv

)
(−x2) =

+∞∑
n=−∞

x0∂x1Lncn(x0, x1)
e−inω0x2

2
√
T

.

We have

∥∥x0 (
∂x1Qv

)
(−x2)

∥∥2]0,2T [

= 1

4T

+∞∑
n=−∞

+∞∑
h=−∞

x20∂x1Lncn(x0, x1)
(
∂x1Lhch(x0, x1)

)∗
∫ 2T

0
e−inω0x2eihω0x2dx2.

From which, it follows

∥∥x0 (
∂x1Qv

)
(x2)

∥∥2]0,2T [ = ∥∥x0 (
∂x1Qv

)
(−x2)

∥∥2]0,2T [ .

Moreover, making use of (25) and (20), we obtain

‖∂x0v‖2
Ω ′′

T
+ ‖v‖2

Ω ′′
T

≤ c
(
‖x0∂x1Qv‖2

Ω ′′
T

+ ‖x0∂x2Qv‖2
Ω ′′

T

)
≤ 2c

(
‖x0∂x1Qv‖2

Ω ′
T

+ ‖x0∂x2Qv‖2
Ω ′

T

)
.

Since v(x0, x1, x2) = u(x0, x1, x2 − T ), for every (x0, x1, x2) ∈ Ω ′
T , we have

‖∂x0u‖ΩT + ‖u‖ΩT ≤ c
(‖x0∂x1Qu‖ΩT + ‖x0∂x2Qu‖ΩT

)
, (26)

from which the claim follows. 
�
Let us remark that the positive constant c in (26) does not depend on T but only on

x1. As a consequence, the following result holds:

Corollary 1 For every h, T > 0, there exists a positive constant c such that

‖∂x0u‖ + ‖u‖ ≤ c
(‖∂x1Qu‖ + ‖∂x2Qu‖) , (27)

for every u ∈ C∞
0 (Ω) such that supp u ⊆ [0, T [×] − T , T [×] − nT , nT [, for every

n ∈ N.
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4 A priori estimate in Sobolev spaces

In the following, we establish a priori estimate in the Sobolev spaces.

Theorem 3 For every s > 0, it results

‖∂x0u‖H0,0,−s +‖u‖H0,0,−s ≤c
(‖Qu‖H0,1,−s + ‖Qu‖H0,0,−s+1

)
, ∀u ∈ C∞

0 (Ωh,T ),

(28)

where Ωh,T = [0, h[×] − T , T [2.
Proof Let ϕ ∈ C∞

0 (R) such that ϕ(x) = 1 in [−(n − 1)T , (n − 1)T ] and suppϕ ⊆
] − nT , nT [, with n > 1. For every u ∈ C∞

0 (Ωh,T ), we set vs = ϕAsu, where As is
the pseudodifferential operator defined as:

Asu = 1

2π

∫
R

eix2ξ2(1 + |ξ2|2)− s
2 û(x0, x1, ξ2)dξ2,

with s > 0. Applying (27) to vs , we have

‖∂x0vs‖ + ‖vs‖ ≤ c
(‖∂x1Qvs‖ + ‖∂x2Qvs‖

)
= c

(‖∂x1QϕAsu‖ + ‖∂x2QϕAsu‖)
≤ c

(‖ϕ∂x1QAsu‖ + ‖∂x1 [Q, ϕ]Asu‖)
+c

(‖∂x2ϕQAsu‖ + ‖∂x2 [Q, ϕ]Asu‖)
≤ c

(‖ϕ∂x1 AsQu‖ + ‖∂x1 [Q, ϕ]Asu‖)
+c

(‖ϕ∂x2 AsQu‖ + ‖[∂x2 , ϕ]QAsu‖ + ‖∂x2 [Q, ϕ]Asu‖)
= c

(
‖ϕAs∂x1Qu‖ + ‖ϕAs∂x2Qu‖ + ‖R1Qu‖

+‖R2u‖ + ‖R3∂x0u‖
)

+ c‖[Q, ϕ]As∂x1u‖, (29)

where R1, R2 and R3 are regularizing operators with respect to the variable x2 of type

Ri = ψ

(
x2

(n − 1)T

)
As, i = 1, 2, 3, (30)

with ψ ∈ C∞
0 (R) such that ψ = 0 in [−1, 1], as in Lemma 3, and having used

∂x1QAsu = As∂x1Qu and ∂x2QAsu = As∂x2Qu.
Making use of Lemmas 1, 3 and (29), we deduce

‖∂x0u‖H0,0,−s + ‖u‖H0,0,−s ≤ c
(‖Qu‖H0,1,−s + ‖Qu‖H0,0,−s+1 + ‖Qu‖H0,0,−s

)
+c

(‖R4∂x1u‖ + ‖R5∂x1∂x0u‖) , (31)

where R4 and R4 are regularizing operators with respect to the variable x2 of type
(30).
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Now, written the operator Q as:

Qu = L(∂x0u) + x21∂
2
x2∂x0u + bx31∂

3
x2u,

where L is the wave operator, namely L = ∂2x0 + ∂2x1 , it results

(L(∂x0u), ∂2x0u) = (Qu, ∂2x0u) − (x21∂
2
x2∂x0u, ∂2x0u) − (bx31∂

3
x2u, ∂2x0u).

Integrating by parts, we have easily:

‖∂2x0u‖ + ‖∂x1∂x0u‖ ≤ c
(
‖∂2x2∂x0u‖ + ‖∂3x2u‖ + ‖Qu‖

)
.

Making use of Lemma 1, it follows

‖∂x0u‖ + ‖∂x1u‖ + ‖∂2x0u‖ + ‖∂x1∂x0u‖ ≤ c
(
‖∂2x2∂x0u‖ + ‖∂3x2u‖ + ‖Qu‖

)
.

(32)

Taking into account (31), (32) and Lemma 3, we deduce

‖∂x0u‖H0,0,−s + ‖u‖H0,0,−s ≤ c
(‖Qu‖H0,1,−s + ‖Qu‖H0,0,−s+1 + ‖Qu‖H0,0,−s

)
+c

(‖∂x1u‖H0,0,−s−3 + ‖∂x1∂x0u‖H0,0,−s−3
)

≤ c
(‖Qu‖H0,1,−s + ‖Qu‖H0,0,−s+1

)
+c

(‖u‖H0,0,−s + ‖∂x0u‖H0,0,−s + ‖Qu‖H0,0,−s

)
.

From which we have

‖∂x0u‖H0,0,−s + ‖u‖H0,0,−s ≤ c
(‖Qu‖H0,1,−s + ‖Qu‖H0,0,−s+1

)
,

namely (28). 
�

5 Proof of Theorem 1

For every u ∈ C∞
0 (Ωh,T ), where Ωh,T = [0, h[×] − T , T [2, let ψ = t Qu = Qu

and let F(ψ) = ( f , u). It results

|F(ψ)| ≤ ‖ f ‖H0,0,s (Ωh,T )‖u‖H0,0,s (Ωh,T ).

Making use of (28), it follows

|F(ψ)| ≤ c‖ f ‖H0,0,s (Ωh,T )

(
‖ t Qu‖H0,1,−s (Ωh,T ) + ‖ t Qu‖H0,0,−s+1(Ωh,T )

)
≤ c′‖ψ‖H0,1,−s+1(Ωh,T ).
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Hence, the functional F can be extended in H0,1,−s+1(Ωh,T ) and, therefore, there
exists w ∈ H0,−1,s−1(Ωh,T ) such that

F(ψ) = (w,ψ) = (w, t Qu) = (g, u), ∀u ∈ C∞
0 (Ωh,T ).

Then, we have

Qw = g, in D′(Ωh,T ).

Written Qw = L(∂x0w) + x21∂
2
x2∂x0w + bx31∂

3
x2w, we obtain

L(∂x0w) = g − x21∂
2
x2∂x0w − bx31∂

3
x2w.

For s > 4, we deduce ∂x0w ∈ H0,0,s−1 and, hence, u ∈ H1,s−1. Repeating the same
procedure more times, we have that if g ∈ Hr then w ∈ Hr−2. Therefore, if r ≥ 5,
we have

(w, t Qu) = (g, u), ∀u ∈ C∞
0 (Ωh,T ). (33)

Choosen a suitable u, for instance, such that u(0, x ′) = 0, ∂x0u(0, x ′) = 0 and
∂2x0u(0, x ′) = ϕ(x ′), with ϕ ∈ C∞

0 (] − T , T [2), integrating by parts in the left-hand
side of (33), we obtain

(Qw, u) +
∫

[−T ,T ]2
ϕ(x ′)wdx ′ = (g, u).

As a consequence, we get

∫
[−T ,T ]2

ϕ(x ′)wdx ′ = 0.

For the arbitrariness of ϕ, it follows

w(0, x ′) = 0.

Instead, choosing u ∈ C∞
0 (Ωh,T ) such that u(0, x ′) = 0, ∂x0u(0, x ′) = ϕ(x ′) and

∂2x0u(0, x ′) = 0, with ϕ ∈ C∞
0 (] − T , T [2), and proceeding as above, it results

∂x0w(0, x ′) = 0.

Finally, if we chose u ∈ C∞
0 (Ωh,T ) such that u(0, x ′) = ϕ(x ′), ∂x0u(0, x ′) = 0 and

∂2x0u(0, x ′) = 0, with ϕ ∈ C∞
0 (] − T , T [2), we obtain

∂2x0w(0, x ′) = 0.

123



474 A. Barbagallo, V. Esposito

Then we have proved that there exists w ∈ Hr−2(Ωh,T ), with r ≥ 5, such that

(w, t Qu) = (g, u), ∀u ∈ C∞
0 (Ωh,T ),

w(0, x ′) = 0, ∂x0w(0, x ′) = 0 and ∂2x0w(0, x ′) = 0. Hence, if g ∈ Hr , with r ≥ 5,
there exists a solution w ∈ Hr−2 to the problem

{
Qw = g, in Ωh,T

w(0, x ′) = 0, ∂x0w(0, x ′) = 0, ∂2x0w(0, x ′) = 0

where g = i f , with f ∈ Hr
loc(Ω). Therefore there exists a solution to problem (1)

also in Ωh,T .

6 Conclusions

The paper deals with a class of hyperbolic operators with triple characteristics. A priori
estimate in Sobolev spaces with negative indexes are obtained. Thanks to this estimate,
the existence of solutions to the associated Cauchy problem can be established.
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