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Abstract

The Cauchy problem for a class of hyperbolic operators with triple characteristics is
analyzed. Some a priori estimates in Sobolev spaces with negative indexes are proved.
Subsequently, an existence result for the Cauchy problem is obtained.
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1 Introduction

In the past, many authors studied widely hyperbolic operators with double character-
istics, both in the case when there is no transition between different types on the set
where the principal symbol vanishes of order 2 (see for instance [5,8] for a general
survey) and when there is transition (see [1—4]). The operators are called effectively
hyperbolic if the propagation cone C is transversal to the manifold of multiple points
(see [8]). Moreover, if this occurs and lower order terms satisfy a generic Ivrii-Petkov
vanishing condition, we have well posedness in C* (see [7]).

The aim of the paper is to analyze the following class of operators with triple
characteristics

P(xg. D) = D] — (D} +xiD3)Dy, — bxiD} . in 2 =0, +00[xR?,

where Dy, = %BX j»J =0, 1,2, under hyperbolicity assumptions, namely |b| < %
Such a class of operators has been considered in [6], for example operators whose
propagation cone is not transversal to the triple characteristic manifold. The authors
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prove a well posedness result in the Gevrey category for a simple hyperbolic operator
with triple characteristics and whose propagation cone is not transversal to the triple
manifold. Furthermore they estimate the precise Gevrey threshold, by exhibiting a
special class of solutions, through which we can violate weak necessary solvability
conditions. More precisely, let x = (xg, x") where x’ = (x1, x2), let § = (&, &),
where §' = (&1, &). In [6], the authors study the well posedness of the following
Cauchy problem

Pu=0, in £ =10, +oo[xR2,
Dy;u(0,x") = ¢;(x"), j=0,1,2,

with ¢;(x") € y®(R?), j = 0,1,2, where ¥y (R?) is the Gevrey s class. They
obtained that the Cauchy problem for P is well posed in the Gevrey 2 class assuming

that b? < 24—7. Moreover, if s > 2, it is possible to choose b € ]0, %[ such that the

Cauchy problem for P is not locally solvable at the origin in the Gevrey s class.
In this paper, instead, we investigate on the well posedness of the Cauchy problem

{Pu:f, in 2, o

D)Cju(()vx/) = 0’ ] = 0’ 152’

with f € H"(£2), in the Sobolev spaces, obtaining an existence result for solutions.
Let us set

0=-9 + (af1 + x%afz) Doy +bx]02, in Q.
It results
Pu=iQu, in$2.

As a consequence, problem (1) becomes
Qu=g, in§$2,
o @
a)Cju(Orx)=0’ J=071527

where we set g = if, in £2, with g real function. The main result of the paper is the
following.

Theorem 1 Let f € Hl’oc(ﬁ), with r > 5. For every h, T > 0, the Cauchy problem
(1) admits a solution u € H"=*(2y,.1), where 2.7 = [0, h[x] — T, T[>

The rest of the paper is organized as follows. Section 2 deals with some preliminary
notations and definitions. In Sect. 3 some a priori estimates are established. Section 4
is devoted to obtain a priori estimates in Sobolev spaces with negative indexes. Finally,
the existence result for solutions to the Cauchy problem are proved in Sect. 5.
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2 Notations and preliminaries

Let o = (xg, a1, 0p) € Ng. Let 0% be the derivative of order |«|, let 8;’1, be the
derivative of order & with respect to x; and let 8)}31_’ .
respect to x; and x,,.

We indicate the L2-scalar product, the L?-norm and the H" -norm (r €e Ng)by (-, -),
|| - |l and || - || gr respectively.

Let £2 be an open subset of R3. Let C0°° (£2) be the space of the restrictions to 2
of functions belonging to Cgo (R3). For each K C 2 compact set, let C8°(K ) be the
set of functions ¢ € C§° (£2) having support contained in K. Let S(R?) be the space
of rapidly decreasing functions. In particular, let S(£2) be the space of the restrictions
to §2 of functions belonging to S(R?).

Let 2 = [0, +oo[x]ay, b1[X] — 00, +oco[ and let s € R, let us denote by || -
Il ;0.0 (iz) the norm given by

» +00 by
sy = [ o [ dn

aj

) be the derivative of order & with

+00 1 o o
/ g(l+|€2|2)A|u(xo,x1,Sz)lzd&, Vu € C° (),

—00

where the Fourier transform is performed only with respect to the variable x,. More-
over, let us denote by A the pseudodifferential operator given by

—+00 1 . s -
Asu(x) = f Ee’“‘&a+|sz|2)fu<xo,x1,sz)dsz, Yu e CP(2). (3)

—0o0

Let us recall that Ay : Ci° (£2) = C>°(R). For every ¢(x3) € C5°(R), the operator
@ Au extends to a linear continuous operator from Hcog’ﬁ),,’,r,_ (£2) to H, l?}’c(,)’r” (£2), where
r,s € R. In particular, in §£2; = [0, k[x]ay, bi[x] — 00, +00[, for k > 0, we denote
by H%95(£2;) the space of all u € H*%*(£2) such that supp u < 2. Moreover,
denoted by Uy, the projection of supp u on the axis x2, if supp ¢ € R\U,,, then p Asu

is regularizing with respect to the variable x,, namely it results:
loAsull goor < cllull yoor, Vr, reR, ueC®R).

The norms [[u|| go.0.s (o) and || Asul| 12y are equivalent for any s € R.
Lets € Rand p > 0. Let H?*(R>) be the space of distributions U into R such
that

1 ) —~
ey = 5 D /ﬂ; L+ 18185, 1, Uxo, x1. &) Pdxodxidgy < +oc.
lhl<p ™
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At last, let HP>*(£2) be the space of the restrictions to §2 of elements of H P-S(R3)
endowed with the norm

lullars 2y = inf ||U||Hp1-V(R3)~
U e HPS (R3)
Ulo=u

3 A priori estimates
The following preliminary result holds (see [1], Lemma 3.1).
Lemma 1 Letu € S(£2) and let p, oo, a1, o € No. Then

L p+2
lxg 0 ull < 2l 9, “4)

Now, we establish a useful estimate.

NS CSO(R) such that suppe C R\] —nT,nT[, withn > 2. Foreveryr <0,s € R
and p > s +r, it results

Lemma2 Let u € CJ°([0, +oo[xIR?) such that suppu < [0, h[x] — T, T[> Let

Cp,r,s
Asu < — P20 |y yoor (-
loAsullp2) < (= DT]? el gro.0.r (29

Proof In order to obtain the claim, we follow analogous techniques used in the proof
of Lemma 3.2 in [3]. For the reader’s convenience, we present the demonstration. We
have

1 +00

o | e+ 8P TG, 2. £
T J-co

I o .
2_/ / FEEG () (1 + |2 S uro, x1. y2)dyadEs
T R2

_im i(x2—y2)€ @(x2)u(xo, X1, ¥2) aus

dg, (1 2dvrd

2m /‘/Rz ¢ (xp — yp)m Ez( + 186217 2dy2d&>
+o0

im +00 s .
SO [ Tapasiapyias [ et
T —00

—00
v ((’fﬁ?r)

u(xo, X1, y2) —————-dy, ©)
(x2 —y2)

(pAsu)(x)

where m € Nand ¥ € C®°(R) such that () = 1if || > 1, (7)) = 0if |7] < %
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By using (5), we get

i"p(x2) Foo s
P [ e aP) ute.n.
—00

X2 eimi‘z
i (1/’ ((n - 1>T> X )d&’

i"g(n) [T 3~
o (1 + &1») 2 W(xo, x1.12)
—00

X2 PRSI
Fo (v (=) = ) a6,
fz(‘”((n—m) Xy ) ®
where

X eir2é2 +oo B xo 1
F — ix2(52—12) —dx,,
" (w((n—l)T> X ) /_oo ¢ \a-or) g™

Easily, we deduce

, X PRSI
I+ & —n2))Fy, <1ﬂ <m) x_g’)

+
_ / * eixz(Ez—nz)l/, *2 dez
oo (n—DT ) x5

i ~(r e ix(2—m) g/ *2 r=j 1
+1i Z ] e 8)62 w W 8)62 x—mdxz s
; —00 - 2

Jj=0

(pAsu)(x) =

and also

fxz((PAsu)(XOv -xla 772) =

and, then,

7o (v () )= e (o)
BN A O A R TN R D LA CE I

Making use of (6) and (7), we obtain

loAsull = | Fx, (9 Asu) |

Lo +o0 b
< 2—||<P||L1(R) / g, (1 + [&2]7)2u(xo, x1, m2)
4 —00

X2 b
fxz <1ﬂ <—(n — 1)T> _xg, )déz

+00 g
e[ " Joma+iePinen.m)
—00

L2(£2)

(6)

(N
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X2 el'XzSz
P (‘”<<n_1>T> e )

o e |80+ 18P G, x1, )|
< L (+@&-m?*

dé&
L%(£2)

L2(2
( )déz-

From the previous inequality and the Peetre inequality (see [9], pag. 17), it follows

Cr,m,s
A < rms
loAsull 2@y < (1 — T2

L@ g, . ®)

s _m4l
/+oo [+ 168" ao, x1.m)|

o0 1+ (& —m)?)?
If m > s+ r + 2, setting p = m — 2 in (8), it results

Cp.r.s

Au < —u 0,7 s
lpAsullz2o) < (1 — DT e ll o0 (29

where ¢,  is independent of n and 7. O
Taking into account Lemma 2, we deduce

Lemma3 Let ¢ € Cg°(R) such that p(t) = 0, for || < 1. For every e > 0, for every
r <0ands € R there exists n > 1 such that

X2 A
4 <(n - 1)T) st

In the following, we establish a priori estimates in L?(£27), where pr =
[0, h[x] = T, T[3, for functions belonging to Cgo (£2n,1).

< 8”1/[ || HO,O.r(Q).
L2(2)

Theorem 2 For every h, T > 0, there exists a positive constant ¢ such that
8xoull + llull < ¢ (119x, Qull + 119y, Qull) , Vu € C§°(82) = suppu S 257 (9)
Proof By means of a translation with respect to x, in 7', we consider the function
v(x0, X1, x2) = u(xg, x1,x2 — T), in 27 =]0, +oo[x]— T, T[x]0, 2T.
We extend the function v in even manner in | — 27", 27T [. It results
v(x0, X1, —x2) = v(x0, X1, X2), in 27 =]0, +oo[x] — T, T[x]—2T,2T].
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We consider the following Fourier development of the function v:

+oo einwoxz
v(xo, X1, X2) = Z cn (X0, X1)
’ ’ - ’
o 24T
+o00
= Z Un (X0, X1, X2),
n=—00

where g = Z—” = 55 and

1 2T .
cn(xo, x1) = —/ v(xo, x1, x2)e” "2 dx;.
" 2T J-or

We remark that the Fourier coefficients ¢, are real. We apply the operator Q to vy,
obtaining

elnwox2

Qun(ro, x1,32) = [ = 93,ca 0. x10) + 92 Dy o, 1)

2.2 2 .3 3,3
—n“wyX1 0xoCn (X0, X1) — in wobxlcn(xo,xl)]

einwox2

2T

= Lycu(x0, x1)

where we set

3 2 2.2 2
Lycn(xp, x1) = —3X0Cn()C0, x1) + 8xl8xocn (x0,x1) —n WX 8xocn (x0, x1)

—in3a)8bx?cn(xo, X1).

It results

einwox2

2T

—+00
Qu(xo, x1,%2) = Y Lncy(x0, x1)

n=—0o

We estimate the Fourier coefficients ¢, (xg, x1) by means of L,c,(xg, x1) in L. To
this aim, let us consider the inner products

(Lycy, x()a;%ocn) + (xoaj%ocna Lycy)
_ 3 2 2 2 2 2.2 2
= —2(0y,Cn, X005, Cn) + 2(3x) 95, Cns X090y, Cn) — 21" W5 (X dxyCn, X0y, Cn)
= 21|83 cull® — 2(3x, dxoCnr X005, B, Cn) + 20 w5 ||x1 D [I*

= 21|87 call® + 2119y, dxoCn > + 2n° @ 1 x13x0cn 1. (10)
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From which we have

103 cnll® + 110, o ll* + n* @ llx19x0€n 1> < cllxoLncnll. (11)

Let us evaluate the inner products

(Lnaxlcna x03f03xlcn) + (anfoaxlcn» Lnaxlcn)-
Proceeding as in (10), we obtain
192,82, cnll + 1192, dxgenll* + n> e} 1618y O, el
= (Lnaxlcn’ xoagoaxlcn) + (xoagoa)q Cn, Lnaxlcn)

= (alenCm xoa)%oaxlcn) + (x03,%03xlcn, 8lencn)

2 2 2
+4(x1n woaxocn,x()&xoaxlcn).

Hence, we deduce

1
2 2 2 2 2
— 5 195, x Cnll™ + == 1105, OxgCnlI” + X103 0, Cn |
ncwy nwy

2 2
< 5511200 Lucnll1850xy call + 4lx0x18x0Cnlll185,0x; call-
nwy

As a consequence, we have

1

2 2 2 2 2
— 3 5 1195, 0x; Call +—= 5 1195, OxgCnll” + l1X1 00 Oxy cn l
n CL)O n a)o

¢ 2 2 2 2
= 5 1X00x; Lncall” 4+ cn”willx19xycall” (12)
n<w
0

Making use of (11) and (12), we get

2 2 2., .2 2 2
195 Cnll™ + 110x; Oxocn I + n=awypyllx19xgcnl

1 1
2 2 2 2
+ 551103 0x all” + ——5 1195, dxgcanll
8509, nll? < cllxoLuncnll? + —
+llx1 X0 xlcn” <cllxoLncnll” + 3 2
n (1)0

2
||x()ax1 Lycyll

c 2 c . 2

= ——5 11503, Luca I + —— lixonaoLnca*. (13)
n-wj n-wj

Let us consider v € C3°(]0, +oo[x] — T, T[x]0, 2T[) and we still denote by v its

even extension in |0, +oo[x] — T, T[x] — 2T, 2T|[. Let us develop v in Fourier’s
series with respect to x»:
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+00 einwoxa
v(x0, X1, %2) = Y cnlx0, X1) i
e 2T
from which it follows
+00 £inwox2
Qu(x0. X1, x2) = Y Lycn(x0. X1) ——=
n=—0oo 2 T
Hence, it results
+00 £inwox2
X104y 0 V(x0, X1, X2) = xlaxoamcn(xo,xl)?'
e 24/ T

Applying the Parseval inequality, we have

2 2 2
”xlaxoaxlv” = || ”xlax()axlv”]—ZT,ZT[||](),+oo[><]_T,T[
+o0 2
=| Y Ix10xdxcal®
n=-00 10,+o00[x]-T,T[
+00
< D7 lIx1dgdy call”. (14)
n=-—00

Taking into account (13) and (14), we obtain

+00
118508, 01I* <D 1118 Oy €1
n=—00
+o00 c c
= Z [ﬁﬂxoalenanz—}—ﬁﬂixonwoannHZ]
W | P nwj
c X1
=5 2 5 [0t Lacal® + linxowoLucal?]. - (15)
(1)0 n=—0oo n
We remark that
+oo einwoxz
09 Q(X0, X1, ¥2) = Y %00, Ln€n (X0, X1) ———=.
1 n=—00 Zﬁ
For the Parseval inequality, it results
2 2 2
||X08x1QU|| = ||”xoaxlQv”]—2T,2T[H]O,—i—oo[x]—T,T[
+00 2
= > Ix08x, Lacal? (16)
n=—oo

10,400[x]-T,T[
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Moreover, we remark that

+00 £inwox2
X090y, Qu(x0, X1, X2) = inwoxoLycn(x0, X1) ——=.
X2 ”:Z_:OO nt-n zﬁ
Applying, again, the Parseval inequality, we have
2 2 2
||x03xz ov||” = || ”anxz Qv”]—ZT,ZT[||]O,+oo[><]—T,T[
+00 2
= | D linwoxoLucal® (17)
n=-—0c0 10,4+00[x]=T,T|
Making use of (15), (16) and (17), we obtain
+00 1
19k 017 < ¢ Y- = [Ix08y Lacal? + llinwoLac
n=—o0
< ¢ [ 1002, QuIP + lxoy, Qv ] (1)
On the other hand, it results
2
0= / Ox, X1 (BxOv) dx
2
= / (8xOv)2 dx +/ 2X1 0y U0y, Oy, V.
QY 2y
From which it follows
ol = =2 [ 31 (00) (3ngn )
2}
< 2||18xy v1l1l10x, O, V1l
Hence, we have
2 2
ll9xovII7 = 4121 9o Oy VI (19)
From (18) and (19), we deduce
1801 < ¢ (1005, QUIP + I¥0ds, OVI2)
By using Lemma 1, it results
13012 + 1012 < ¢ (1002, QuIP + 0, OVI2) (20)
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Let us remark

+00 i
einwox2

X03x1Qv= Z xoalenCn(XO’xl)ﬁa
+0oo eina)()xz
X090, Qv =Y inwoxoLucy(xo, x1) :
2T

n=—0oo

n=—0oo

As a consequence, we have

+oo
2 2
||anx1QU||]_2T,2T[= Z |x08x|ann| ,
n=—oo
+o00

2 . 2
1X09x, QVIIT a7 arp = D, linwoxoLncal*.

n=—oo

Furthermore, we obtain

+00
cos(nwoxz)
(x00y, Q) (x2) + (X003, QV)(—x2) = n;m 2x00y, annTT“,

+00
(X0dx, Q) (x2) + (X0, Q) (—x2) = n;w DinwoxoLncn— 7

By using (21), (22), (23) and (24), we deduce

2 2
lX09x; QUIl{_a7 27 + X095, QUI|_27 27y

+00 +00
2 . 2
= Z |x08x1LnCn| + Z linwoxoLycyl

n=—0o n=—0o0

= [lx0(dx, Q) (x2) + x0(Bx,; QV) (—xD) 127 217
+[1x0 (B, Q) (x2) + X0 (B, QV) (—xD) 127 217

= 2[|x0(3x, Q) (x2) + X0 (3, QV)(—x2) 1} 217
+2[1x0(8x, Q) (x2) + X0 (3, QV)(—x2) 1Ty 217

< 2(JIx0(3x, QV)(¥2) 130 27 + 1403, QV)(—x2) [ 27
+11x0 (B, QV) (x2) 170 27 + 150D, QV)(—x)[I5.27()-

Now, we want to estimate directly the norms. Let us start from

( ) 4‘2:00 einwoxz
x0 (0x; Qv) (x2) = X000y Lycn(x0, X1) ——=.
= 2JT

cos(nwoxy)

21

(22)

(23)

(24)

(25)
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It results

on (a)m Q”) (x2) ”]20,2T[
1 +o00  +00 2T .
=17 Z Z xgalencn(xo,xl)(Blehch(xo,xl))*/ 02 p=ihoox2 gy
0

n=—00 h=—00

Let us compute the other norm remembering that

+00 e~ inwox2
%0 (9 Q) (—x2) = ) %00 Lncn (X0, mW
n=—0oo

We have

|0 (8 Q) (—x2) ||]20,2T[
1 +00 400 . i
= ﬁ Z Z X%alenCn(x(),X])(ax,LhCh(xo,xl))*f e—tnwonglhwoﬂdxz.
0

n=—00h=—00

From which, it follows

2 2

| x0 (85, Qv) (x2) ”]O,ZT[ = [x0 (8, Q) (=x2) ”]O,ZT[ :
Moreover, making use of (25) and (20), we obtain
2 2 2 2
1001y + 0%, < e (1ot OVl + Ix0d, Qvl%, )

< 2¢ (Ilxody, Qull%, + w00z, QVI%, )

Since v(xg, x1, x2) = u(xq, x1, xo — T), for every (xg, x1, x3) € §2/., we have

9xoull 2y + lulle, < c(Ix00y, Qulle, + X0y, Qulle,), (26)
from which the claim follows. |

Let us remark that the positive constant ¢ in (26) does not depend on 7 but only on
x1. As a consequence, the following result holds:

Corollary 1 For every h, T > 0, there exists a positive constant ¢ such that
l8xouell + llwll < ¢ (18, Qull + 1|9y, Qull) , 27)

foreveryu € C(‘)’o(ﬁ) such that suppu C [0, T[x] — T, T[x]—nT,nT], for every
neN.
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4 A priori estimate in Sobolev spaces

In the following, we establish a priori estimate in the Sobolev spaces.

Theorem 3 For every s > 0, it results

19 ull gro.0.—5 + el groo.—s < (I1Qull o1 + | Qull goo—s+1), Vu € C§(2n,7),
(28)

where 2, 7 = [0, h[x] =T, T[>

Proof Let ¢ € C3°(R) such that ¢(x) = l'in [—(n — )T, (n — 1)T'] and supp ¢y <
] =nT,nT[, withn > 1. For every u € C5°(§2;,7), we set vy = @ Asu, where Ay is
the pseudodifferential operator defined as:

1 . s
Ag = —— / 68 (1 1 15 P) S (x0, 31, E2)dEn,
2 R

with s > 0. Applying (27) to vs, we have

A

1820 vs Il + llvsll < ¢ (1185, Qusll + 118, Qusll)
c (”8)61 OpAsull + |9y, Q‘pAs“”)
¢ (l9dx, QAsull + 1105, [Q, @l Asull)
+¢ (105,90 QAsull + 110, [ Q. @l Asull)
< ¢ (ll9dx, As Qull + 1185, [Q. @] Agull)
+¢ (Ilgdx, As Qull + [0xy, @1 Q Asul| + 105, [ Q. @] Asuel])

= C(”(pAsaxl Qull + lpAsdx, Qull + [ Ry Qu|l

| Rotel + [ Rsdgul)) + 10, 91As 0y, 29)

IA

where R, R> and R3 are regularizing operators with respect to the variable x; of type

Y | =
Ri_w((n_l)T>As, i=1,2,3, (30)

with ¢ € C(‘)’O(]R) such that ¥ = 0 in [—1, 1], as in Lemma 3, and having used

Oy, QAsu = As0y, Qu and 0y, QAsu = A0y, Qu.
Making use of Lemmas 1, 3 and (29), we deduce

10xoull go.0.—s + llu]l go.o—s < ¢ (”QM”HO,I,fs —+ | Qul| go.0,—s+1 + || Qu||H0,o,7s)
+c ([ Radx ull + | R50x, doull) » (31)

where R4 and R4 are regularizing operators with respect to the variable x, of type
(30).
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Now, written the operator Q as:
Qu = L(0x,u) + xfafzaxou + bxf’aizu,
where L is the wave operator, namely L = 8%0 + 8)%1, it results
(L(dxyu), 33 1) = (Qu, O3, u) — (x7 05, Dt Dgyut) — (bx7 33,1, 33 10).
Integrating by parts, we have easily:
12 ull + 119, Bxouell < ¢ (ua,%zamun + N ul + IIQull) :

Making use of Lemma 1, it follows

gt + Nyl + 102l + 119 dsgtel < € (102, gull + 03,1l + 11 Qull)
(32)

Taking into account (31), (32) and Lemma 3, we deduce

8xg2tll ro.0.—s + lluell goo.—s < ¢ (| Qull o~ + || Qul| oo.—s+1 + | Que|l fro.0.—s)
+c (||3xlu||H0,o,—x—3 =+ |10y, 3xOu||H0,o,—s—3)
< c (1Qull o~ + | Qull oo.~s+1)
+c (lull go.o—s + 118xotell go.o—s + | Qull go.o—s) .

From which we have
|0xo 1t ]l o.0.—s + lluell goo—s < c (||Qu||H0,1.—x + ||Qu||H0,0,7x+1) ,

namely (28). O

5 Proof of Theorem 1

For every u € C3°(82y,,1), where 2, 7 = [0, h[x] — T, T2, let ¥ = "Qu = Qu
and let F(y) = (f, u). It results

[F D= 11 f 0.0 (1) 6l 0.0 (02, 19

Making use of (28), it follows

LF ()l

IA

C”f”H0,0,x(_Qth) (” tQM ||H0,l,—s(_Qh,T) + || ZQMHHO,O,—erI(Qh’T))

A

= C/”vf ”HO’I’_H—I(Qh.T)'
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Hence, the functional F can be extended in H 0’1”S+1(.{2h,r) and, therefore, there
exists w € HO*’l’S’l(.Qh,T) such that

FY) = (w,¥) = (w, "Qu) = (g,u), Vu e CG(2n1).
Then, we have
Qw=g, in D/(-Qh,T)o

Written Qu = L(dx,w) + x792, dxyw + bxj 3, w, we obtain

L(dx,w) = g — X705, 0w — bx{ 33, w.
For s > 4, we deduce 0, w € H%0%5=1 and, hence, u € H5~ 1, Repeating the same
procedure more times, we have that if g € H" then w € H” -2 Therefore, if r > 5,
we have

(w, 'Qu) = (g, u), Vu € C3°(2n.1). (33)
Choosen a suitable u, for instance, such that u(0,x") = 0, dy,u(0,x’) = 0 and

Bfou(O, x') =), withgp € C5°(1 - T, T[?), integrating by parts in the left-hand
side of (33), we obtain

(Qw, u) +/

. e(xHwdx" = (g, u).

As a consequence, we get

/ e(xwdx' = 0.
[-T.T]?

For the arbitrariness of ¢, it follows
w(0, x") = 0.

Instead, choosing u € C°(£2;,,7) such that u(0, x") = 0, dxu(0,x") = ¢(x’) and
8)%014(0, x) =0, with g € Cgo aq-T, T[2), and proceeding as above, it results

dxow(0, x") = 0.

Finally, if we chose u € C{°(£2,7) such that u(0, x") = ¢(x'), d,,u(0, x") = 0 and
9%,u(0,x') =0, with g € C°(1 — T, T[*), we obtain

3z, w(0,x") = 0.
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Then we have proved that there exists w € H ”Z(Qh,T), with r > 5, such that
(w, "Qu) = (g, u), Vu € Cy°(2n1),

w(0,x") =0, 3y, w(0, x") = 0 and a;ow(o, x") = 0. Hence, if g € H", with r > 5,
there exists a solution w € H" 2 to the problem

Qw=g, inQyr
w(0,x) =0, dyw(0,x") =0, 02 w(0,x) =0

where g = if, with f €
alsoin £2;, 7.

15c(§2). Therefore there exists a solution to problem (1)

6 Conclusions

The paper deals with a class of hyperbolic operators with triple characteristics. A priori
estimate in Sobolev spaces with negative indexes are obtained. Thanks to this estimate,
the existence of solutions to the associated Cauchy problem can be established.
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