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Abstract Given a positive lower semi-continuous density f on R? the weighted vol-
ume Vy = f.Z 2 is defined on the .#?-measurable sets in R%. The f-weighted
perimeter of a set of finite perimeter E in R? is written P '+ (E). We study minimisers
for the weighted isoperimetric problem

I7(v) :=inf {Pf(E) : E is a set of finite perimeter in R? and Vi(E) = v}

for v > 0. Suppose f takes the form f : R> — (0, +00);x > XD where
h : [0, 4+00) — R is a non-decreasing convex function. Let v > 0 and B a centred
ball in R? with V¢ (B) = v. We show that B is a minimiser for the above variational
problem and obtain a uniqueness result.

Keywords Isoperimetric problem - Log-convex density - Generalised mean curvature

Mathematics Subject Classification 49Q20

1 Introduction

Let f be a positive lower semi-continuous density on R?. The weighted volume Vii=
f.£? is defined on the .Z>-measurable sets in R?. Let E be a set of finite perimeter
in R2. The weighted perimeter of E is defined by
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818 I. McGillivray

PrE) = [ fdiDrl € 10.400) (L1
We study minimisers for the weighted isoperimetric problem
I7(v) :=inf HPf(E) : E is a set of finite perimeter in R? and Vi(E) = v} (1.2)
for v > 0. To be more specific we suppose that f takes the form
f:R* = (0, +00); x > "D (1.3)

where & : [0, 4+00) — R is a non-decreasing convex function. Our first main result is
the following. It contains the classical isoperimetric inequality (cf. [9,12]) as a special
case; namely, when / is constant on [0, 4+00).

Theorem 1.1 Let f be as in (1.3) where h : [0, 400) — R is a non-decreasing
convex function. Let v > 0 and B a centred ball in R2 with Vi(B) =v.Then B is a
minimiser for (1.2).

For x > 0 and v > 0 define the directional derivative of 4 in direction v by

h(x +1tv) —h(x)
—l‘ S

B (x,v) := lziﬁ)l R

and define h’_(x, v) similarly for x > 0 and v < 0. We introduce the notation
oy = h (. +1), p—:= =k (-, =) and p := (1/2)(p4 + p-)

on (0, +00). The function 4 is locally of bounded variation and is differentiable a.e.
with i’ = p a.e. on (0, +00). Our second main result is a uniqueness theorem.

Theorem 1.2 Let f beasin(1.3)whereh : [0, +00) — Risanon-decreasing convex
function. Suppose that R := inf{p > 0} € [0, +00) and set vy := V(B(0, R)). Let
v > 0 and E a minimiser for (1.2). The following hold:

(i) if v < vg then E is a.e. equivalent to a ball B in B(0, R) with V(B) = V(E);
(ii) if v > vg then E is a.e. equivalent to a centred ball B with V(B) = V (E).

Theorem 1.1 is a generalisation of Conjecture 3.12 in [24] (due to K. Brakke) in
the sense that less regularity is required of the density f: in the latter, 4 is supposed to
be smooth on (0, +00) as well as convex and non-decreasing. This conjecture springs
in part from the observation that the weighted perimeter of a local volume-preserving
perturbation of a centred ball is non-decreasing ([24] Theorem 3.10). In addition,
the conjecture holds for log-convex Gaussian densities of the form 4 : [0, +00) —
R; t > e * withe > 0 ([3,24] Theorem 5.2). In subsequent work partial forms of the
conjecture were proved in the literature. In [19] it is shown to hold for large v provided
that 4 is uniformly convex in the sense that 2”7 > 1 on (0, +00) (see [19] Corollary
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6.8). A complemen tary result is contained in [11] Theorem 1.1 which establishes the
conjecture for small v on condition that 4" is locally uniformly bounded away from
zero on [0, +00). The above-mentioned conjecture is proved in large part in [7] (see
Theorem 1.1) in dimension n > 2 (see also [4]). There it is assumed that the function &
is of class C3 on (0, +00) and is convex and even (meaning that 4 is the restriction of
an even function on R to [0, +00)). A uniqueness result is also obtained ( [7] Theorem
1.2). We obtain these results under weaker hypotheses in the 2-dimensional case and
our proofs proceed along different lines.

We give a brief outline of the article. In Sect. 2 we discuss some preliminary
material. In Sect. 3 we show that (1.2) admits an open minimiser E with C! boundary
M (Theorem 3.8). The argument draws upon the regularity theory for almost minimal
sets (cf. [27]) and includes an adaptation of [21] Proposition 3.1. In Sect. 4 it is
shown that the boundary M is of class C'*! (and has weakly bounded curvature).
This result is contained in [21] Corollary 3.7 (see also [8]) but we include a proof for
completeness. This Section also includes the result that £ may be supposed to possess
spherical cap symmetry (Theorem 4.5). Section 5 contains further results on spherical
cap symmetric sets useful in the sequel. The main result of Sect. 6 is Theorem 6.5
which shows that the generalised (mean) curvature is conserved along M in a weak
sense. In Sect. 7 it is shown that there exist convex minimisers of (1.2). Sections 8 and
9 comprise an analytic interlude and are devoted to the study of solutions of the first-
order differential equation that appears in Theorem 6.6 subject to Dirichlet boundary
conditions. Section 9 for example contains a comparison theorem for solutions to a
Ricatti equation (Theorem 9.15 and Corollary 9.16). These are new as far as the author
is aware. Section 10 concludes the proof of our main theorems.

2 Some preliminaries

Geometric measure theory. We use | - | to signify the Lebesgue measure on R? (or
occasionally .#2). Let E be a .#>-measurable set in R”. The set of points in E with
density ¢ € [0, 1] is given by

ENB
E' = {xeRzz limwzt}.
pl0  |B(x, p)|

As usual B(x, p) denotes the open ball in R? with centre x € R? and radius p > 0.
The set E! is the measure-theoretic interior of E while E? is the measure-theoretic
exterior of E. The essential boundary of E is the set 3*E := R?\(E° U E1).

Recall that an integrable function u on R? is said to have bounded variation if
the distributional derivative of u is representable by a finite Radon measure Du (cf.
[1] Definition 3.1 for example) with total variation | Du|; in this case, we write u €
BV(RZ). The set E has finite perimeter if xg belongs to BVj,c (Rz). The reduced
boundary .% E of E is defined by

FE := {x € supp|Dyg| : vE(x) := lim ="~
{x upp| Dkl (x) 040 |Dxg|(B(x, p))

exists in R? and WE )| = 1}
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820 I. McGillivray

(cf. [1] Definition 3.54) and is a Borel set (cf. [1] Theorem 2.22 for example). We use
K (k € [0, +00)) to stand for k-dimensional Hausdorff measure. If E is a set of
finite perimeter in R? then

FE CEY/?Co*E and #'(0*E\.FE) =0 (2.1
by [1] Theorem 3.61.
Let f be a positive locally Lipschitz density on R?. Let E be a set of finite perimeter

and U a bounded open set in R?. The weighted perimeter of E relative to U is defined
by

Ps(E,U) := sup{/Udiv(fX)dx :X € COW, R, [ X|loo < l}.

By the Gauss—Green formula ( [1] Theorem 3.36 for example) and a convolution
argument,

P#(E,U) = sup { /Rz FOE X)d|Dyxg|: X € C®(R?, R?),
supplX] € U, [ X le = 1]

—sup{ [ FOF X)dIDxel X € CoR ),
supp(X] € U, [ Xl = 1]

=/ fd|IDxkl 2.2)
U

where we have also used [1] Propositions 1.47 and 1.23.

Lemma 2.1 Let ¢ be a C' diffeomeorphism of R> which coincides with the identity
map on the complement of a compact set and E C R* with xg € BV(R?). Then

(i) Xp(E) € BV(R?);
(ii) 3*¢(E) = @(0*E);
(iii) AN (F9(E)Ap(FE)) = 0.

Proof Part (i) follows from [1] Theorem 3.16 as ¢ is a proper Lipschitz function. Given
x € E° we claim that y =) € p(E 0. Let M stand for the Lipschitz constant of
¢ and L stand for the Lipschitz constant of ¢~ !. Note that B(y, r) C ¢(B(x, Lr)) for
each r > 0. As ¢ is a bijection and using [1] Proposition 2.49,

lp(E) N B(y,r)| < [¢(E) No(B(x, Lr)]|
= |9(E N B(x, Lr))| < M*|E N B(x, Lr)|.
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This means that

lp(E) N B(y, )l < (LM)? |E N B(x, Lr)]
|B(y, )l |B(x, Lr)]

for r > 0 and this proves the claim. This entails that ¢ (E 0 ¢ [@(E)1°. The reverse
inclusion can be seen using the fact that ¢ is a bijection. In summary ¢ (E®?) = [¢(E)]°.
The corresponding identity for E! can be seen in a similar way. These identities entail
(ii). From (2.1) and (ii) we may write .Z¢(E) U N1 = ¢(F E) U ¢(N;) for 57! -null
sets N1, No in R2. Ttem (iii) follows. O

Curves with weakly bounded curvature. Suppose the open set E in R? has C'! boundary
M. Denote by n : M — S! the inner unit normal vector field. Given p € M we
choose a tangent vector #(p) € S! in such a way that the pair {r(p), n(p)} forms a
positively oriented basis for R?. There exists a local parametrisation y; : I — M
where I = (=8, §) for some 8 > 0 of class C! with y1(0) = p. We always assume
that y; is parametrised by arc-length and that y;(0) = #(p) where the dot signifies
differentiation with respect to arc-length. Let X be a vector field defined in some
neighbourhood of p in M. Then

d
(D:X)(p) = s lioX e y1(s) (2.3)

if this limit exists and the divergence divM X of X along M at p is defined by
div¥ X := (DX, 1) (2.4)

evaluated at p. Suppose that X is a vector field in C'(U, R?) where U is an open
neighbourhood of p in R?. Then

divX = divM X + (D, X, n) (2.5)

at p. If p € M\{0} let o(p) stand for the angle measured anti-clockwise from the
position vector p to the tangent vector # (p); o (p) is uniquely determined up to integer
multiples of 2.

Let E be an open set in R? with C!:! boundary M. Letx € M andy; : [ — M
a local parametrisation of M in a neighbourhood of x. There exists a constant ¢ > 0
such that

[Y1(s2) — y1(s)| < cls2 — s1]

for s1, so € I; a constraint on average curvature (cf. [10,18]). That is, y; is Lipschitz
on /. So y; is absolutely continuous and differentiable a.e. on I with

52

Y1(s2) — y1(s1) = / yids (2.6)

S1
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822 I. McGillivray

for any s1, s € I with s1 < s2. Moreover, |y1| < c a.e. on [ (cf. [1] Corollary 2.23).
As (y1,y1) = L on I we see that (y1, ;) = 0 a.e. on I. The (geodesic) curvature k|
is then defined a.e. on [ via the relation

Y1 =kin 2.7)
as in [18]. The curvature k of M is defined 57! -a.e. on M by
k(x) :==k1(s) (2.8)

whenever x = y;(s) forsomes € I and k| (s) exists. We sometimes write H (-, E) = k.

Let E be an open set in R? with C! boundary M. Letx € Mand y; : [ — M a
local parametrisation of M in a neighbourhood of x. In case y; # 0 let 8; stand for
the angle measured anti-clockwise from e; to the position vector y; and o stand for
the angle measured anti-clockwise from the position vector y; to the tangent vector
f1 = y1. Putry == |y1| on I. Then ry, 0 € C1(I) and

F'{ = coso1; 2.9)
rlél = sinal; (2.10)

on I provided that y; # 0. Now suppose that M is of class C"!. Let ; stand for
the angle measured anti-clockwise from the fixed vector e; to the tangent vector #;
(uniquely determined up to integer multiples of 2m). Then #; = (cos o, sina) on
I so « is absolutely continuous on /. In particular, « is differentiable a.e. on [
with &, = k; a.e. on I. This means that ¢; € C%1(I). In virtue of the identities
ricosol = (y1, 1) and r1 sino; = —(y1, n1) we see that o7 is absolutely continuous
on I and o7 € C%!(I). By choosing an appropriate branch we may assume that

o1 =601 +o (2.11)

on /. We may choose ¢ in such a way that o o y; = o1 on I.

Flows. Recall that a diffeomorphism ¢ : R> — R? is said to be proper if ¢! (K)
is compact whenever K C R? is compact. Given X € cx (R?, R?) there exists a 1-
parameter group of proper C™ diffeomorphisms ¢ : R x R?> — R? as in [20] Lemma
2.99 that satisfy

3¢(t, x) = X (¢(t, x)) for each (¢, x) € R x R?;

¢(0, x) = x for each x € R (2.12)

We often use ¢, to refer to the diffeomorphism ¢(z, -) : R — R2.

Lemma 2.2 Let X € C° (R2, R?) and ¢ be the corresponding flow as above. Then
(i) there exists R € C®°(R x R, R?) and K > 0 such that

x +tX(x)+ R(t,x) forx € supp[X];

@(t, x) = {x for x ¢ supp[X];
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where |R(t, x)| < Kt? for (t, x) € R x R?;
(ii) there exists RV € C®(R x R2, M>(R)) and K| > 0 such that

I +tdX(x) + Rz, x) for x € supp[XT;
dot, x) = {I for x ¢ supp[X];

where |[RV (¢, x)| < K112 for (t, x) € R x R?;
(iii) there exists R € C®(R x R%, R) and K» > 0 such that

1 +1divX(x) + R®(t, x) forx e supp[X];

Jdo(t, x) = { 1 Sfor x ¢ supp[X];

where |R® (1, x)| < Kat? for (t, x) € R x R
Let x € R?, v a unit vector in R? and M the line though x perpendicular to v. Then

(iv) there exists R® € C®°(R x R%, R) and K3 > 0 such that

M )1+ t(div™ X)(x) + R®(t, x) forx € supp[X];
NdZelt, x) = { 1 for x ¢ supp[X];

where |R(3)(t, x)| < thzfor (t,x) € R x R2,

Proof (i) First notice that ¢ € C*°(R x Rz) by [16] Theorem 3.3 and Exercise 3.4.
The statement for x ¢ supp[X] follows by uniqueness (cf. [16] Theorem 3.1); the
assertion for x € supp[X] follows from Taylor’s theorem. (ii) follows likewise: note,
for example, that

[Bd@lapli=0 = X%; X° + X X7,

where the subscript | signifies partial differentiation. (iii) follows from (ii) and
the definition of the 2-dimensional Jacobian (cf. [1] Definition 2.68). (iv) Using
[1] Definition 2.68 together with the Cauchy-Binet formula [1] Proposition 2.69,
J1dMp(t, x) = |do(t, x)v| for t € R and the result follows from (ii). O

Let I be an open interval in R containing 0. Let Z : I x R? — RZ; (¢, x) > Z(t, x)
be a continuous time-dependent vector field on R? with the properties

(Z.1) Z(t,-) € CL(R? R?) foreacht € I,
(Z.2) supp[Z(t,-)] C K foreacht € I for some compact set K C R2.

By [16] Theorems I.1.1,1.2.1, 1.3.1, 1.3.3 there exists a unique flow ¢ : I x R? - R?
such that

(F1) ¢ : I x R? - R?isof class C';

(F2) ¢(0, x) = x for each x € R?;

(E3) 0;0(t, x) = Z(t, p(x, 1)) foreach (¢, x) € I x R2;

(E4) ¢; ;== ¢(t,") :R* > R%isa proper diffeomorphism for each ¢ € 1.
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824 I. McGillivray

Lemma 2.3 Let Z be a time-dependent vector field with the properties (Z.1)—(Z.2)
and ¢ be the corresponding flow. Then

(i) for (t,x) € I x R?,

_ 1 +tdZo(x) +tR(t,x) forx € K;
d(p(t,x)—{l forx ¢ K;

where supg |R(t, )| = Oast — 0.
Let x € R?, v a unit vector in R* and M the line though x perpendicular to v. Then
(ii) for (t,x) € I x R2,

ivH () _
JldM(p(t, x) — 14+ t(le Z())(x) +tR (l, .X') forx c K,
: forx ¢ K.

where sup g IRW(t, )] - 0ast — 0.

Proof (i) We first remark that the flow ¢ : I xR? — R? associated to Z is continuously
differentiable in 7, x in virtue of (Z.1) by [16] Theorem 1.3.3. Put y(¢, x) := do(¢, x)
for (t,x) € I x R2. By [16] Theorem 1.3.3,

y(t,x) =dZ(1, (1, x))y(t, x)

for each (1, x) € I x R? and y(0,x) = I for each x € R? where I stands for the
2 x 2-identity matrix. Forx € K andt € I,

do(t,x)=14+de(t,x) —de(0, x)

d —d
=1+ty'(0,x)+t{ vlt, x) t ¢, %) —y‘(o,x)}
=I+tdZ(0,x)+tiw—y(O,x)}
:I—}-tdZO(x)—f-t{w—y(O,x)}.

Applying the mean-value theorem component-wise and using uniform continuity of
the matrix y in its arguments we see that

uniformly on K as ¢ — 0. This leads to (). Part (ii) follows as in Lemma 2.2. ]

Let E be a set of finite perimeter in R? with V¢(E) < +o00. The first variation of
weighted volume resp. perimeter along X € C2° (R?, R?) is defined by

d
SVF(X)i= | Vi@ (E)), (2.13)
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SPF(X) = lim Py (E)) = Pr(E) (2.14)
tl0

t

whenever the limit exists. By Lemma 2.1 the f-perimeter in (2.14) is well-defined.
Convex functions. Suppose that i : [0, +00) — R is a convex function. For x > 0
and v > 0 define

h(x +tv) — h(x)
t

o (x,v) =1i R
L(x,v) t%l €

and define A’ (x, v) similarly for x > 0 and v < 0. For future use we introduce the
notation

py =h(,+1), p_:=—h'(-,=1)and p := (1/2)(p1 + p-)

on (0, +00). It holds that % is differentiable a.e. and A’ = p a.e. on (0, +00). Define
[p] := p4+ — p—. Then [p] > 0 and vanishes a.e. on (0, +00).

Lemma 2.4 Suppose that the function f takes the form (1.3) where h : [0, 4+00) — R
is a convex function. Then

(i) the directional derivative f/, 1 (x,v) exists in R for each x € R? and v € R?;
(ii) forv € R,

L v)] 2
£ wy = | SOl sente o B for x € B\(o);
FO)R (0, +1D)|v] forx =0;
(iii) if M is a C' hypersurface in R? such that cos ¢ # 0 on M then f is differentiable
A -a.e. on M and

()

(V) = fx)pdx)) |

for #'-a.e. x € M.

Proof The assertion in (i) follows from the monotonicity of chords property while
(ii) is straightforward. (iii) Let x € M and y; : I — M be a C'-parametrisation of
M near x as above. Now r; € C'(I) and 71 (0) = coso (x) # 0 so we may assume
that ri : I — ri(I) C (0,400) is a C! diffeomorphism. The differentiability set
D(h) of h has full Lebesgue measure in [0, +00). It follows by [1] Proposition 2.49
that r~ ! (D(h)) has full measure in . This entails that f is differentiable .#!-a.e. on
yi(l) C M. O

3 Existence and C! regularity

We start with an existence theorem.
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826 I. McGillivray

Theorem 3.1 Assume that f is a positive radial lower-semicontinuous non-decreasing
density on R? which diverges to infinity. Then for each v > 0,

(i) (1.2) admits a minimiser;
(ii) any minimiser of (1.2) is essentially bounded.

Proof See [22] Theorems 3.3 and 5.9. O
But the bulk of this section will be devoted to a discussion of C! regularity.

Proposition 3.2 Let f be a positive locally Lipschitz density on R*. Let E C R? be
a bounded set with finite perimeter. Let X € C2° (R?, R?). Then

SV(X) =/Ediv(fX)dx = —/?E f ol xydr'.

Proof Lett € R. By the area formula ( [1] Theorem 2.71 and (2.74)),

V(e (E)) =/ fdx = f (f o) Jad(@r)x dx 3.1
¢ (E) E
and

Vi(pi(E)) = Vy(E) = /E(f o@)ade — f dx

=/E(f°<l’t)(~]2d§0t - 1)dx+/1;f0<pt—fdx.

The density f is locally Lipschitz and in particular differentiable a.e. on R? (see [1]
2.3 for example). By the dominated convergence theorem and Lemma 2.2,

S5V (X) =/E{fdiv(X)+<Vf, X)}dx:fEdiv(fX)dx

=— e, X)ydo!
FE

by the generalised Gauss—Green formula [1] Theorem 3.36. O
Proposition 3.3 Let f be a positive locally Lipschitz density on R%. Let E C R? be

a bounded set with finite perimeter. Let X € CX° (R?, R?). Then there exist constants
C > 0and § > 0 such that

|Pr@i(E)) — Pr(E)| < Clt]

for|t| <.
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Proof Lett € R. By Lemma 2.1 and [1] Theorem 3.59,

fd! =f fdt.

Pr(ei(E)) =f fdIDxg, (Bl =f
R? (p,(fE)

F i (E)

As ZE is countably I-rectifiable ( [1] Theorem 3.59) we may use the generalised
area formula [1] Theorem 2.91 to write

Ps(p:(E)) = f E(fogo,)hd%(w,)x d".
F

For each x € #E and any ¢ € R,

I(f o) (x) = f()] = Klo(t, x) — x| = K| X]|ool?]

where K is the Lipschitz constant of f on supp[X]. The result follows upon writing

Pr(gi(E)) — Pr(E) = /%(f o ) (1d7E (@) — 1)
+ [f o — fldr" (3.2)
and using Lemma 2.2. O

Lemma 3.4 Let f be a positive locally Lipschitz density on R%. Let E C R? be a
bounded set with finite perimeter and p € FE. For any r > 0 there exists X €
CX(R?, R?) with supp[X] C B(p, r) such that §V(X) = 1.

Proof By (2.2) and [1] Theorem 3.59 and (3.57) in particular,

Py(E, B(p,r)) =/ fdx"' >0
B(p,r)NFE

forany r > 0. By the variational characterisation of the f-perimeter relative to B(p, r)
we can find Y € CE’O(RZ, R?) with supp[Y] C B(p, r) such that

0< f div(fY)dx = —/ FOE Yy da =
ENB(p,r) FENB(p,r)

where we make use of the generalised Gauss—Green formula (cf. [1] Theorem 3.36).
Put X := (1/c)Y. Then X € C°(R?, R?) with supp[X] C B(p,r) and §V,(X) = 1
according to Proposition 3.2. O

Proposition 3.5 Let f be a positive lower semi-continuous density on R2. Let U be
a bounded open set in R* with Lipschitz boundary. Let E, Fy, F> be bounded sets in
R? with finite perimeter. Assume that EAF] CC U and EAF> cC R*\U. Define

Fo= [Fl N U] U [FZ\U].
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828 I. McGillivray

Then F is a set of finite perimeter in R* and
Pr(E) + Py(F) = Pr(F1) + Pr(F2).

Proof The function xg|y € BV(U) and D(xglv) = (Dxg)|u. We write Xg for the
boundary trace of yg|y (see [1] Theorem 3.87); then Xé] e LYU, 1L aU) (cf.
[1] Theorem 3.88). We use similar notation elsewhere. By [1] Corollary 3.89,
2\77 —_
Dyxe=Dyxe LU+l —xp YU s LoU + Dye L (RM\T);
_ L v _ RAU Ul | L (R2\T):
Dyr=Dxr LU+ (Xp, — X, )V U + Dy, L (R\U);
RZ 7 J—
Dxp = Dxr LU + (Y — xp "Y' LoU + Dxp L R\U);

AN —_
Dxr, = Dxp LU+ (¥ — xp, YU LU + Dxp, L RA\D).

From the definition of the total variation measure ([1] Definition 1.4),
. U RAU | L1 2\77)-
IDxel = IDxel-U + |xg — xg 1 LOU +|DxelL (RT\U);

RA\U -
IDxrl = 1Dxr LU+ xY — xp V1 LU + |Dxp,| L (RP\D);

RZ 77 —
IDxr| = IDxr LU+ [xY — x5 V1A LU + |Dxe| L (RI\D);

RZ U —
IDxp| = 1DxelLU + IxY — xp V15" LU + |Dyr,| L R\D);

where we also use the fact that Xll,]l =y g as EAF; CC U and similarly for F>. The
result now follows. O

Proposition 3.6 Assume that f is a positive locally Lipschitz density on R, Letv > 0
and suppose that the set E is a bounded minimiser of (1.2). Let U be a bounded open
set in R?. There exist constants C > 0 and 8 > 0 with the following property. For any
x€eUand0 <r <,

PH(E) — Pf(F) < C|Vf(E) — V¢ (F)| (3.3)

where F is any set with finite perimeter in R? such that EAF CC B(x, r).

Proof The proof follows that of [21] Proposition 3.1. We assume to the contrary that
(VC > 0)(¥Y8>0)3x € U)3r € (0,8)3F c R?)
[FAE CC B(x.r) A APs > C|Avf|] (3.4)
in the language of quantifiers where we have taken some liberties with notation.
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Choose pi, p» € FE with p; # p;. Choose ryp > 0 such that the open balls
B(p1,r9) and B(p2, ro) are disjoint. Choose vector fields X; € CSO(RZ, R?) with
supp[X ;] C B(pj, ro) such that

8Vi(X;) =1and |Ps(9” (E)) — Pf(E)| < ajlt| for |t| < 8;and j = 1,2

(3.5)
as in Lemma 3.4 and Proposition 3.3. Put a := max{ay, a2}. By (3.5),
Vi (E)) = Vi(E) =t +o()ast — Ofor j =1,2.
So there exist ¢ > 0 and 1 > n > 0 such that
t=nltl < Vip (E) = Vi(E) <t +nlt];
|Prlpr” (E)) = Pr(E)| < (a+ Dltl; (3.6)

for |t] < e and j = 1, 2. In particular,

Vi@ (E)) = Vi(E) > (1 —nltl;

, 1+ .
Py () = Pr(E)| < 1TfIIVf(%('/)(E)) = VyE)forjt] <& (3.7)

for [t| <eand j =1, 2.
In (3.4) choose C = (1 +a)/(1 —n) and § > O such that

(@) 0 <28 < dist(B(p1, ro), B(p2,10)),
(b) sup{Vy(B(x,8)) : x e U} < (1 —n)e.

Choose x, r and F1 asin (3.4). Inlight of (a) we may assume that B(x, r)NB(p1, ro) =
Q’ By (b)9

[Vi(F1) = Vi(E)| = Vp(B(x,r)) = Vi(B(x,8)) < (1 —n)e. (3-8)
From (3.6) and (3.8) we can find r € (—¢, &) such that with F, := <pt(l)(E),
Vi(F) = Vi(E) = = Vi (F) = vy (B)) (3.9)
by the intermediate value theorem. From (3.4),
Pr(F1) < Py(E) = C|Vy(F1) — Vi(E)| (3.10)
while from (3.7),

P;(F2) < Pf(E) + C|V;(F2) — V(E)|. 3.11)
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Let F be the set
Fi=[F\B(p1, o)) | U [ B(p1, r0) 0 F2].

Note that EAF, CC B(pi, ro). By Proposition 3.5, F is a bounded set of finite
perimeter in R? and

Pr(E) + Pp(F) = Pr(F1) + Pr(F?).
We then infer from (3.10), (3.11) and (3.9) that

Pr(F) = Ps(F)) + Pr(F2) — Pr(E)
< Pr(E) = C|Vy(F1) — Vi(E)| + Pr(E)
+ C|Vi(F2) — Vi(E)| — Pr(E) = Pr(E).

On the other hand, V;(F) = V¢ (F1) + Vi(F2) — Vy(E) = Vy(E) by (3.9). We
therefore obtain a contradiction to the f-isoperimetric property of E. O

Let E be a set of finite perimeter in R? and U a bounded open set in R”. The
minimality excess is the function v defined by

w(E,U):=P(E,U)—v(E,U) (3.12)
where
V(E,U) :=inf{P(F,U) : F is a set of finite perimeter with FAE CC U}

asin [27] (1.9). We recall that the boundary of E is said to be almost minimal in R2 if
for each bounded open set U in R? there exists 7 > 0 and a positive constant K such
that for every x € U andr € (0, T),

Y (E, B(x, 1)) < Kr?. (3.13)

This definition corresponds to [27] Definition 1.5.

Theorem 3.7 Assume that f is a positive locally Lipschitz density on R%. Let v > 0
and assume that E is a bounded minimiser of (1.2). Then the boundary of E is almost
minimal in R2.

Proof Let U be a bounded open set in R> and C > 0 and § > 0 as in Proposition
3.6. The open é-neighbourhood of U is denoted I5(U). Let x € U and r € (0, §). Put
V = I5(U). For the sake of brevity write m := infp( ) f and M := SUPB(x.r) f.
Let F be a set of finite perimeter in R? such that FAE CC B(x, r). By Proposition
3.6,
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P(E,B(x,r)) — P(F, B(x,r))

IA

%Pf(E, B(x,r)) — %Pf(F, B(x,r))

l<P~(E B(x.r)) — P/(F. B(x r)))+(i— i)P-(F B(x.r))
m A ’ FASE) ) M i, )

IA

1 —-m
Z(Pf(E,B(x,r))—Pf(F, B(x,r)))+ 2 PH(F, B(x,r))

supy f
(infy f)?

P(F, B(x,r))

|Vi(E) = Vi(F)| 4+ (2Lr) P(F, B(x,r))

<
= oty f
w2 ?uPV f + QL) .Squ S
infy f (infy f)2

where L stands for the Lipschitz constant of the restriction of f to V. We then derive
that

supy f upy, f
2L
ry 7 HCL G e

By [13] (5.14), v(E, B(x,r)) < mr. The inequality in (3.13) now follows. O

Y(E, B(x,r)) < Crnr?

S(E, B(x,1)).

Theorem 3.8 Assume that f is a positive locally Lipschitz density on R?. Letv >0
and suppose that E is a bounded minimiser of (1.2). Then there exists a set E C R?
such that

(i) E is a bounded minimiser of (1.2);
(ii) E is equivalent to E;
(iii) E is open and AE isa C! hypersurface in R2.

Proof By [13] Proposition 3.1 there exists a Borel set F equivalent to E with the
property that

F={x eR?:0< |F N B(x, p)| <7Tp2foreach,0 > 0}.

By Theorem 3.7 and [27] Theorem 1.9,  F is a C! hypersurface in R? (taking note of
differences in notation). The set

={xe R? : |F N B(x, p)| :rrp2 for some p > 0}

satisfies (i)—(iii). O

4 Weakly bounded curvature and spherical cap symmetry

Theorem 4.1 Assume that f is a positive locally Lipschitz density on R?. Letv >0
and suppose that E is a bounded minimiser of (1.2). Then there exists a set E C R?
such that

(i) E is a bounded minimiser of (1.2);
(ii) E is equivalent to E;
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(iii) E is open and dE isa C! hypersurface in R>.
Proof We may assume that E has the properties listed in Theorem 3.8. Put M := dE.
Let x € M and U a bounded open set containing x. Choose C > 0 and § > 0 as in
Proposition 3.6. Let 0 < r < § and X € C>°(R?, R?) with supp[X] C B(x, ). Then
Pr(E) — Pr(gi(E)) < CIVy(E) — Vi(e(E))|
for each ¢ € R. From the identity (3.2),
—f (f 0 ) (N1dY (@)x = D" < CIVF(E) = V(@i (E))|
M
+ [ 1on - f1a
M
< CIVF(E) = V(@ (EN)| + V2K [ X oo (M (1 supp[X D)1

where K stands for the Lipschitz constant of f restricted to U. On dividing by ¢ and
taking the limit # — 0 we obtain

—/ FdivM X d! gc‘/ fin, X)doA"
M M
+ V2K || X [loo 7" (M N supp[X])

upon using Lemma 2.2 and Proposition 3.2. Replacing X by —X we derive that
‘/ fAivM X dA"| < Cil| X[l (M N supp[X])
M

where C1 = C|| f || L= ) ++/2K . Let y1 : I — M bealocal C! parametrisation of M
near x. Suppose that ¥ € C!(1, R?) with supp[Y] C I and that y; (I) C M N B(x, r).
Note that there exists X € C2° (RZ, Rz) with supp[X] C B(x,r)suchthat Xoy; =Y
on /. The above estimate entails that

‘/,(fO YWY, 1) ds| < C1|suppl¥1[1¥ e

This means that the function (f o y1)¢ belongs to BV(7) and this implies in turn that
t e BV(I). For s, 50 € I with s1 < 52,

|t(s2) —t(s1)| = |Dt((s1, 52))| < |Dt[((51. 52))

- sup{/ (t,Y)ds:Y € C ((s1,52)) and [|Y [|oo < 1}
(51,52)

< csup[/ (foyit,Y)ds:Y € Cl((s1,52) and |V [0 < 1]
(51,52)

< cCilsz — 51|
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where 1/c = infz f > 0. It follows that M is of class chl O

We turn to the topic of spherical cap symmetrisation. Denote by S! the centred
circle in R? with radius T > 0. We sometimes write S! for S}. Givenx € R2, v € S!
and o € (0, 7] the open cone with vertex x, axis v and opening angle 2« is the set

Clx,v,a) = {yeR2 Sy —x,v) > |y—x|cosa].

Let E be an #?-measurable set in R% and t > 0. The -section E, of E is the set
E; := ENS!. Put

L(t) = Lg(t) == # (E;) fort > 0 .1

and p(E) := {t > 0: L(r) > 0}. The function L is .#’!-measurable by [1] Theorem
2.93.Given t > O and 0 < o < 7 the spherical cap C(t, «) is the set

L S% NC@O,e,a) if0 <o <m;
C(T, 05) = {S.}. ifo = -

and has 7! -measure s(t, o) := 2at. The spherical cap symmetral E*¢ of the set E
is defined by

E:= ] C(r.o) 4.2)

Tep(E)

where a € (0, 7] is determined by s(z, @) = L(t). Observe that E*¢ is a .¥>-
measurable set in R? and V¢ (E*) = Vy(E). Note also that if B is a centred open ball
then B*¢ = B\{0}. We say that E is spherical cap symmetric if JOV(EAES):) =0
for each t > 0. This definition is broad but suits our purposes.

The result below is stated in [22] Theorem 6.2 and a sketch proof given. A proof
along the lines of [2] Theorem 1.1 can be found in [23]. First, let B be a Borel set in
(0, 400); then the annulus A(B) over B is the set A(B) := {x € R : |x| € B}.

Theorem 4.2 Let E be a set of finite perimeter in R%. Then E¢ is a set of finite
perimeter and

P(E*°, A(B)) < P(E, A(B)) 4.3)

for any Borel set B C (0, 00) and the same inequality holds with E*¢ replaced by any
set F that is £?-equivalent to E*°.

Corollary 4.3 Let f be a positive lower semi-continuous radial function on R?. Let
E be a set of finite perimeter in R2. Then Pr(EC) < Py(E).

Proof Assume that Py(E) < +o00. We remark that f* is Borel measurable as f is
lower semi-continuous. Let (f;) be a sequence of simple Borel measurable radial
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functions on R? such that 0 < f;, < f and f; 1 f on R as h — o0o. By Theorem
4.2,

Py, (E*) 2/ frnd|Dxpse| S/ fnd|Dxgl = Py, (E)
R2 R?

for each h. Taking the limit 4 — oo the monotone convergence theorem gives
Pr(E*C) < Pr(E). o

Lemma 4.4 Let E be an L?*-measurable set in R? such that E\{0} = E*°. Then
there exists an L*-measurable set F equivalent to E such that

(i) oF ={x € R%:0 < |F N B(x, p)| <|B(x, p)| forany p > 0};
(ii) F is spherical cap symmetric.

Proof Put

= {x e R?: |[EN B(x, p)| = |B(x, p)| for some p > 0};
Eqg:={x € R? : |E N B(x, p)| = 0 for some p > 0}.

We claim that E is spherical cap symmetric. For take x € E| with 7 = |x| > 0 and
|60(x)| € (0,7]. Now |E N B(x, p)| = |B(x, p)| for some p > 0. Let y € R? with
ly| = v and |8(y)| < |0(x)|. Choose a rotation O € SO(2) such that O B(x, p) =
B(y, p). As E\{0O} = E*°, |[EN B(y, p)| = [O(E N B(x, p))| = |EN B(x, p)| =
|B(x, p)| = |B(y, p)|. The claim follows. It follows in a similar way that R\ Ey is
spherical cap symmetric. It can then be seen that the set F := (E{ U E)\ E¢ inherits
this property. As in [13] Proposition 3.1 the set F' is equivalent to E and enjoys the
property in (i). O

Theorem 4.5 Let f be as in (1.3) where h : [0, +00) — R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Then there exists
an L*-measurable set E with the properties

(i) E is a minimiser of (1.2);

(ii) L~ = L a.e. on (0, +00);
(iii) E is open, bounded and has C* L boundary;
(iv) E\{O} Ese.

Proof Let E be abounded minimiser for (1.2). Then £ := E*¢ isabounded minimiser
of (1.2) by Corollary 4.3 and L = L, on (0, +00). Now put E := F with F as in
Lemma4.4. Then L, = L a.e.on (0, +00) as E; isequivalent to £, E> is abounded
minimiser of (1.2) and E» is spherical cap symmetric. Moreover, 3 E; = {x € R? :
0 < |E2N B(x, p)| < |B(x, p)| for any p > 0}. As in the proof of Theorem 3.8, 9 E»
is a C! hypersurface in R?. Put

E = {x e R? : |E2 N B(x, p)| = |B(x, p)| for some p > 0}.

Then E is equlvalent to E» so that (ii) holds and is a bounded minimiser of (1.2);
E is open and 9E = 0E, is C'. In fact, 3E is of class C'! by Theorem 4.1. As E»
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is spherical cap symmetric the same is true of E.But E is open which entails that
E\{0} = E*°. O

5 More on spherical cap symmetry
Let
H:={x=(x1,x) € R?: x, > 0}
stand for the open upper half-plane in R? and
S:R? Rz;x = (x1,x2) — (x1, —x2)
for reflection in the x1-axis. Let O € SO(2) represent rotation anti-clockwise through
/2.

Lemma 5.1 Let E be an open set in R? with C' boundary M and assume that E\{0} =
E*¢. Let x € M\{0}. Then

(i) Sx € M\{0};

(ii) n(Sx) = Sn(x);
(iii) coso(Sx) = —coso(x).

Proof (i) The closure E of E is spherical cap symmetric. The spherical cap symmetral
E is invariant under S from the representation (4.2). (ii) is a consequence of this last
observation. (iii) Note that # (Sx) = O*n(Sx) = O*Sn(x). Then

cos o (Sx) = (Sx,1(Sx)) = (Sx, O*Sn(x)) = (x, SO*Sn(x))
= (x, On(x)) = —(x, O*n(x)) = cos o (x)

as SO*S = 0 and O = —O™. O
We introduce the projection 7 : R2 — [0, +00); x — |x]|.

Lemma 5.2 Let E be an open set in R® with boundary M and assume that E\{0} =
E’.

(i) Suppose 0 # x € R*\E and 0(x) € (0, ). Then there exists an open interval I
in (0, +00) containing T and o € (0, 6(x)) such that A(I)\S(a) C R*\E.
(ii) Suppose 0 # x € E and 6(x) € [0, ). Then there exists an open interval I in
(0, 400) containing t and o € (0(x), ) such that A(I) N S(«) C E.
(iii) For each 0 < t € w(M), M, is the union of two closed spherical arcs in Sl
symmetric about the x1-axis.

Proof (i) We can find o € (0, 6(x)) such that Sl\S(a) C Ri\E as can be seen from
definition (4.2). This latter set is compact so dist(S%\S_(oz), E) > 0. This means that
the e-neighbourhood of S%\S () is contained in R\ E for ¢ > 0 small. The claim
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follows. (ii) Again from (4.2) we can find & € (6(x), 7) such that S! N S(e) C E
and the assertion follows as before.

(iii) Suppose x1, x7 are distinct points in M; with0 < 6(x1) < 0(x2) < 7. Suppose y
lies in the interior of the spherical arc joining x1 and x». If y € RZ\ E then x, € R?\E
by (i) and hence x, ¢ M. If y € E we obtain the contradiction that x; € E by (ii).
Therefore y € M. We infer that the closed spherical arc joining x; and x; lies in M.
The claim follows noting that M is closed. O

Lemma 5.3 Let E be an open set in R*> with C' boundary M. Let x € M. Then

liminf<u, n(x)> > 0.
Esy—x 'y — x|

Proof Assume for a contradiction that

y—x
ly — x|

lim inf <

Esy—x

,n(x)> €[-1,0).

There exists n € (0, 1) and a sequence (yj) in E such that y;, — x as h — oo and

<)’h—x

,n(x>) < .1
lyn — x|

for each h € N. Choose « € (0, 7/2) such that cosa = 1. As M is C! there exists
r > 0 such that

Bx,r)yNCx, —n(x),a) N E =0.

By choosing # sufficiently large we can find y, € B(x, r) with the additional property
that y, € C(x, —n(x), @) by (5.1). We are thus led to a contradiction. O

Lemma 5.4 Let E be an open set in R? with C' boundary M and assume that E\{0} =
E*¢. Foreach0 <t € m(M),

(i) |cosa| is constant on M,

(ii) coso = 0on M; N{x; = 0};
(iii) (Ox,n(x)) <O0forx e M N H
(iv) cosoc <0on M. N H;

and if coso % 0 on My then
(v) © € p(E);
(vi) M consists of two disjoint singletons in S% symmetric about the x1-axis;

(vii) L(t) € (0,271),
(viii) My = {(t cos(L(t)/2t), £t sin(L(t)/27)}.

Proof (i) By Lemma 5.2, M is the union of two closed spherical arcs in Sl symmetric
about the x-axis. In case M; N H consists of a singleton the assertion follows from
Lemma 5.1. Now suppose that M, N H consists of a spherical arc in S! with non-empty
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interior. It can be seen that cos o vanishes on the interior of this arc as 0 = ri = cos o]
in a local parametrisation by (2.9). By continuity cos o = 0 on M. (ii) follows from
Lemma 5.1. (iii) Let x € M; N H 50 0(x) € (0, ). Then S(@(x)) NS! C E as E is
spherical cap symmetric. Then

0< lim <u, n(x)> = —(0x, n(x))
SO@)NStay—x \y — x|

by Lemma 5.3. (iv) The adjoint transformation O* represents rotation clockwise
through /2. Let x € M, N H. By (iii),

0> (Ox,n(x)) = (x, O*n(x)) = (x, t(x)) = tcoso(x)

and this leads to the result. (v) As coso #= 0 on M; we can find x € M; N H. We
claim that S! N S(A(x)) C E. For suppose that y € S! N S(A(x)) but y ¢ E. We may
suppose that 0 < 6(y) < 8(x) < . If y € R*\ E then x € R*\ E by Lemma 5.2. On
the other hand, if y € M then the spherical arc in H joining y to x is contained in M
again by Lemma 5.2. This arc also has non-empty interior in S%. Now coso = 0 on
its interior so cos(o (x)) = 0 by (i) contradicting the hypothesis. A similar argument
deals with (vi) and this together with (v) in turn entails (vii) and (viii). O

Lemma 5.5 Let E be an open set inR* with C' boundary M and assume that E\{0} =
E*¢. Suppose that 0 € M. Then

(i) (sino)(0+) =0,
(ii) (coso)(0+) = —1.

Proof (i) Let y; be a C! parametrisation of M in a neighbourhood of 0 with y; (0) = 0
as above. Then n(0) = n1(0) = e; and hence #(0) = #;(0) = —e,. By Taylor’s
Theorem y(s) = y1(0) + 11(0)s 4+ o(s) = —ezs + o(s) for s € . This means that
ri(s) = y1(s)| = s + o(s) and

cos6; = {e1, y1) _ (e, 1) s S0
r S ri

as s — 0 which entails that (cos#;)(0—) = 0. Now ¢ is continuous on / so t; =
—ey +o(1) and cosay = (eq, t1) = o(1). We infer that (cos «1)(0—) = 0. By (2.11),
cosay = cosoqcosf; — sinog sinfy on I and hence (sinop)(0—) = 0. We deduce
that (sino)(0+) = 0. Item (ii) follows from (i) and Lemma 5.4. O

The set
Q= n[(M\{O}) N{cosa # 0}] (5.2)

plays an important r6le in the proof of Theorem 1.1.

Lemma 5.6 Let E be an open set inR? with C' boundary M and assume that E\{0} =
E*¢. Then $2 is an open set in (0, +00).
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Proof Suppose 0 < 7 € £2. Choose x € M; N{coso # 0}.Lety; : I - M bea
local C! parametrisation of M in a neighbourhood of x such that y; (0) = x as before.
By shrinking / if necessary we may assume that r; # 0 and coso; # 0 on /. Then
the set {r;(s) : s € I} C £2 is connected and so an interval in R (see for example [25]
Theorems 6.A and 6.B). By (2.9), r{(0) = coso(0) = cosa(p) # 0. This means
that the set {r;(s) : s € I} contains an open interval about . O

6 Generalised (mean) curvature

Given a set E of finite perimeter in R? the first variation 8V (Z) resp. 8P;(Z) of
weighted volume and perimeter along a time-dependent vector field Z are defined as
in (2.13) and (2.14).

Proposition 6.1 Let f be as in (1.3) where h : [0, +00) — R is a non-decreasing
convex function. Let E be a bounded open set in R* with C' boundary M. Let Z be a
time-dependent vector field. Then

(SP;{(Z)=/ijr(.,zo)+fdivMZOd%1

where Zy := Z(0, -) € CL(R?, R?).

Proof The identity (3.2) holds for each t € I with M in place of .% E. The assertion

follows on appealing to Lemma 2.3 and Lemma 2.4 with the help of the dominated

convergence theorem. O
Given X,Y € C*° (R2, R?) let ¥ resp. x stand for the 1-parameter group of C*

diffeomorphisms of R2 associated to the vector fields X resp. Y asin (2.12). Let  be

an open interval in R containing the point 0. Suppose that the function o : I — R is
C!. Define a flow via

¢ I xR — R (1,x) > x(0(1), ¥ (1, x)).
Lemma 6.2 The time-dependent vector field Z associated with the flow ¢ is given by
Z(t,x) =0" ()Y (x (o), ¥ (1, %)) +dx (o), Y, x)X W (r, x)) (6.1)
for (t, x) € I x R? and satisfies (Z.1) and (Z.2).
Proof Fort € I and x € R? we compute using (2.12),
dp(t, x) = B x) (0 (1), Y(t,x))0" (1) +dx (o), Y(t, )Y, x)

and this gives (6.1). Put K := supp[X], K> := supp[Y] and K := K; U K». Then
(Z.2) holds with this choice of K. O
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Let E be a bounded open set in R? with C! boundary M. Define A := (M\{0}) N
{coso =0} and

Ap:={xeM:#" (AN B(x, p)) = SN (M N B(x, p)) for some p > 0}. (6.2)

For future reference put Af =A1N{xeM:x(x,n) >0}

Lemma 6.3 Let f be asin(1.3) where h : [0, +00) — R is a non-decreasing convex
function. Let E be a bounded open set in R* with C'! boundary M and suppose that
E\{0} = E*¢. Then

(i) Ay is a countable disjoint union of well-separated open circular arcs centred at
0;
(i) A A \AY) = 0; B
(iii) f is differentiable 7 -a.e. on M\ A}.

The term well-separated in (i) means the following: if I" is an open circular arc in
Ay with ' 0 (AN\T) =P thend(I', A)\T") > 0.

Proof (i) Let x € Ay and y; : I — M a C"! parametrisation of M near x. By
shrinking [ if necessary we may assume that y;(/) C M N B(x, p) with p as in
(6.2).Socoso =0 #lae. on y1(I) and hence cos o1 = 0 a.e. on . This means that
coso] = 0onlaso; € CO1(I)andthatr is constanton / by (2.9). Using (2.10) itcan
be seen that y; (1) is an open circular arc centred at 0. By compactness of M it follows
that A; is a countable disjoint union of open circular arcs centred on 0. The well-
separated property flows from the fact that M is C. (ii) follows as a consequence of
this property. (iii) Letx € M\ Ay and y; : I — M a C"! parametrisation of M near x
with properties as before. We assume that x lies in the upper half-plane H. By shrinking
I if necessary we may assume that y;(I) C (M\A_l) N H. Let s1, 52,53 € I with
s1 < 52 < s3.Theny := yi(s2) € M\ A1.So 7 (MN{coso # 0}NB(y, p)) > 0for
each p > 0. This means that for small n > 0 the set y;((s2 — 1, s2 +n)) N{coso # 0}
has positive 77 I_measure. Consequently, 1 (s3) —r1(s1) = fs sf cos oy ds < 0bearing
inmind Lemma 5.4. This shows that r is strictly decreasing on /. So A is differentiable
a.e. on ri(I) C (0,+o00) in virtue of the fact that 4 is convex and hence locally
Lipschitz. This entails (iii). O

Proposition 6.4 Let f be as in (1.3) where h : [0, +00) — R is a non-decreasing
convex function. Given v > 0 let E be a minimiser of (1.2). Assume that E is a bounded
open set in R* with C' boundary M and suppose that E\{0} = E°¢. Suppose that
M\A{ # (. Then there exists ) € R such that for any X € C(} (R2, R?),

Osf {fi(~,X)+fdivMX—,\f<n, X)}d%l.
M

Proof Let X € C2°(R?,R?). Letx € M and r > 0 such that M N B(x, r) C M\ Aj.
Choose Y € Cé’o(Rz, R?) with supp[Y] C B(x,r) as in Lemma 3.4. Let ¥ resp. x
stand for the 1-parameter group of C*° diffeomorphisms of R? associated to the vector
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fields X resp. Y as in (2.12). For each (s, t) € R2 the set Xxs (Y (E)) is an open set in
R? with C! boundary and 8 (x; o ¥;)(E) = (xs o ¥;)(M) by Lemma 2.1. Define

Vs, 1) := Vi(x: (s (E))) — Vi (E),
P(s, 1) := Pr(x: (Vs (E))),

for (s, 1) € R2. We write F = (xr o ¥5)(E). Arguing as in Proposition 3.2,

Vs, 1) = lim A/ m{Vy G (F)) = Vy(F)} = /Fdiv(fY)dx

_ /E (div(FY) 0 11 0 W) J2d (s 0 y)x dx

with an application of the area formula (cf. [1] Theorem 2.71). This last varies con-
tinuously in (s, t). The same holds for partial differentiation with respect to s. Indeed,
put n := x; o Y. Then noting that Jod(n o ¥) = (J2dn) o YpJod Yy, and using the
dominated convergence theorem,

0V (s.1) = lim (1/ )|V (n(w (E)) =V, (n(E)
= lin/m| [ (f onovmndtro v dx~ [ (7 omndn. dx)
—0 E E

= lim1/m] [ 1(f @m0 = (f o ladr o v dx
h—0 E
+ [ omiadno vy — hdnliadi d
+ /E (f o mhdnlody, — 11dx|

= [5G om Xpnanax+ [ (rom(Tdn x) dx

+/(fon)]2d7]diVde
E

where the explanation for the last term can be found in the proof of Proposition 3.2. In
this regard we note that d (d x;) (for example) is continuous on I x R2 (cf. [1] Theorem
3.3 and Exercise 3.2) and in particular V J>d x; is continuous on 7 X R2. The expression
above also varies continuously in (s, ¢) as can be seen with the help of the dominated
convergence theorem. This means that V (-, -) is continuously differentiable on R
Note that

;v (0,0) =/ div(fY)dx =1
E
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by choice of Y. By the implicit function theorem there exists 7 > 0 and a C! function
o :(—n,n) — Rsuchthat 0(0) =0and V(s,o(s)) = 0 fors € (—n, n); moreover,

a'(0)

—BSV(O,O):—/ {(Vf, X)+fdivX}dx
E

—/ div(fX)dx:/ f(n, X)d#"
E M

by the Gauss—Green formula (cf. [1] Theorem 3.36).
The mapping

@1 (=n,n) xR* = RY 1> x(o(t), ¥(t, x))

satisfies conditions (F.1)—(F.4) above with I = (—n, n) where the associated time-
dependent vector field Z is given as in (6.1) and satisfies (Z.1) and (Z.2); moreover,
Zo=Z(0,-) = o’(0)Y + X. Note that Zop = X on M\ B(x, r).

The mapping I — R;t — Pr(¢,(E)) is right-differentiable at # = 0 as can be
seen from Proposition 6.1 and has non-negative right-derivative there. By Proposition
6.1 and Lemma 6.3,

0=orf@ = [ Fit.z0+ 1 av zod !

=/ LG, Zo) + fdivM Zyd o
M\ A

+ | LG X) + fdivM X d !
Ay

:/ 'OV Y)+ (VS X)
M\ Ay
+ 0'(0) fdivMyY + £ divM X a7

+/7fjr(.,X) + fdivM X d.#"
Ay
=/ FLe X))+ fdivM X doa!
M
+ a’(O)f fLe Y+ fdivMy anrt. (6.3)
M

The identity then follows upon inserting the expression for o’(0) above with A =
— [y FLC V) + fdivMY d.#!. The claim follows for X € C!(R?, R?) by a density
argument. O

Theorem 6.5 Let f be as in (1.3) where h : [0, 400) — R is a non-decreasing
convex function. Given v > 0 let E be a minimiser of (1.2). Assume that E is a
bounded open set in R* with C! boundary M and suppose that E\{0} = E*C.
Suppose that M\ A1 # @. Then there exists A € R such that
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(i) k+ psino + A1 =0 " -a.e. on M\ Ay;
(ii) p- —A <k < py —ron A];
(ifi) —py — A<k <—p_—ionAJ.

The expression k + p sin o is called the generalised (mean) curvature of M.

Proof (i) Let x € M and r > 0 such that M N B(x,r) C M\A;. Choose
X e CL(R? R?) with supp[X] C B(x,r). We know from Lemma 6.3 that f is
differentiable .7#!-a.e. on supp[X]. Let A be as in Proposition 6.4. Replacing X by
—X we deduce from Proposition 6.4 that

0=/ {(Vf, X)+ fdivMX — af(n, X)}d%ﬂ‘.
M

The divergence theorem on manifolds (cf. [1] Theorem 7.34) holds also for C 1,1
manifolds. So

/wa, X)+ fdivMxdn' = /M o fn, X)+ (VM £, X)+ fdivM X do#!
- /M o f (n, X)+divM (fX)d.A"
- /M o f (n, X)— Hf (n, X)d"!
=/ Futonlog f — HY dA°!
M

where u = (n, X). Combining this with the equality above we see that
/ uf {oplog f —H — Ay dA#' =0
M

for all X € C!(R?, R?). This leads to the result.
(ii) Let x € M and r > O such that M N B(x,r) C Af. Letg € CI(S}) with support
in S} N B(x, r). We can construct X € C } (R?, R?) with the property that X = ¢n on
M N B(x,r). By Lemma 2.4,

FiCX) = f (x|, sgnx, X)I(n, X)| = fA, (x|, sgn ix, n))|g|

on Aj. Let us assume that ¢ > 0. As (-,n) > 0 on AT we have that f} (-, X) =
foh' (x|, +1) = fép4 so by Proposition 6.4,

05/ {fL(-,X)ijdivMX—Af(n,X)]djfl
M

- /Mf¢{p+ —k—A}d%].
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We conclude that py —k — X > 0 on M N B(x, r). Now assume that ¢ < 0. Then
fiC X) = —foh! (Ix], =1) = fép- so

05/ f¢{p_ —k—A}d%l
M
and hence p_ —k — X < 0on M N B(x, r). This shows (ii).

(iii) The argument is similar. Assume in the first instance that ¢ > 0. Then f; (-, X) =

Joh, (x|, =1) = — fp— so

05fo¢{—p_—k—A}d%1.

We conclude that —p_ —k — A > 0on M N B(x, r). Next suppose that ¢ < 0. Then
fiG X)) =—foh' (x|, +1) = — fppy so

Os[Mf¢{—p+—k—A}d%1

and —py —k—A <0on M N B(x,r). O

Let E be an open set in R> with C! boundary M and assume that E\{0} = E*¢
and that £2 is as in (5.2). Bearing in mind Lemma 5.4 we may define

Or: 2 — (0,7); T+ L(r)/21; (6.4)
y:82 — M;1 (tcos0(t), Tsinbr(1)). (6.5)

The function
u:$2 — [—1,1]; t — sin(o (y(1))). (6.6)

plays a key role.

Theorem 6.6 Let f be as in (1.3) where h : [0, 400) — R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E
is open with C'' boundary M and that E\{0} = E*¢. Suppose that M\ A1 # ¥ and
let A be as in Theorem 6.5. Then u € C%1(£2) and

W+ 1/t +pu+r=0

a.e.on S2.

Proof Let T € §2 and x a point in the open upper half-plane such that x € M.
There exists a C!-! parametrisation y; : I — M of M in a neighbourhood of x with
y1(0) = x asabove. Putu; := sin o7 on /. By shrinking the open interval I if necessary
we may assume that r; : I — r1([) is a diffeomorphism and that r; () CC 2. Note
thaty = yj or; " andu = uj or; ' onry(1). It follows that u € C%'(£2). By (2.9),
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a.e. onri(l). As a1 = ki a.e. on [ and using the identity (2.10) we see that 61 =
a1 — 01 =k; — (1/ry)sinoy a.e on 1. Thus,

w=k—(1/t)sin(coy)=k— (1/7)u

a.e. on r(I). By Theorem 6.5 there exists A € R such that k + psino + A = 0
1 -a.e.on M. So

W =—p@u—r—1/Du=—1/t+p()u—A

a.e. on r1(I). The result follows. O

Lemma 6.7 Suppose that E is a bounded open set in R* with C' boundary M and
that E\{0} = E*¢. Then

(i) 62 € CY(R);

(i) 63 = —1 = on Q2.

Proof Let T € §2 and x a point in the open upper half-plane such that x € M.
There exists a C! parametrisation y; : I — M of M in a neighbourhood of x with
y1(0) = x as above. By shrinking the open interval [ if necessary we may assume
that vy : I — ri (1) is a diffeomorphism and that r; (/) CC £2. It then holds that

-1 —1
0 =010r andooy =o010r,

on r1(I) by choosing an appropriate branch of ;. It follows that 6, € C'(£2). By the
chain-rule, (2.10) and (2.9),

6 _ 1 _
Qé:,—orll: — tan oy orll
r r

= (1I/7)tan(o o y)

onry(/). By Lemma 5.4, cos(o o y) = —+/1 — u? on 2. This entails (ii). O

7 Convexity

Lemma 7.1 Let E be a bounded open set in R* with C'' boundary M and assume
that E\{0} = E’°. Putd = sup{|x| :x € M} > 0and b := (d,0). Lety; : I - M
be a CY parametrisation of M near b with y1(0) = b. Then

1'{ . k}>1d
Slﬁ)l esssupj_s stk > 1/

@ Springer



An isoperimetric inequality in the plane with a log... 845

Proof Fors € 1,
S
n) =der+sex+ [ [ =710 du
0
and
u
y'1<u>—y'1(0)=f ki, dv
0

by (2.6). By the Fubini—Tonelli Theorem,
s
y1(s) =dey + sex + / (s —wki(w)ni(u)du = dej + sex + R(s)
0

for s € I. Assume for a contradiction that

I { g } 1 <1/d
51?01 esssup_gs sik1{ <l <1/
for some / € R. Then we can find § > 0 such that k| < [ a.e. on [—§, §]. So

(R(s), e1) = /0‘ (s — wki(w)(n1(w), e1) du > —(1/2)s*1(1 + o(1))

ass | 0and

r1(s)? — d* = 2d(R(s), e1) + 5% + o(s%)
> —dIs*>(1 + o(1)) + 5 + o(s?)

as s | 0. Alternatively,

r(s)? —d’

5 > 1—dl+ o(1).

s
As 1 —dl > 0wecanfind s € I with r1(s) > d, contradicting the definition of d. O

Lemma 7.2 Let f be asin (1.3) where h : [0, +00) — R is a non-decreasing convex
function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E is
open with CY! boundary M and that E\{0} = E*¢. Suppose that M\ A| # @. Then
A< —=1/d — p_(d) < Owith A as in Theorem 6.5.

Proof We write M as the disjoint union M = (M\A;) U Ay. Let b be as above.
Suppose that b € ‘A|.Then b € Ay;infact, b € Ay . By Theorem 6.5, A < —p_ —k
atb. By Lemma 7.1, A < —1/d — p_(d) upon considering an appropriate sequence
in M converging to b. Now suppose that b lies in the open set M\ Ay in M. Let
y1 : I — MbeaCl! parametrisation of M near b with y;(I) C M\ A;. By Theorem
6.5, k1 + p(r1)sino; + A = 0 a.e. on I. Now sinoj(s) — 1 ass — 0. In light of
Lemma7.1,1/d + p(d—) 4+ A <0and A < —1/d — p_(d). O
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Theorem 7.3 Let f be as in (1.3) where h : [0, 400) — R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E is
open with C'! boundary M and that E\{0} = E*¢. Suppose that M\ A| # @. Then
E is convex.

Proof The proof runs along similar lines as [22] Theorem 6.5. By Theorem 6.5,
k+ psino + 1 =0.#"-ae. on M\A;. By Lemma 7.2,

O<k+p_(@d+r<k-—1/d

and k > 1/d Hae. on M\A_l. On AT,k >p-—A>p_+p_(d)+1/d > 0;
on the other hand, k¥ < 0 on AT. So in fact AT =0.Ifb € A thenk = 1/d. On
AT NBO,d),k>—pr —A>—py+p(d)+1/d > 1/d. Therefore k > 1/d > 0
'-a.e. on M. The set E is then convex by a modification of [26] Theorem 1.8 and
Proposition 1.4. It is sufficient that the function f (here «1) in the proof of the former
theorem is non-decreasing. O

8 A reverse Hermite-Hadamard inequality

Let0 <a < b < 400 and p > 0 be a non-decreasing bounded function on [a, b].
Let & be a primitive of p on [a, b] sothath € C 0.1 ([a, b]) and introduce the functions

£:la,b] > R; x > "™, 8.1)
g:la,b] > R;x — xf(x). (8.2)
Then
g =U/x+pg="Ff+gp (8.3)
a.e. on (a, b). Define
b) —
m=m(p,a,b) = g()b—g(“). (8.4)
[, gdt

If p takes the constant value R 5 A > 0 on [a, b] we use the notation m (A, a, b) and
we write mog = m(0, a, b). A computation gives

mo = m(0, a,b) = A(a, b)™! (8.5)

where A(a, b) := (a + b)/2 stands for the arithmetic mean of a and b.

Lemma 8.1 Let0 < a < b < +ooand p > 0 be a non-decreasing bounded function
onla, b]. Then my < m.
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Proof Note that g is convex on [a, b] as can be seen from (8.3). By the Hermite-
Hadamard inequality (cf. [15,17]),

b
/ gdt < M. (8.6)

b—a

The inequality (b — a)(g(a) + g(b)) < (a + b)(g(b) — g(a)) entails

b a+b
/ gdt < T(g(b) —g(a))

and the result follows on rearrangement. O
Lemma 8.2 LetO0<a <b < +oocand i > 0. Thenm(\,a,b) < A+ A(a, b)_l.

Proof First suppose that A = 1 and take 4 : [a, b] — R; ¢ — t. In this case,

b b
/gdt:/ te'dt = (b — 1)e” — (a — 1)e*
a a

and

beb — ae?
(b —1Deb — (a — e’

m(l,a,b) =

The inequality in the statement is equivalent to
(a+Db)(be®? —ae®) < ((b—1)e? — (a — 1)e?)(2 + a + b)
which in turn is equivalent to the statement tanh[(b — a)/2] < (b — a)/2 which holds

for any b > a.
For A > Otake & : [a, b] — R; ¢ +> At. Substitution gives

/b gdt = (1/0)*[(Ab — e — (ha — 1)e**] and
g(b) - g(a) = (1/M)[abe” — hae™]
so from above
mh. a, b) = am(1, ha, \b) < ,\{1 + AQha, xb)*l} —ht A, b))
O

Theorem 8.3 Let 0 < a < b < 400 and p > 0 be a non-decreasing bounded
function on a, b]. Then

(i) m(p,a,b) < p(b—) + Aa,b)™!;
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(ii) equality holds if and only if p = 0 on [a, D).

Proof (i) Define h := fu'pdt on [a, b] so that i’ = p a.e. on (a, b). Define h; :
la,b] = Ryt + h(b) — p(b—)(b —1). Then hy(b) = h(b),h} = p(b—) = p =}
a.e. on (a, b) and hence h > h; on [a, b]. We derive

b b b b
/ gdt =/ re" D dt z/ re"® dt =/ g1 dt
a a a a

g(b) — g(a) = be"® — aeh@ = peM®) _ geh(@
< beM® — M@ = g1 (b) — g1 (a)

and

with obvious notation. This entails that m(p, a, b) < m(p(b—), a, b) and the result
follows with the help of Lemma 8.2.

(ii) Suppose that p # 0 on [a, b). If p is constant on [a, b] the assertion follows from
Lemma 8.2. Assume then that p is not constant on [a, b). Then h # h; on [a, b] in the
above notation and [ 1¢"® dt > [” 1eM®) dr which entails strict inequality in (i). O

With the above notation define

b
M = m(p, a,b) = g(“)bi(). (8.7)
[, gdt
A computation gives
. . 2
moy =m0, a,b) = o (8.8)

Lemma 8.4 Let0 <a < b < 4ooand p > 0 be anon-decreasing bounded function
on[a, b). Then m > my.

Proof This follows by the Hermite-Hadamard inequality (8.6). O
We prove a reverse Hermite-Hadamard inequality.

Theorem 8.5 Let 0 < a < b < +oo and p > 0 be a non-decreasing bounded
function on a, b]. Then

(i) (b—a)m(p,a,b) <2+ap(a+)+bp(b—);

(ii) equality holds if and only if p = 0 on [a, D).

This last inequality can be written in the form

b
g(a) +g(b) < 1 /gdt;
2+apat+) +bp(b—) ~ b—a J,

comparing with (8.6) justifies naming this a reverse Hermite-Hadamard inequality.
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Proof (i) We assume in the first instance that p € C L(a, b)). We prove the above
result in the form

g(a) +g()
2 +ap(a)+bo(b)

b
/ gdt > (b —a) (8.9)

Put

(t—a)(gla) +g)
2+ ap(a)+tp

for ¢ € [a, b] so that

b
/ w' dt = (b —a) g(a) + g(b) .
a 2+ap(a) +bp(b)

Then using (8.3),

w — (g@) + g+t —a)g)2+ap(a) +1p) — (t —a)(gla) + g)(p +1p)
(2 +ap(a) +1p)?
_ (gla) —ag' + 2 +1p)g)2+ap(a) +tp) — (t —a)(g(a) + g)(p +tp")
B (24 ap(a) + tp)?
_ @+1p)2+ap(a) +1p)
Q2+ apa) +1p)?
(g(@) —agh 2 +ap(a)+1tp) — (t —a)(g(a) + g)(p + o)
+
2 +ap(a) +1p)?

- 2g(a)
=8

(2 +ap(a) + bp(b))?
<g (8.10)

(t—a)p

on (a, b) as
gla) —ag' = a(f(a) — (1/t + p)g) = a(f(a) — £ — pg) < 0.

An integration over [a, b] gives the result.
Let us now assume that p > 0 is a non-decreasing bounded function on [a, b].
Extend p to R via

p(a+) for t € (—o0, al;
pt):=1 p@ for t € (a,b];
p(b—) for t € (b, +00);

for r € R. Let ()¢~0 be a family of mollifiers (see e.g. [1] 2.1) and set g := 0 % ¥,

on R for each & > 0. Then g, € C*(R) and is non-decreasing on R for each ¢ > 0.
Put ps := P¢ |{a.p) for each & > 0. Then (pg)e~0 converges to p in L'((a, b)) by [1]
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2.1 for example. Note that s, := fa pe dt — h pointwise on [a, b] as ¢ | 0 and that
(h¢) is uniformly bounded on [a, b]. Moreover, p.(a) — p(a+) and p(b) — p(b—)
as ¢ | 0. By the above result,

(b —a)yi(pe, a,b) =2+ apg(a) + bps(b)
for each ¢ > 0. The inequality follows on taking the limit ¢ | O with the help of the

dominated convergence theorem.
(ii) We now consider the equality case. We claim that

b —a) g(a) +g(b) [b o
2+apat) +bp—) ~ J, &
2g(a) b _
- (2+ap(a+)+bp(b—))2/a (t —a)pd; (8.11)

this entails the equality condition in (ii). First suppose that p € C '((a, b)). In this case
the inequality in (8.10) implies (8.11) upon integration. Now suppose that p > O is a
non-decreasing bounded function on [a, b]. Then (8.11) holds with p, in place of p
for each ¢ > 0. The inequality for p follows by the dominated convergence theorem.

O

9 Comparison theorems for first-order differential equations

Let . stand for the collection of Lebesgue measurable sets in [0, +00). Define a
measure p on ([0, +00), .Z) by u(dx) := (1/x)dx.Let0 < a < b < +00. Suppose
that u : [a, b] — R is an .#'-measurable function with the property that

nw({u > t}) < +ooforeacht > 0. ©.1)

The distribution function w,, : (0, +00) — [0, +00) of u with respect to u is given
by

wu () = u({u > t}) fort > 0.
Note that p,, is right-continuous and non-increasing on (0, co) and u,(t) — 0 as
t — oQo.
Let u be a Lipschitz function on [a, b]. Define

Z1 = {u differentiable and u’ = 0}, Z» := {u not differentiable} and Z := Z; U Z,.

By [1] Lemma 2.96, Z N {u = t} = @ for £'-a.e.t € Rand hence N := u(Z) C R
is Z! -negligible. We make use of the coarea formula ( [1] Theorem 2.93 and (2.74)),

o0
¢|u’|dx=/ f ¢ dA° dt 9.2)
[a,b] —oo J{u=t}
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for any ¥ I_measurable function ¢ :la, b] — [0, co].

Lemma 9.1 Let0 <a < b < +00 and u a Lipschitz function on [a, b). Then

(1) py € BViec((0, +00));
(ii) Dpy = —ugp;
(iti) Dy = Dy L ((0, +00)\N);
(iv) Du;, = D, L N;
(v) A := {t € (0,400) : LY ZN{u=1) > O} is the set of atoms of Du,, and
Dyl = Dy L A;
(vi) Wy is differentiable ZLla.e. on (0, +00) with derivative given by

, 1 dx?
H0) = — /{ L

u=n\z 'l T

for L1-a.e. t € (0, +00);
(vii) Ran(u) N [0, +00) = supp(Duy).

The notation above Dus, Dus, D,u{; stands for the absolutely continuous resp.
singular resp. jump part of the measure Dy, (see [1] 3.2 for example).

Proof For any ¢ € C2°((0, +00)) with supp[¢] C (r, +00) for some 7 > 0,

o0
/ Muw’dIZ/ poudpu
0 [a,b]

_ / )9 0w dps ©93)
la,b]

by Fubini’s theorem; so 1, € BViy((0, +00)) and Du,, is the push-forward of
under u, Dy, = —uzp (cf. [1] 1.70). By (9.2),

Dy L ((0, +00)\N)(A)

—u(fu € ANZ)

1 dH°
s
Adu=pnz W] T

for any .#!-measurable set A in (0, +00). In light of the above, we may identify
Dué% = Dp, L ((0, +00)\N) and Duj, = D, L N. The set of atoms of Dy, is
defined by A := {t € (0, +00) : Du, ({t}) # 0}. For¢t > 0,

Dy ({1) = Dp (1) = (Dpea L NY(((1))
—us (N O {1}) = —u(Z 0 {u = 1))

and this entails (v). The monotone function w, is a good representative within its
equivalence class and is differentiable .#’'-a.e. on (0, +-00) with derivative given by
the density of Du, with respect to .£ ! by [1] Theorem 3.28. Item (vi) follows from
(9.2) and (iii). Item (vii) follows from (ii). O
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Let0 < a < b < 400 and p > 0 be a non-decreasing bounded function on
[a,b].Letn € {:l:l}z. We study solutions to the first-order linear ordinary differential
equation

u' 4+ (/x4 p)u+xr=0ae. on (a,b) withu(a) =n and u(b) = n (9.4)

where u € C0! ([a, b]) and A € R. In case p = 0 on [a, b] we use the notation ug.

Lemma 9.2 Let0 <a < b < +ooand p > 0be anon-decreasing bounded function
on [a,bl. Let n € {£1}%. Then

(i) there exists a solution (u, A) of (9.4) withu € C%([a, b]) and ) = Ay €R;
(ii) the pair (u, \) in (i) is unique;
(iii) A, is given by

—A) = A=l,—1) =M A(1,—1) = —A1,1) = 7;

(iv) ifn = (,1) orn = (=1, —1) then u is uniformly bounded away from zero on
[a, b].

Proof (i) Forn = (1, 1) define u : [a, b] - R by

mf,gds+g@

u(t) == 2 ) ort € [a, b] 9.5)

with m as in (8.4). Then u € C%!([a, b]) and satisfies (9.4) with A = —m. For
n=(,-1)setu = (—m [, gds + g(a))/g with 1 = . The cases n = (—1, —1)
and n = (—1, 1) can be dealt with using linearity. (ii) We consider the case n = (1, 1).
Suppose that (11, A1) resp. (42, A2) solve (9.4). By linearity u := u; — uy solves

u' 4+ (1/x 4+ p)u+ i =0ae. on (a,b) withu(a) = u() =0

where A = A1 — A2. An integration gives that u = (—A f a gds + ¢)/g for some
constant ¢ € R and the boundary conditions entail that A = ¢ = 0. The other cases
are similar. (iii) follows as in (i). (iv) If n = (1, 1) then u > 0 on [a, b] from (9.5) as
m > 0. O

The boundary condition niny = —1.

Lemma 9.3 Let0 < a < b < +ooand p > 0 be a non-decreasing bounded function
on [a, b). Let (u, ) solve (9.4) with n = (1, —1). Then

(i) there exists a unique ¢ € (a, b) withu(c) = 0;
(ii) u' < 0 a.e. on [a, c] and u is strictly decreasing on [a, c];
(iii) Dps, = 0.
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Proof (i) We first observe that u’ < —m < 0 a.e. on {u > 0} in view of (9.4). Suppose
u(c1) = u(cy) = 0 for some c1,cy € (a,b) with ¢; < ¢. We may assume that
u > 0 on [cy, c2]. This contradicts the above observation. Item (ii) is plain. For any
Z1-measurable set B in (0, +00), Dpi(B) = n({fu € B} N Z) = 0 using Lemma
9.1 and (ii). O

Lemma 9.4 Let0 <a < b < 4+ooand p > 0 be anon-decreasing bounded function
on [a, b]. Let (u, 1) solve (9.4) with n = (1, —1). Assume that

(a) u is differentiable at both a and b and that (9.4) holds there;
(b) u'(a) <0andu'(b) <O;
(c) p is differentiable at a and b.

Put v := —u. Then

. 1 dA#"° 1 d0 .
(D) Jomipz, w177 = Jumipz, w7
(ii) equality holds if and only if p = 0 on [a, b).

Proof First, {u = 1} = {a} by Lemma 9.3. Further 0 < —au’(a) = 1 + a[m + p(a)]
from (9.4). On the other hand {v = 1} D {b} and 0 < bv'(b) = —1 + b[m — p(b)].

Thus
/ 1 d#" / 1 dx°
w=1pnz, IV T =10z, W'l t

1 1
T It — o] 1t+alm+p@]

By Theorem 8.5, 0 < 2 + (a — b)m + ap(a) + bp(b), noting that p(a) = p(a+) in
virtue of (c) and similarly at b. A rearrangement leads to the inequality. The equality
assertion follows from Theorem 8.5. O

Theorem 9.5 Let 0 < a < b < +oo and p > 0 be a non-decreasing bounded
function on [a, b]. Suppose that (u, L) solves (9.4) withn = (1, —1) and set v := —u.
Assume that u > —1 on [a, b). Then

(i) —p, > —u!, for L -ae. t € (0,1);
(ii) if p # Oon|[a, b) then there exists to € (0, 1) such that —u, > —u,’ufor.,?l—a.e.
t € (1o, 1),
(iii) fort € [-1, 1],

v — a)2¢2
Muo(t)zlog{ b—ay+b—a)t —|—4ab}

and vy = Huy ON [_15 1]1

in obvious notation.

Proof (i) The set

Yo = Zo4 U ({u’ F (/x4 pu+ 1 £ 0}\zz,u) U {p not differentiable} C [a, b]
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(in obvious notation) is a null set in [a, b] and likewise for Y,. By [1] Lemma 2.95 and
Lemma2.96, {u = t}NY,UZ;,) =@forae.t € (0, 1) and likewise for the function
v.Lett € (0, 1) and assume that {u = t}N(Y,UZ; ) = Pand {v = t}NY,UZ1,) =
#. Put ¢ := max{u > t}. Then ¢ € (a,b),{u > t} = [a, c) by Lemma 9.3 and u is
differentiable at ¢ with u’(c¢) < 0. Put d := max{v < ¢t} = max{u > —t}. As u is
continuous on [a, b] it holds that a < ¢ < d < b. Moreover, u’(d) < 0 as v(d) =t
andd ¢ Z,.Put := u/t and v := v/t on [c, d]. Then

W+ (/t+pi+m/t =0ae. on(c,d)andii(c) = —u(d) = 1;
v+ (1/t+p)T—m/t =0ae. on(c,d)and —V(c) =v(d) = 1.

By Lemma 9.4,
/ 1 d#° - / 1 d°
w=nz, W' T T Jlcainp=mz, VI T
1 d#°
=1/ =
le.dinfi=1nz, V'] T
1 d#"
> (1/1) =7
le.dinfi=1Nz, W] T
B / 1 dx"°
=z, W'l T
By Lemma 9.1,

1 dn#°
(1) = /{

u=t\Z, m T
for Z!-a.e.t € (0, 1) and a similar formula holds for v. The assertion in (i) follows.
(ii) Assume that p # 0 on [a, b). Put o := inf{p > 0} € [a, b). Note that max{v <
t} > bast 1 1lasv < 1 on [a,b) by assumption. Choose 79 € (0, 1) such that
max{v < f9} > «. Then for ¢t > 1y,

a < max{u >t} < max{u > —t9} = max{v < 19} < max{v <t} < d;

that is, the interval [c, d] with ¢, d as described above intersects («, b]. So for & Lae.

t € (fo, 1),
[ 1 d#° f 1 d#°
—_— > — .
w=nz, VN T w=\z, 'l t

by the equality condition in Lemma 9.4. The conclusion follows from the representa-
tion of u, resp. i, in Lemma 9.1.
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(iii) A direct computation gives

ab
up(t) = —H -7+ — ]

T
for t € [a, b]; ug is strictly decreasing on its domain. This leads to the formula in (iii).
A similar computation gives

2b }

v =1
P (1) Og{(b—a)t—l— (b — a)2t2 + 4ab

for t € [—1, 1]. Rationalising the denominator results in the stated equality. O

Corollary 9.6 Let 0 < a < b < 400 and p > 0 be a non-decreasing bounded
function on [a, b]. Suppose that (u, L) solves (9.4) withn = (1, —1) and set v := —u.
Assume that u > —1 on [a, b). Then

() () < uy(t) foreacht € (0, 1);
(ii) if p Z0onla, b) then w,(t) < uy(t) foreacht € (0, 1).

Proof (i) By [1] Theorem 3.28 and Lemma 9.3,

P (1) = pu (1) = pru (1) = =Dy (2, 11)
= —Duy (¢, 1) — Dy, (7, 1])

:—/ w., ds
(r,1]

foreacht € (0, 1) as u, (1) = 0. On the other hand,

1o (1) = 10(1) + (o (®) = o(1)) = po(1) = Dpro((t, 11)
=uxn—f W ds — Dy (1, 1)
(t,1]

for each t € (0, 1). The claim follows from Theorem 9.5 noting that D} ((¢, 1]) < 0
as can be seen from Lemma 9.1. Item (ii) follows from Theorem 9.5 (ii). m]

Corollary 9.7 Let 0 < a < b < 400 and p > 0 be a non-decreasing bounded
function on [a, b]. Suppose that (u, L) solves (9.4) with n = (1, —1). Assume that
u > —1onla,b). Let p € C'((—1, 1)) be an odd strictly increasing function with
¢ € L'((—1,1)). Then

(i) ]{”>0} pu)dp < +00;

(i) [} o) dp < 0;

(iii) equality holds in (ii) if and only if p = 0 on [a, D).

In particular

(iv)

ifand only if p = 0 on [a, D).
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Proof (i)Put I := {1 > u > 0}. The function u : I — (0,1)is C%! and u’ < —m
a.e. on I by Lemma 9.3. It has C%! inverse v : (0,1) — I,v = 1/(u’ o v) and
|v/| < 1/m a.e. on (0, 1). By a change of variables,

1
/ s0(u)du=/ @' /v)dt
{u>0} 0

from which the claim is apparent. (ii) The integral is well-defined because ¢(u)* =
@) Xu=0y € L'((a, b), n) by (i). By Lemma 9.3 the set {u = 0} consists of a
singleton and has p-measure zero. So

b
/ w(u)du=/ w(u)d/mLf p(u)du
a {u>0} {u<0}

=/ w(u)du—/ p(v)du
{u>0} {v>0}

where v := —u as ¢ is an odd function. We remark that in a similar way to (9.3),

fo i di f{ . few -0}

dp = / pu)dp
{u>0}

using oddness of ¢ and an analogous formula holds with v in place of u. Thus we may

write
b 1 1
/ so(u)du=/ ey dt—/ @'y dt
a 0 0
1
Z/ QO/{MM_Mv}dtSO
0

by Corollary 9.6 as ¢’ > 0 on (0, 1). (iii) Suppose that o # 0 on [a, b). Then
strict inequality holds in the above by Corollary 9.6. If p = 0 on [a, b) the equality
follows from Theorem 9.5. (iv) follows from (ii) and (iii) with the particular choice
:(=1,1) > Rt — t//1—12, ]

The boundary condition niny = 1. Let0 < a < b < 400 and p > 0 be a non-
decreasing bounded function on [a, b]. We study solutions of the auxilliary Riccati
equation

w + w? = (1/x + p)w a.e. on (a, b) with w(a) = w() = 1; 9.6)
with w € C%!([a, b]) and A € R.If p = 0 on [a, b] then we write wy instead of w.

Suppose (u, A) solves (9.4) withn = (1, 1). Then u > 0 on [a, b] by Lemma 9.2 and
we may set w := 1/u. Then (w, —X) satisfies (9.6).
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Lemma 9.8 Let0 < a < b < +ooand p > 0 be anon-decreasing bounded function
on la, b]. Then

(i) there exists a solution (w, A) of (9.6) with w € C%([a, b]) and » € R;
(ii) the pair (w, X) in (i) is unique;
(iii) A = m.

Proof (i) Define w : [a, b] — R by

g()

w(t) = T I fat 2 ds 1 3@)

fort € [a, b].

Then w € C%!([a, b]) and (w, m) satisfies (9.6). (ii) We claim that w > 0 on [a, b]
for any solution (w, 1) of (9.6). For otherwise, ¢ := minfw = 0} € (a, b). Then
u := 1/w on [a, c¢) satisfies

1
u + (— + ,o) u—ir=0ae.on(a,c)andu(a) =1, u(c—) = +00.
T
Integrating, we obtain

gu—g(a)—)\/‘gdt:OOH[a,c)

a

and this entails the contradiction that u(c—) < +00. We may now use the uniqueness
statement in Lemma 9.2. (iii) follows from (ii) and the particular solution given in (i).

O
We introduce the mapping
w : (0,00) x (0,00) — R; (¢, x) > —(2/1) coth(x/2).
For & > 0,
lo(t,x) — (t, y)| < cosech[£/2](1/1)|x — y| 9.7

for (¢, x), (t,y) € (0,00) x (&, 00) and w is locally Lipschitzian in x on (0, co) x
(0, 00) in the sense of [16] I.3. Let 0 <a < b < +ooand set A := A/G > 1. Here,
A = A(a, b) stands for the arithmetic mean of a, b as introduced in the previous
Section while G = G(a, b) := +/]ab]| stands for their geometric mean. We refer to
the inital value problem

7 =w(t,z)on (0, ) and z(1) = u((a, b)). 9.8)
Define
/22 _ 42
z0:(0,A) > Rt — 2log{¥}.
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Lemma 9.9 Let0 <a < b < 4+00. Then

(i) wo(r) = g% for v € [a, b);
(i) llwollec = 2,

(iii) pyy = zo on [1,1);

(iv) zo satisfies (9.8) and this solution is unique;

() frug) T 925 = 2coth(u((a, b))/2);

wp

i) [ —wlzil =7
V0

Proof (i) follows as in the proof of Lemma 9.8 with g(¢) = ¢ while (ii) follows by
calculus. (iii) follows by solving the quadratic equation 172> — 2At + G%t = 0 for
T with ¢ € (0, 1). Uniqueness in (iv) follows from [16] Theorem 3.1 as w is locally
Lipschitzian with respect to x in (0, 00) x (0, 00). For (v) note that [aw (a)| = 1—a/A
and |bw(b)| = b/A — 1 and

2 coth(u((a, b))/2) =2(a + b)/(b — a).
(vi) We may write

ab + 12 dt

/b 1 dr_/b
a Jud-17T a J@+b2t2—(ab+12)2 T

. / b ab + t? dt
« J@Z—a)2—12) T
The substitution s = 72 followed by the Euler substitution (cf. [14] 2.251)

Vis —a®)(b? —s) = t(s — a?)

gives

/h 1 dr /00 1 N ab U
- — =T
,/wo—

Lemma 9.10 Ler0 < a < b < 400. Then
(i) fory > a the function x % is strictly increasing on (—o0, b];
(ii) the function y — % is strictly increasing on [G, b];
(iii) for x < b the function y — % is strictly decreasing on [a, 4+00)
Proof The proof is an exercise in calculus. O

Lemma 9.11 Ler 0 < a < b < 400 and p > 0 be a non-decreasing bounded
function on [a, b]. Let (w, 1) solve (9.6). Assume
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(i) w is differentiable at both a and b and that (9.6) holds there;
(ii) w'(a) > 0 and w'(b) < 0;
(iii) w > 1on (a,b);
(iv) p is differentiable at a and b.

Then

1 d’
/{ o T e 2 2ot b))

with equality if and only if p = 0 on [a, b).

Proof At the end-points x = a, b the condition (i) entails that w’ +m — p = 1/x =
w(, + mo so that

w —wy=mog—m+ patx =a,b. (9.9)

We consider the four cases

(@) w'(a) = wy(a) and w'(b) > w(b);
(b) w'(a) = wj(a) and w'(b) < w((b);
(¢) w'(a) < wy(a) and w'(b) > w(b);
(d) w'(a) < wj(a) and w'(b) < wy(b);

in turn.

(a) Condition (a) together with (9.9) means that mg — m + p(a) > 0; that is, m —
o(a) < mo.By (i) and (ii), bm — bp(b) — 1 = —bw'(b) > 0;0orm — p(b) > 1/b.
Therefore,

O<1/b<m—pb) <m-—pla) <1/A
by (8.5). Putx :=1/(m — p(b)) and y := 1/(m — p(a)). Then
a<A<y<x<b.

We write

aw'(a) = —(m —p@)a+1=—1/y)a+1>0;
bw'(b) = —(m — pB)b+1=—(1/x)b+1 <0.

Making use of assumption (iii),

f 1 dn° 1 B 1
w=ipz, Wl x — =A/ya+1 —(1/x)b+1
by — ax
(y—a)yb—x)
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By Lemma 9.10 (i) then (ii),

/ Ld%ﬂo> b-ay _  (b-aA
w=1y W x T O-a)b-y) ~ (A-a)b-A)

— 28 ) coth(u(a. b)),

If equality holds then p(a) = p(b) and p is constant on [a, b]. By Theorem 8.3
we conclude that p = 0 on [a, b).

(b) Condition (b) together with (9.9) entails that 0 < my — m + p(a) and 0 <
—mqy +m — p(b) whence 0 < p(a) — p(b) upon adding; so p is constant on the
interval [a, b] by monotonicity. Define x and y as above. Thenx = yand y > A.
The result now follows in a similar way to case (a).

(c) In this case,

1 _ 1 - 1 B 1
aw’(a)  bw'(b) ~ awj(a) bw(b)
= 2 coth(u((a, b))/2)

by Lemma 9.9. If equality holds then w’(b) = w6 (b) sothatmg—m+ p(b) =0
and p vanishes on [a, b] by Theorem 8.3.

(d) Condition (d) together with (9.9) means that mo — m + p(b) < 0; that is, m >
p(b) +mg. On the other hand, by Theorem 8.3, m < p(b) +my. In consequence,
m = p(b) + my. It then follows that p = 0 on [a, b] by Theorem 8.3. Now use
Lemma 9.9.

O

Lemma 9.12 Let ¢ : (0, +00) — (0, 400) be a convex non-increasing function with
inf,+00) @ > 0. Let A be an at most countably infinite index set and (xp)hea a
sequence of points in (0, +00) with ) ;. 4 xp < +00. Then

Yol = ¢ (Z xh>

heA heA

and the left-hand side takes the value +0o in case A is countably infinite and is
otherwise finite.

Proof Suppose 0 < x1 < x2 < +00. By convexity ¢(x1) + ¢ (x2) > 2¢(le2er) >
¢ (x1 + x2) as ¢ is non-increasing. The result for finite A follows by induction. O

Theorem 9.13 Let 0 < a < b < 400 and p > 0 be a non-decreasing bounded
function on [a, b). Let (w, \) solve (9.6). Assume that w > 1 on (a, b). Then

(i) for L -ae.t € (1, |woo),

— Wy, = (2/1) coth((1/2) i) (9.10)
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(ii) if p # 0 on [a, b) then there exists ty € (1, |wl|leo) Such that strict inequality
holds in (9.10) for £'-a.e. t € (1, tp).

Proof (i) The set

Yy, = ZZ,w U ({w/ +mw2 ?é (l/x + p)w}\ZZ,w)
U{p not differentiable} C [a, b]

isanull setin [a, b]. By [1] Lemma 2.95 and Lemma 2.96, {w = t}N(YyyNZ1 ) =¥
forae.t > 1.Lett € (1, ||w| ) and assume that {w = t}N (Y, NZ1 ) = ¥. We write
{w > 1} = [J,c 4 In where A is an at most countably infinite index set and (1;) 5 4 are
disjoint non-empty well-separated open intervals in (a, b). The term well-separated
means that for each i € A, infrea\(n) d(Ip, Ix) > 0. This follows from the fact that
w’' #0ondl, foreachh € A.Put w := w/t on {w > t} so

W+ mt)w? = (1/x + p)W a.e.on {w > r}and W = 1 on {w = 1}.

We use the fact that the mapping ¢ : (0, +00) — (0, +00); t — cotht satisfies the
hypotheses of Lemma 9.12. By Lemmas 9.11 and 9.12,

0 0
(O,+oo]9/ LA _ s L ax

w=n\z, (W x =1y W' T
1 dn°
= (1/1) Z/ —
heA aly |w| T

> (2/1) ) coth((1/2)a(In))

heA

> (2/1) coth ((1/2> > u(lh))

heA
= (2/1) coth((1/2)u({w > 1})))
= (2/1) coth((1/2) pyy (1)).

The statement now follows from Lemma 9.1.

(ii) Suppose that p % 0 on [a, b). Put « := min{p > 0} € [a, b). Now that {w >
t} 1 (a,b)ast | lasw > 1 on (a,b). Choose typ € (1, ||w|leo) such that {w >
to} N (at, b) # B. Then for each ¢ € (1, ty) there exists 4 € A such that p £ 0 on .
The statement then follows by Lemma 9.11. O

Lemma 9.14 Let ) # S C R be bounded and suppose S has the property that for

each s € S there exists 8 > 0 such that [s, s +38) C S. Then S is £ -measurable and
|S| > 0.
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Proof Foreachs € Sputt; :=inf{r > s : ¢t ¢ S}. Thens < t; < 400, [s,t;,) C S
and t; ¢ S. Define

€ = {[s,t] :seSandt € (s,ts)}.

Then % is a Vitali cover of S (see [6] Chapter 16 for example). By Vitali’s Covering
Theorem (cf. [6] Theorem 16.27) there exists an at most countably infinite subset
A C € consisting of pairwise disjoint intervals such that

s\ J1

leA

=0.

Note that / C S for each I € A. Consequently, S = (J;c4/ U N where N is an
#'-null set and hence S is .#’!-measurable. The positivity assertion is clear. O

Theorem 9.15 Let 0 < a < b < 400 and p > 0 be a non-decreasing bounded
function on [a, b). Let (w, A) solve (9.6). Assume that w > 1 on (a,b). Put T :=
min{(|wolleo, lwllee} > 1. Then

(1) pw(t) < fo, () foreacht € [1,T);
(ii) wlloo < llwolloos
(iii) if p # 0 on [a, D) then there exists ty € (1, [|[wlloo) Such that pLy, () < fy,(t)
foreacht € (1, 1y).

Proof (i) We adapt the proof of [16] Theorem 1.6.1. The assumption entails that
Mw(l) = pyy (1) = w((a, b)). Suppose for a contradiction that (e, (f) > iy, (t) for
somet € (1, 7).

For ¢ > 0 consider the initial value problem

7 =w(t,z2)+eand z(1) = u((a, b)) + ¢ (9.11)

on (0, T).Choose v € (0, 1) and t € (¢, T). By [16] Lemma I.3.1 there exists &g > 0
such that for each 0 < ¢ < g9 (9.11) has a continuously differentiable solution z,
defined on [v, t] and this solution is unique by [16] Theorem 1.3.1. Moreover, the
sequence (Zg)o<s<g, converges uniformly to zp on [v, T].

Given 0 < & < 1 < g it holds that zo < z¢ < z; on [1, T] by [16] Theorem
L.6.1. Note for example that z;, < w(-, z0) + & on (1, 7). In fact, (z¢)o<¢<¢, decreases
strictly to zg on (1, 7). For if, say, zo(s) = z(s) for some s € (1, t) then z,(s) =
(s, 2e(s))+& > w(s, 20(s)) = z,(s) by (9.11); while on the other hand 2, (s) < z;,(s)
by considering the left-derivative at s and using the fact that z; > zo on [1, t]. This
contradicts the strict inequality.

Choose g1 € (0, g9) such that z.(f) < wy(t) for each 0 < & < g1. Now py, is
right-continuous and strictly decreasing as iy, (1) — uy(s) = —u({s <w <t}) <0
for 1 <s <t < ||w|ls by continuity of w. So the set {z; < w©y} N (1,¢) is open
and non-empty in (0, +o00) for each ¢ € (0, £1). Thus there exists a unique s; € [1, t)
such that

@ Springer



An isoperimetric inequality in the plane with a log... 863

Mw > Ze on (Sg, t] and py (se) = 26 (Se)

for each ¢ € (0,¢e1). As z:(1) > u((a, b)) it holds that each s, > 1. Note that
1 <'sg < sy whenever 0 < & < nas (z¢),_,_,, decreases strictly to zo as ¢ | 0.
Define

S::{s€:0<s<81}c(1,t).

We claim that for each s € S there exists § > 0 such that [s, s + §) C S. This entails
that S is 2! -measurable with positive .#’! -measure by Lemma 9.14.

Suppose s = s, € S for some ¢ € (0,&1) and put z := z.(s) = w(s). Put
k= cosech2(z()(t)/2). For0 < ¢ < n < &1 define

Qe = {0 ) € R 1w e (0.0 and zew) < v < 2, ()|

and note that this is an open set in R?. We remark that for each (u, y) € $2; there
exists a unique v € (¢, n) such that y = z,, (). Given r > 0 with s + r < ¢ set

0=0,:= {(u,y) eR*:s<u<s+randl|y—z| <z —Z||C([s,s+r])]-

Choose r € (0,t — s) and &7 € (e, €1) such that

(a) O, C ‘90,81;

) llze — zllcs,s+rn < s&/(2k);

(©) SUPye(e o) 120 — Zllcs,s+r) = llze — zllcds,s+r1)
(d) zy < pw on[s +r,t] foreach n € (¢, &).

We can find § € (0, 7) such that z; < uy, < zg, on (s, s + 8) as z,,(s) > z; in other
words, the graph of 11, restricted to (s, s -+ 8) is contained in £2; ¢, .

Let u € (s, s + 8). Then py,(u) = z,(u) for some n € (g, &2) as above. We
claim that # = s, so that ¥ € S. This implies in turn that [s, s + §) C S. Suppose
for a contradiction that z, # py on (u, t]. Then there exists v € (u, t] such that
Hw(v) = z;,(v). In view of condition (d), v € (u, s + r). By [1] Theorem 3.28 and
Theorem 9.13,

M (V) — phw () = Dppy ((u, v]) = Dy ((u, v]) + Dy, ((u, v])

v v
SDM”w((u,v])zf Wy dt s/ (. ) dT.
u u

On the other hand,

Zn(v)—z,,(u)z/ z%dr:/ o (-, zy)dt +n(v — u).
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We derive that
e(v—u)sn(v—u)s/ {ot ) - ot zp}dr

v
Ek/ o — 29 dit
u

using the estimate (9.7). Thus

1 v
€ Sk—/ luw — zyldup
v—uJ,
< K/ w — zpllcqu,vn
= /9 ltw = Zllcssry + 12n = Zleqssr |

< Ck/s)ze — zllcs.s+rn < €
by (b) and (c) giving rise to the desired contradiction.
By Theorem 9.13, !, < w (-, piyy) for Plae.t € S.Chooses € S such that p,, is

differentiable at s and the latter inequality holds at s. Let ¢ € (0, £1) such that s = s,.
For any u € (s, 1),

My () — p(s) > ze () — ze(s).
We deduce that @), (s) > z.(s). But then
Wy (8) = 2 (s) = (s, 2e(8)) + & > (s, Lw(s)).

This strict inequality holds on a set of full measure in S. This contradicts Theorem
9.13.

(ii) Use the fact that ||w||sc = sup{t > 0 : uy,(¢) > 0}.
(iii) Assume that p == O on [a, b). Letty € (1, ||w] ) be as in Lemma 9.13. Then
fort € (1, 1p),

P (1) — (1) = Doy ((1, 1) = Dy, (1, £])
+ Dy, ((1,1]) < D, (1, 1])

:/ Wy ds </ (s, Wy)ds
(1,7] (1,1]

< /1 (5, tag) ds = tug (1) — g (1)
(1,2]

by Theorem 9.13, Lemma 9.9 and the inequality in (i).

@ Springer



An isoperimetric inequality in the plane with a log... 865

Corollary 9.16 Let 0 < a < b < +oo and p > 0 be a non-decreasing bounded
function on [a, b]. Suppose that (w, A) solves (9.6). Assume that w > 1 on (a, b). Let
0<g¢pe Cl((1, +00)) be strictly decreasing with fab ¢(wo) dp < +o00o. Then

(D) f7 pw)dp > [} p(wo) du;
(ii) equality holds in (i) if and only if p = 0 on [a, b).

In particular,
(iii) fab \/ﬁ du > m with equality if and only if p = 0 on [a, D).

Proof (i) Let ¢ > 0 be a decreasing function on (1, +00) which is piecewise C L
Suppose that ¢(14) < 4-00. By Tonelli’s Theorem,

/ @' ds = / w/{ f X{w>s) du} ds
[1,4+00) [1,400) (a.b)
= / { / (0/X{w>s} ds} dp
(a,b) [1,4-00)
=/ fo) — o} dn
(a,b)
_ f o) du — p(1)((a, b))
(a,b)

and a similar identity holds for jt,,,. By Theorem 9.15, fab pow)du > fab @ (wo) d .

Now suppose that 0 < ¢ € C!((1, +00)) is strictly decreasing with fab o(we)du <
+o00. The inequality holds for the truncated function ¢ A n for each n € N. An
application of the monotone convergence theorem establishes the result for ¢.

(ii) Suppose that equality holds in (i). For ¢ € (1, 4+00) put ¢1 := ¢ V ¢(c) — ¢(c)
and ¢y := ¢ A ¢(c). By (i) we deduce

b b
/wz(w)du=/ @2(wo) du;

and hence by the above that

/ (/)/[Mw_HwO]ds:O-
[c,+00)

This means that p,, = fy, on (¢, +00) and hence on (1, +00). By Theorem 9.15
we conclude that p = 0 on [a, b). (iii) flows from (i) and (ii) noting that the function
¢ : (1, 400) = R;t — 1/4/t2 — 1 satisfies the integral condition by Lemma 9.9. O

The case a = 0.Let 0 < b < +o00 and p > 0 be a non-decreasing bounded function
on [0, b]. We study solutions to the first-order linear ordinary differential equation

W + (1/x + p)u + A+ =0ae. on (0,b) withu(0) = O0andu(d) =1  (9.12)
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where u € C%1([0, b]) and A € R. If o = 0on [0, b] then we write uq instead of u.

Lemma 9.17 Let0 < b < 400 and p > 0 be a non-decreasing bounded function on
[0, b]. Then

(i) there exists a solution (u, ) of (9.12) withu € CY1([0, b)) and » € R;
(ii) A is given by A = —g(b)/ G (b) where G := fo gds;
(iii) the pair (u, X) in (i) is unique;
(iv) u > 0on (0, b].

Proof (i) The function u : [a, b] — R given by

(b) G

9.13
T Gb) g ©-13)

on [0, b] solves (9.12) with A as in (ii). (iii) Suppose that (u1, A1) resp. (u2, A2) solve
(9.12). By linearity u := uj — u solves

u'+ (1/x + p)u+ i =0ae. on (0,b) withu(0) = u) =0

where A = A1 — X2. An integration gives that u = (—AG + ¢)/g for some constant
¢ € R and the boundary conditions entail that A = ¢ = 0. (iv) follows from the
formula (9.13) and unicity. O

Lemma 9.18 Suppose —o0 < a < b < 400 and that ¢ : [a,b] — R is convex.
Suppose that there exists & € (a, b) such that

bk £E—a
P& = 5 _a¢(a) + b_acb(b)-

Then

_b—c c—a b
D)= ;9@ + —o(b)

for each c € [a, b].

Proof Let ¢ € (¢, b). By monotonicity of chords,

PE) —¢@) _ ¢l —¢&)

E-a - ¢
SO
c- ¢
D) 2 o0 E) ~ T b@
_czafb=§ i__ _c=§
= Ll @ 0] - e d@
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C +c—a b
@+ o)

and equality follows. The case ¢ € (a, &) is similar. O

Lemma 9.19 Let0 < b < 400 and p > 0 be a non-decreasing bounded function on
[0, b]. Let (u, A) satisfy (9.12). Then

(i) u > ugon|0,b];
(ii) if p & 0o0n [0, b) then u > ug on (0, b).

Proof (i) The mapping G : [0, b] — [0, G(b)] is a bijection with inverse G —1 Define
n:10,G(b)] — Rvian := (rg) o G~!. Then

t /
n’=ﬁoa—1 =Q2+41p)oG™!

a.e. on (0, G(b)) so n' is non-decreasing there. This means that  is convex on
[0, G(b)]. In particular, n(s) < [n(G(b))/G(b)]s for each s € [0, G(b)]. For
t € [0,b] put s := G(¢) to obtain tg(t) < (bg(b)/G(b))G(t). A rearrange-
ment gives u > ug on [0, b] noting that ug : [0,b] — R;t +— 1/b. (ii)
Assume p # 0 on [0, b). Suppose that u(c) = ugp(c) for some ¢ € (0, b). Then
n(G(c)) = [n(G(b))/G ()]G (c). By Lemma 9.18, " = 0 on (0, G(b)). This implies

that p = 0 on [0, b). O
Lemma 9.20 Let 0 < b < +00. Then fob 10 —dp =m/2.

L—ug
Proof The integral is elementary as uo(¢) = t/b fort € [0, b]. O

10 Proof of main results

Lemma 10.1 Let x € H and v be a unit vector in R? such that the pair {x, v} forms
a positively oriented orthogonal basis for R%. Put b := (t,0) where |x| = T and
y :=0(x) € (0,m). Let « € (0, w/2) such that

(v, x —b)
lx — bl

= COos .

Then

(i) Cx,v,0) NHNC(0,e1,y) =0;
(it) foranyy € C(x,v, ) NH\B(0, ) the line segment [, y] intersects S% outside
the closed cone C (0, ey, y).

We point out that C(0, eq, y) is the open cone with vertex 0 and axis e; which
contains the point x on its boundary. We note that cos« € (0, 1) because
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(v,x —b)y = —(v,b) = —((1/1)Ox, b)
= —(0p,e1) = (x,0%) = (x,e3) >0 (10.1)

andif |x —b| = (v, x —b) thenb = x —Avforsome A € Randhencex; = (e1,x) =7
and xp = 0.

Proof (i) For € S' define the open half-space
H,:={ye R? : (y, w) > 0}.
We claim that C(x, v, @) C Hy. For giveny € C(x, v, ),
(y,v) =(y —x,v) > |y —x|cosa > 0.

On the other hand, it holds that C(0, e;, y) " H C H_,. This establishes (i).

(ii) By some trigonometry y = 2«. Suppose that w is a unit vector in C (b, —ey, /2 —
a). Then A := (w, e;) < cosa since upon rewriting the membership condition for
C(b, —e1, m/2 — ) we obtain the quadratic inequality

22 —Zcoszak—i—cosy > 0.

For w a unit vector in C(0, e, ) the opposite inequality (w, e;) > cos « holds. This
shows that

C(b,—e1,7/2—=a)NT(O0, e1,y) NS, =1,

The set C(x, v, @) N H is contained in the open convex cone C (b, —ey, m/2 — «).
Suppose y € C(x,v,a) N H\E(O, 7). Then the line segment [b, y] is contained
in C(b, —e1,m/2 — o) U {b}. Now the set C(b, —e1, /2 — ) N Sl disconnects
C(b, —ey, /2 — o) U {b}. This entails that (b, y] N C(b, —e1, /2 —a) N Si #£ .
The foregoing paragraph entails that (b, y] N C(0, e1, ) N'S! = ¢. This establishes
the result. m]

Lemma 10.2 Let E be an open set in R* such that M := JE is a C"! hypersurface
in R%. Assume that E\{0} = E’¢. Suppose

(i) x e (M\{O}) N H;
(ii) sin(o(x)) = —1.

Then E is not convex.
Proof Lety; : I — M be a C"-! parametrisation of M in a neighbourhood of x with

y1(0) = x as above. As sin(o(x)) = —1, n(x) and hence n(0) point in the direction
of x. Put v := —#1(0) = —¢(x). We may write

y1(s) = y1(0) + st1(0) + Ri(s) = x — sv + R (s)
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for s € I where Ri(s) = s fol y1(ts) — y1(0)dt and we can find a finite positive
constant K such that |R1(s)| < Ks® on a symmetric open interval I about 0 with
Ip cC I. Then

(1(9) =x,v) _ (=sv+R1)
ly1(s) — x| | —sv+ Ry
_ I —((R1/s), V) N

lv—Ry/s]

as s 1 0. Let o be as in Lemma 10.1 with x and v as just mentioned. The above
estimate entails that y(s) € C(x, v, «) for small s < 0. By (2.9) and Lemma 5.4
the function ry is non-increasing on /. In particular, r1(s) > r1(0) = |x| =: t for
I >s <0andy(s) ¢ B, 7).

Choose §; > 0 such that yi(s) € C(x,v,a) N H for each s € [—§1,0). Put
B = inf{s € [—-81,0] : r1(s) = t}. Suppose first that § € [—§1, 0). Then E is not
convex (see Lemma 5.2). Now suppose that 8 = 0. Let y be as in Lemma 10.1. Then
the open circular arc S% \5(0, e1, y) does not intersect E: for otherwise, M intersects
Sl \C(0, e1, y) and B < 0 bearing in mind Lemma 5.2. Choose s € [—41, 0). Then the
points b and y1 (s) lie in E. But by Lemma 10.1 the line segment [b, y (s)] intersects
SLin SINC(0, e1, y). Let ¢ € [b, y1(s)] N'SL. Then ¢ ¢ E. This shows that E is not
convex. But if E is convex then E is convex. Therefore E is not convex. O

Theorem 10.3 Let [ be as in (1.3) where h : [0, 4+00) — R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E
is open, M := JFE is a C"' hypersurface in R* and E\{0} = E*¢. Put

R :=inf{p > 0} € [0, +00). (10.2)

Then 2 N (R, +00) = P with 2 as in (5.2).

Proof Suppose that 2 N (R, +00) # #. As £2 is open in (0, +00) by Lemma 5.6
we may write £2 as a countable union of disjoint open intervals in (0, +00). By a
suitable choice of one of these intervals we may assume that £2 = (a, b) for some
0 <a < b < +oo and that 2 N (R, +00) # #. Let us assume for the time being that
a > 0. Note that [a, b] C 7 (M) and cos o vanishes on M, U M.

Letu : 2 — [—1, 1] be as in (6.6). Then u has a continuous extension to [a, b]
and u = %1 at t = a, b. This may be seen as follows. For t € (a, b) the set M; N H
consists of a singleton by Lemma 5.4. The limit x := lim,;, M, N H € S, N H
exists as M is C!. There exists a C!-! parametrisation y; : I — M with y{(0) = x as
above. By (2.9) and Lemma 5.4, rq is decreasing on /. Sor; > aon I N {s < 0} for
otherwise the C! property fails at x. It follows that y; = y orj ando] = o oy oryon
I N{s < 0}. Thus sin(c o ) or; = sinoj on I N{s < 0}. Now the function sin o is
continuous on /. Sou — sinoy(0) € {£1}ast | a. Putn; := u(a) and n, := u(b).

Let us consider the case n = (11, 1n2) = (1, 1). According to Theorem 6.5 the
generalised (mean) curvature is constant .7 -a.e. on M with value —2, say. Note that
u < 1 on (a, b) for otherwise cos(o o y) vanishes at some point in (a, b) bearing in
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mind Lemma 5.4. By Theorem 6.6 the pair (u, 1) satisfies (9.4) with n = (1, 1). By
Lemma 9.2, u > O on [a, b]. Put w := 1/u. Then (w, —A) satisfies (9.6) and w > 1
on (a, b). By Lemma 6.7,

b , b dt
02(b) — 62(a) /a 05 dt Vi
/‘ 1 d T
_1 .
By Corollary 9.16, |62(b) — 62(a)| > m. But this contradicts the definition of 6, in
(6.4) as 0, takes values in (0, 7) on (a, b). If n = (—1, —1) then A > 0 by Lemma
9.2; this contradicts Lemma 7.2.

Now let us consider the case n = (—1, 1). Using the same formula as above,
02(b) — 62(a) < 0 by Corollary 9.7. This means that 6»(a) € (0, 7]. As before the
limit x := lim¢ o, M N He Sl N H exists as M is C'. Using a local parametrisation
it can be seen that 6,(a) = G(x) and sin(o (x)) = —1.If 62(a) € (0, w) then E is
not convex by Lemma 10.2. This contradicts Theorem 7.3. Note that we may assume
that 6>(a) € (0, ). For otherwise, (y, e2) < 0 for T > a near a, contradicting the
definition of y (6.5). If n = (1, —1) then A > 0 by Lemma 9.2 and this contradicts
Lemma 7.2 as before.

Suppose finally that @ = 0. By Lemma 5.5, u(0) = 0 and u(b) = =£1. Suppose
u(b) = 1. Again employing the formula above, 6,(b) — 6,(0) < —m /2 by Lemma
9.19, the fact that the function ¢ : (0, 1) — R; ¢ — t/+/1 — t2 is strictly increasing
and Lemma 9.20. This means that 6,(0) > /2. This contradicts the C' property at
0 e M.If u(b) = —1 then then A > 0 by Lemma 9.2 giving a contradiction. O

Lemma 10.4 Let f be as in (1.3) where h : [0, +00) — R is a non-decreasing
convex function. Let v > 0.

(i) Let E be a bounded minimiser of (1.2). Assume that E is open, M := 0E isa ch!
hypersurface inR? and E\{0} = E*¢. Thenforanyr > Owithr > R, M\B(O0, r)
consists of a finite union of disjoint centred circles.

(ii) There exists a minimiser E of (1.2) such that 0E consists of a finite union of
disjoint centred circles.

Proof (i) First observe that
b+ (M) = [n(M) n o, r]] u [n(M) N, —i—oo)]\.Q

by Lemma 10.3. We assume that the latter member is non-empty. By definition of
£2,cos0 =0on MNA((r, +00)).Lett € m1(M)N(r, +00). We claim that M; = S%.
Suppose for a contradiction that M, # S%. By Lemma 5.2, M; is the union of two
closed spherical arcs in Sl. Let x be a point on the boundary of one of these spherical
arcs relative to S!. There exists a C!*! parametrisation y; : I — M of M in a
neighbourhood of x with y1(0) = x as before. By shrinking / if necessary we may
assume that y| (I) C A((r, +00)) as 7 > r. By (2.9),71 =0on [ ascoso; =0on [
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because coso = 0 on M N A((r, +00)); that is, r; is constant on /. This means that
i) C S%. As the function sin o7 is continuous on [ it takes the value £1 there. By
(2.10), rlél = sino; = %1 on I. This means that 6 is either strictly decreasing or
strictly increasing on /. This entails that the point x is not a boundary point of M; in
S! and this proves the claim.

It follows from these considerations that M \E(O, r) consists of a finite union of

disjoint centred circles. Note that f > ¢"©® =: ¢ > 0 on R?. As a result, +00 >
Py(E) > ¢P(E) and in particular the relative perimeter P(E, R2\§(0, r)) < 4oo.
This explains why M\ B(0, r) comprises only finitely many circles.
(ii) Let E be a bounded minimiser of (1.2) such that E is open, M := JE isa C!
hypersurface in R? and E\{0} = E*° as in Theorem 4.5. Assume that R > 0. By (i),
M\B(0, R) consists of a finite union of disjoint centred circles. We claim that only
one of the possibilities

Mg =%, Mg =Sk, Mg = {Rei} or Mg = {—Re;} (10.3)

holds. To prove this suppose that Mg # ) and Mr # S}e- Bearing in mind Lemma
5.2 we may choose x € Mg such that x lies on the boundary of My relative to S}e'
Assume that x € H. Let y; : I — M be a local parametrisation of M with y1(0) = x
with the usual conventions. We first notice that cos(o (x)) = 0 for otherwise we obtain
a contradiction to Theorem 10.3. As r| is decreasing on / and x is a relative boundary
pointitholdsthatr; < RonI% := IN{s > 0}. As M\ A isopenin M we may suppose
that y; (IT) € M\ Aj. According to Theorem 6.5 the curvature k of y;(IT) N B(0, R)
is a.e. constant as p vanishes on (0, R). Hence y; (/™) N B(0, R) consists of a line
or circular arc. The fact that cos(o (x)) = 0 means that y;(I™) N B(0, R) cannot be
a line. So y;(IT) N B(0, R) is an open arc of a circle C containing x in its closure
with centre on the line-segment [0, x] and radius r € (0, R). By considering a local
parametrisation, it can be seen that C N B(0, R) C M. But this contradicts the fact
that E\{0} = E*¢. In summary, Mg C {£Re;}. Finally note that if Mg = {+Re;}
then Mg = S}e by Lemma 5.2. This establishes (10.3).

Suppose that Mrp = . As both sets M and S}e are compact, d(M, S}e) > 0.
Assume first that S}e C E.Put F := B(0, R)\E and suppose F' # (. Then F is a set
of finite perimeter, F CC B(0, R) and P(F) = P(E, B(0, R)). Let B be a centred
ball with | B| = | F|. By the classical isoperimetric inequality, P(B) < P(F). Define
E; := (R*\B) N (B(0, R) U E). Then Vi(E1) = Vy(E) and Pr(E) < Pr(E).
That is, E7 is a minimiser of (1.2) such that d E; consists of a finite union of disjoint
centred circles. Now suppose that S}e C R?\E. In like fashion we may redefine E
via E1 := B U (E\B(0, R)) with B a centred ball in B(0, R). The remaining cases
in (10.3) can be dealt with in a similar way. The upshot of this argument is that there
exists a m inimiser of (1.2) whose boundary M consists of a finite union of disjoint
centred circles in case R > 0.

Now suppose that R = 0. By (i), M\ B(0, r) consists of a finite union of disjoint
centred circles for any r € (0, 1). If these accumulate at O then M fails to be C I at the
origin. The assertion follows. O
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Lemma 10.5 Suppose that the function J : [0, 4+00) — [0, +00) is continuous non-
decreasing and J(0) = 0. Let N € NU {4+oo} and {t, : h = 0,...,2N + 1} a
sequence of points in [0, +00) with

to>1t >--->ty >ty >--->0.

Then
2N+1 2N+1
ooz Y T = ( > (—l)"th> :
h=0 h=0
Proof We suppose that N = +o0. The series fo:o(—l)hth converges by the alter-
nating series test. For eachn € N,
2n+1
Yo (=D'y <1
h=0
and the same inequality holds for the infinite sum. As in Step 2 in [5] Theorem 2.1,
o o0
+oo= Y J(w) = J(w) = J (Z(—D”m)
h=0 h=0
as J is non-decreasing. O

Proof of Theorem 1.1 There exists a minimiser E of (1.2) with the property that 0 E
consists of a finite union of disjoint centred circles according to Lemma 10.4. As such
we may write

N
E = U A((azn+1, azn))
h=0

where N € Nand 400 > ag > a; > --- > aany > aany+1 > 0. Define
£:[0, +00) — R; t > ",
g:[0,4+00) => R, t — t£(2);

t
G:[0,+oo)—>R;t|—>/ gdrt.
0

Then G : [0, +00) — [0, +00) is a bijection with inverse G~!. Define the strictly
increasing function

J:[0,+oo)—>IR;t»—>goG_l.

Putt, := G(ap) forh = 0,...,2N + 1. Then +00 > 19 > t] > -+ > Hhy >
ton41 >> 0. Put B := B(0, r) wherer := G_l(v/2n) so that V¢ (B) = v. Note that
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N
v=Vi(E) =21y [Gam) - Glamn)|
h=0
2N+1

=21 Y (=)'t
h=0

By Lemma 10.5,

2N+1 2N+1
Pr(E) =21 ) glan) =21 ) J(tn)
h=0 h=0
2N+1
> 2nJ ( > (—1)%)
h=0

=2rJ(v/27) = Pr(B).
O

Proof of Theorem 1.2 Letv > 0 and E be a minimiser for (1.2). Then E is essentially
bounded by Theorem 3.1. By Theorem 4.5 there exists an .#’>-measurable set E with
the properties

(a) E is a minimiser of (1.2);

(b) Lj = Lg a.e.on (0, +00);

(c) E is open, bounded and has C* 11 boundary;
(d) E\{O} Ese.

(i) Suppose that 0 < v < vg so that R > 0. Choose r € (0, R] suchthat V(B(0,r)) =
V(E) = v. Suppose that E\E(O, R) # ¢. By Lemma 10.4 there exists # > R such
that Sl C M. As g is strictly increasing, g(¢) > g(r).So Pr(E) = Py (E) > mg(t) >
ng(r) = P;(B(0,7)). This contradicts the fact that £ is a minimiser for (1.2). So
E C B(0, R) and Lz = 0 on (R, +00). By property (b), |E\B(0, R)| = 0. By
the uniqueness property in the classical isoperimetric theorem (see for example [12]
Theorem 4.11) the set E is equivalent to a ball B in B(0, R).

(ii) With r > 0 as before, V(B(0,r)) = V(E) = v > vg = V(B(0, R)) sor > R.
If E \B(0, r) # @ we derive a contradiction in the same way as above. Consequently,
E=B:= B(0,r). Thus, Lg = Lp a.e. on (0, 400); in particular, | E\ B| = 0. This
entails that E is equivalent to B. O

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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