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Abstract Given a positive lower semi-continuous density f on R2 the weighted vol-
ume V f := fL 2 is defined on the L 2-measurable sets in R

2. The f -weighted
perimeter of a set of finite perimeter E in R

2 is written Pf (E). We study minimisers
for the weighted isoperimetric problem

I f (v) := inf
{
Pf (E) : E is a set of finite perimeter in R2 and V f (E) = v

}

for v > 0. Suppose f takes the form f : R2 → (0,+∞); x �→ eh(|x |) where
h : [0,+∞) → R is a non-decreasing convex function. Let v > 0 and B a centred
ball in R

2 with V f (B) = v. We show that B is a minimiser for the above variational
problem and obtain a uniqueness result.
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1 Introduction

Let f be a positive lower semi-continuous density onR2. The weighted volume V f :=
fL 2 is defined on the L 2-measurable sets in R

2. Let E be a set of finite perimeter
in R2. The weighted perimeter of E is defined by
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818 I. McGillivray

Pf (E) :=
∫

R2
f d|DχE | ∈ [0,+∞]. (1.1)

We study minimisers for the weighted isoperimetric problem

I f (v) := inf
{
Pf (E) : E is a set of finite perimeter in R2 and V f (E) = v

}
(1.2)

for v > 0. To be more specific we suppose that f takes the form

f : R2 → (0,+∞); x �→ eh(|x |) (1.3)

where h : [0,+∞) → R is a non-decreasing convex function. Our first main result is
the following. It contains the classical isoperimetric inequality (cf. [9,12]) as a special
case; namely, when h is constant on [0,+∞).

Theorem 1.1 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Let v > 0 and B a centred ball in R

2 with V f (B) = v. Then B is a
minimiser for (1.2).

For x ≥ 0 and v ≥ 0 define the directional derivative of h in direction v by

h′+(x, v) := lim
t↓0

h(x + tv)− h(x)

t
∈ R

and define h′−(x, v) similarly for x > 0 and v ≤ 0. We introduce the notation

ρ+ := h′+(·,+1), ρ− := −h′+(·,−1) and ρ := (1/2)(ρ+ + ρ−)

on (0,+∞). The function h is locally of bounded variation and is differentiable a.e.
with h′ = ρ a.e. on (0,+∞). Our second main result is a uniqueness theorem.

Theorem 1.2 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing convex
function. Suppose that R := inf{ρ > 0} ∈ [0,+∞) and set v0 := V (B(0, R)). Let
v > 0 and E a minimiser for (1.2). The following hold:

(i) if v ≤ v0 then E is a.e. equivalent to a ball B in B(0, R) with V (B) = V (E);
(ii) if v > v0 then E is a.e. equivalent to a centred ball B with V (B) = V (E).

Theorem 1.1 is a generalisation of Conjecture 3.12 in [24] (due to K. Brakke) in
the sense that less regularity is required of the density f : in the latter, h is supposed to
be smooth on (0,+∞) as well as convex and non-decreasing. This conjecture springs
in part from the observation that the weighted perimeter of a local volume-preserving
perturbation of a centred ball is non-decreasing ([24] Theorem 3.10). In addition,
the conjecture holds for log-convex Gaussian densities of the form h : [0,+∞) →
R; t �→ ect

2
with c > 0 ([3,24] Theorem 5.2). In subsequent work partial forms of the

conjecture were proved in the literature. In [19] it is shown to hold for large v provided
that h is uniformly convex in the sense that h′′ ≥ 1 on (0,+∞) (see [19] Corollary
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6.8). A complemen tary result is contained in [11] Theorem 1.1 which establishes the
conjecture for small v on condition that h′′ is locally uniformly bounded away from
zero on [0,+∞). The above-mentioned conjecture is proved in large part in [7] (see
Theorem 1.1) in dimension n ≥ 2 (see also [4]). There it is assumed that the function h
is of class C3 on (0,+∞) and is convex and even (meaning that h is the restriction of
an even function onR to [0,+∞)). A uniqueness result is also obtained ( [7] Theorem
1.2). We obtain these results under weaker hypotheses in the 2-dimensional case and
our proofs proceed along different lines.

We give a brief outline of the article. In Sect. 2 we discuss some preliminary
material. In Sect. 3 we show that (1.2) admits an open minimiser E with C1 boundary
M (Theorem 3.8). The argument draws upon the regularity theory for almost minimal
sets (cf. [27]) and includes an adaptation of [21] Proposition 3.1. In Sect. 4 it is
shown that the boundary M is of class C1,1 (and has weakly bounded curvature).
This result is contained in [21] Corollary 3.7 (see also [8]) but we include a proof for
completeness. This Section also includes the result that E may be supposed to possess
spherical cap symmetry (Theorem 4.5). Section 5 contains further results on spherical
cap symmetric sets useful in the sequel. The main result of Sect. 6 is Theorem 6.5
which shows that the generalised (mean) curvature is conserved along M in a weak
sense. In Sect. 7 it is shown that there exist convex minimisers of (1.2). Sections 8 and
9 comprise an analytic interlude and are devoted to the study of solutions of the first-
order differential equation that appears in Theorem 6.6 subject to Dirichlet boundary
conditions. Section 9 for example contains a comparison theorem for solutions to a
Ricatti equation (Theorem 9.15 and Corollary 9.16). These are new as far as the author
is aware. Section 10 concludes the proof of our main theorems.

2 Some preliminaries

Geometric measure theory. We use | · | to signify the Lebesgue measure on R
2 (or

occasionally L 2). Let E be a L 2-measurable set in R
2. The set of points in E with

density t ∈ [0, 1] is given by

Et :=
{
x ∈ R

2 : lim
ρ↓0

|E ∩ B(x, ρ)|
|B(x, ρ)| = t

}
.

As usual B(x, ρ) denotes the open ball in R
2 with centre x ∈ R

2 and radius ρ > 0.
The set E1 is the measure-theoretic interior of E while E0 is the measure-theoretic
exterior of E . The essential boundary of E is the set ∂�E := R

2\(E0 ∪ E1).
Recall that an integrable function u on R

2 is said to have bounded variation if
the distributional derivative of u is representable by a finite Radon measure Du (cf.
[1] Definition 3.1 for example) with total variation |Du|; in this case, we write u ∈
BV(R2). The set E has finite perimeter if χE belongs to BVloc(R

2). The reduced
boundary F E of E is defined by

F E :=
{
x ∈ supp|DχE | : νE (x) := lim

ρ↓0
DχE (B(x, ρ))

|DχE |(B(x, ρ))

exists in R
2 and |νE (x)| = 1

}
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820 I. McGillivray

(cf. [1] Definition 3.54) and is a Borel set (cf. [1] Theorem 2.22 for example). We use
H k (k ∈ [0,+∞)) to stand for k-dimensional Hausdorff measure. If E is a set of
finite perimeter in R2 then

F E ⊂ E1/2 ⊂ ∂∗E and H 1(∂∗E\F E) = 0 (2.1)

by [1] Theorem 3.61.
Let f be a positive locally Lipschitz density onR2. Let E be a set of finite perimeter

andU a bounded open set inR2. The weighted perimeter of E relative toU is defined
by

Pf (E,U ) := sup
{ ∫

U
div( f X) dx : X ∈ C∞c (U,R2), ‖X‖∞ ≤ 1

}
.

By the Gauss–Green formula ( [1] Theorem 3.36 for example) and a convolution
argument,

Pf (E,U ) = sup
{ ∫

R2
f 〈νE , X〉 d|DχE | : X ∈ C∞c (R2,R2),

supp[X ] ⊂ U, ‖X‖∞ ≤ 1
}

= sup
{ ∫

R2
f 〈νE , X〉 d|DχE | : X ∈ Cc(R

2,R2),

supp[X ] ⊂ U, ‖X‖∞ ≤ 1
}

=
∫

U
f d|DχE | (2.2)

where we have also used [1] Propositions 1.47 and 1.23.

Lemma 2.1 Let ϕ be a C1 diffeomeorphism of R2 which coincides with the identity
map on the complement of a compact set and E ⊂ R

2 with χE ∈ BV(R2). Then

(i) χϕ(E) ∈ BV(R2);
(ii) ∂�ϕ(E) = ϕ(∂�E);
(iii) H 1(Fϕ(E)Δϕ(F E)) = 0.

Proof Part (i) follows from [1] Theorem3.16 asϕ is a proper Lipschitz function. Given
x ∈ E0 we claim that y := ϕ(x) ∈ ϕ(E)0. Let M stand for the Lipschitz constant of
ϕ and L stand for the Lipschitz constant of ϕ−1. Note that B(y, r) ⊂ ϕ(B(x, Lr)) for
each r > 0. As ϕ is a bijection and using [1] Proposition 2.49,

|ϕ(E) ∩ B(y, r)| ≤ |ϕ(E) ∩ ϕ(B(x, Lr)|
= |ϕ(E ∩ B(x, Lr))| ≤ M2|E ∩ B(x, Lr)|.
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This means that

|ϕ(E) ∩ B(y, r)|
|B(y, r)| ≤ (LM)2

|E ∩ B(x, Lr)|
|B(x, Lr)|

for r > 0 and this proves the claim. This entails that ϕ(E0) ⊂ [ϕ(E)]0. The reverse
inclusion can be seen using the fact thatϕ is a bijection. In summaryϕ(E0) = [ϕ(E)]0.
The corresponding identity for E1 can be seen in a similar way. These identities entail
(ii). From (2.1) and (ii) we may writeFϕ(E) ∪ N1 = ϕ(F E) ∪ ϕ(N2) forH 1-null
sets N1, N2 in R2. Item (iii) follows. ��
Curves with weakly bounded curvature. Suppose the open set E inR2 hasC1 boundary
M . Denote by n : M → S

1 the inner unit normal vector field. Given p ∈ M we
choose a tangent vector t (p) ∈ S

1 in such a way that the pair {t (p), n(p)} forms a
positively oriented basis for R2. There exists a local parametrisation γ1 : I → M
where I = (−δ, δ) for some δ > 0 of class C1 with γ1(0) = p. We always assume
that γ1 is parametrised by arc-length and that γ̇1(0) = t (p) where the dot signifies
differentiation with respect to arc-length. Let X be a vector field defined in some
neighbourhood of p in M . Then

(Dt X)(p) := d

ds

∣∣∣
s=0(X ◦ γ1)(s) (2.3)

if this limit exists and the divergence divM X of X along M at p is defined by

divM X := 〈Dt X, t〉 (2.4)

evaluated at p. Suppose that X is a vector field in C1(U,R2) where U is an open
neighbourhood of p in R2. Then

div X = divM X + 〈DnX, n〉 (2.5)

at p. If p ∈ M\{0} let σ(p) stand for the angle measured anti-clockwise from the
position vector p to the tangent vector t (p); σ(p) is uniquely determined up to integer
multiples of 2π .

Let E be an open set in R
2 with C1,1 boundary M . Let x ∈ M and γ1 : I → M

a local parametrisation of M in a neighbourhood of x . There exists a constant c > 0
such that

|γ̇1(s2)− γ̇1(s1)| ≤ c|s2 − s1|

for s1, s2 ∈ I ; a constraint on average curvature (cf. [10,18]). That is, γ̇1 is Lipschitz
on I . So γ̇1 is absolutely continuous and differentiable a.e. on I with

γ̇1(s2)− γ̇1(s1) =
∫ s2

s1
γ̈1 ds (2.6)
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822 I. McGillivray

for any s1, s2 ∈ I with s1 < s2. Moreover, |γ̈1| ≤ c a.e. on I (cf. [1] Corollary 2.23).
As 〈γ̇1, γ̇1〉 = 1 on I we see that 〈γ̇1, γ̈1〉 = 0 a.e. on I . The (geodesic) curvature k1
is then defined a.e. on I via the relation

γ̈1 = k1n1 (2.7)

as in [18]. The curvature k of M is defined H 1-a.e. on M by

k(x) := k1(s) (2.8)

whenever x = γ1(s) for some s ∈ I and k1(s) exists.We sometimeswrite H(·, E) = k.
Let E be an open set in R

2 with C1 boundary M . Let x ∈ M and γ1 : I → M a
local parametrisation of M in a neighbourhood of x . In case γ1 �= 0 let θ1 stand for
the angle measured anti-clockwise from e1 to the position vector γ1 and σ1 stand for
the angle measured anti-clockwise from the position vector γ1 to the tangent vector
t1 = γ̇1. Put r1 := |γ1| on I . Then r1, θ1 ∈ C1(I ) and

ṙ1 = cos σ1; (2.9)

r1θ̇1 = sin σ1; (2.10)

on I provided that γ1 �= 0. Now suppose that M is of class C1,1. Let α1 stand for
the angle measured anti-clockwise from the fixed vector e1 to the tangent vector t1
(uniquely determined up to integer multiples of 2π ). Then t1 = (cosα1, sin α1) on
I so α1 is absolutely continuous on I . In particular, α1 is differentiable a.e. on I
with α̇1 = k1 a.e. on I . This means that α1 ∈ C0,1(I ). In virtue of the identities
r1 cos σ1 = 〈γ1, t1〉 and r1 sin σ1 = −〈γ1, n1〉 we see that σ1 is absolutely continuous
on I and σ1 ∈ C0,1(I ). By choosing an appropriate branch we may assume that

α1 = θ1 + σ1 (2.11)

on I . We may choose σ in such a way that σ ◦ γ1 = σ1 on I .
Flows. Recall that a diffeomorphism ϕ : R2 → R

2 is said to be proper if ϕ−1(K )

is compact whenever K ⊂ R
2 is compact. Given X ∈ C∞c (R2,R2) there exists a 1-

parameter group of proper C∞ diffeomorphisms ϕ : R×R
2 → R

2 as in [20] Lemma
2.99 that satisfy

∂tϕ(t, x) = X (ϕ(t, x)) for each (t, x) ∈ R× R
2;

ϕ(0, x) = x for each x ∈ R
2.

(2.12)

We often use ϕt to refer to the diffeomorphism ϕ(t, ·) : R2 → R
2.

Lemma 2.2 Let X ∈ C∞c (R2,R2) and ϕ be the corresponding flow as above. Then

(i) there exists R ∈ C∞(R× R
2,R2) and K > 0 such that

ϕ(t, x) =
{
x + t X (x)+ R(t, x) for x ∈ supp[X ];
x for x /∈ supp[X ];
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where |R(t, x)| ≤ Kt2 for (t, x) ∈ R× R
2;

(ii) there exists R(1) ∈ C∞(R× R
2, M2(R)) and K1 > 0 such that

dϕ(t, x) =
{
I + td X (x)+ R(1)(t, x) for x ∈ supp[X ];
I for x /∈ supp[X ];

where |R(1)(t, x)| ≤ K1t2 for (t, x) ∈ R× R
2;

(iii) there exists R(2) ∈ C∞(R× R
2,R) and K2 > 0 such that

J2dϕ(t, x) =
{
1+ t div X (x)+ R(2)(t, x) for x ∈ supp[X ];
1 for x /∈ supp[X ];

where |R(2)(t, x)| ≤ K2t2 for (t, x) ∈ R× R
2.

Let x ∈ R
2, v a unit vector in R2 and M the line though x perpendicular to v. Then

(iv) there exists R(3) ∈ C∞(R× R
2,R) and K3 > 0 such that

J1d
Mϕ(t, x) =

{
1+ t (divM X)(x)+ R(3)(t, x) for x ∈ supp[X ];
1 for x /∈ supp[X ];

where |R(3)(t, x)| ≤ K3t2 for (t, x) ∈ R× R
2.

Proof (i) First notice that ϕ ∈ C∞(R × R
2) by [16] Theorem 3.3 and Exercise 3.4.

The statement for x /∈ supp[X ] follows by uniqueness (cf. [16] Theorem 3.1); the
assertion for x ∈ supp[X ] follows from Taylor’s theorem. (ii) follows likewise: note,
for example, that

[∂t t dϕ]αβ |t=0 = Xα
,βδX

δ + Xα
,γ X

γ
,β

where the subscript , signifies partial differentiation. (iii) follows from (ii) and
the definition of the 2-dimensional Jacobian (cf. [1] Definition 2.68). (iv) Using
[1] Definition 2.68 together with the Cauchy–Binet formula [1] Proposition 2.69,
J1dMϕ(t, x) = |dϕ(t, x)v| for t ∈ R and the result follows from (ii). ��

Let I be an open interval inR containing 0. Let Z : I×R
2 → R

2; (t, x) �→ Z(t, x)
be a continuous time-dependent vector field on R

2 with the properties

(Z.1) Z(t, ·) ∈ C1
c (R

2,R2) for each t ∈ I ;
(Z.2) supp[Z(t, ·)] ⊂ K for each t ∈ I for some compact set K ⊂ R

2.

By [16] Theorems I.1.1, I.2.1, I.3.1, I.3.3 there exists a unique flow ϕ : I ×R
2 → R

2

such that

(F.1) ϕ : I × R
2 → R

2 is of class C1;
(F.2) ϕ(0, x) = x for each x ∈ R

2;
(F.3) ∂tϕ(t, x) = Z(t, ϕ(x, t)) for each (t, x) ∈ I × R

2;
(F.4) ϕt := ϕ(t, ·) : R2 → R

2 is a proper diffeomorphism for each t ∈ I .
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824 I. McGillivray

Lemma 2.3 Let Z be a time-dependent vector field with the properties (Z .1)–(Z .2)
and ϕ be the corresponding flow. Then

(i) for (t, x) ∈ I × R
2,

dϕ(t, x) =
{
I + td Z0(x)+ t R(t, x) for x ∈ K ;
I for x /∈ K ;

where supK |R(t, ·)| → 0 as t → 0.

Let x ∈ R
2, v a unit vector in R2 and M the line though x perpendicular to v. Then

(ii) for (t, x) ∈ I × R
2,

J1d
Mϕ(t, x) =

{
1+ t (divM Z0)(x)+ t R(1)(t, x) for x ∈ K ;
1 for x /∈ K .

where supK |R(1)(t, ·)| → 0 as t → 0.

Proof (i)Wefirst remark that the flowϕ : I×R2 → R
2 associated to Z is continuously

differentiable in t, x in virtue of (Z.1) by [16] Theorem I.3.3. Put y(t, x) := dϕ(t, x)
for (t, x) ∈ I × R

2. By [16] Theorem I.3.3,

ẏ(t, x) = dZ(t, ϕ(t, x))y(t, x)

for each (t, x) ∈ I × R
2 and y(0, x) = I for each x ∈ R

2 where I stands for the
2× 2-identity matrix. For x ∈ K and t ∈ I ,

dϕ(t, x) = I + dϕ(t, x)− dϕ(0, x)

= I + t ẏ(0, x)+ t
{dϕ(t, x)− dϕ(0, x)

t
− ẏ(0, x)

}

= I + td Z(0, x)+ t
{ y(t, x)− y(0, x)

t
− ẏ(0, x)

}

= I + td Z0(x)+ t
{ y(t, x)− y(0, x)

t
− ẏ(0, x)

}
.

Applying the mean-value theorem component-wise and using uniform continuity of
the matrix ẏ in its arguments we see that

y(t, ·)− y(0, ·)
t

− ẏ(0, ·) → 0

uniformly on K as t → 0. This leads to (i). Part (ii) follows as in Lemma 2.2. ��
Let E be a set of finite perimeter in R

2 with V f (E) < +∞. The first variation of
weighted volume resp. perimeter along X ∈ C∞c (R2,R2) is defined by

δV f (X) := d

dt

∣∣∣
t=0V f (ϕt (E)), (2.13)
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An isoperimetric inequality in the plane with a log... 825

δP+f (X) := lim
t↓0

Pf (ϕt (E))− Pf (E)

t
, (2.14)

whenever the limit exists. By Lemma 2.1 the f -perimeter in (2.14) is well-defined.
Convex functions. Suppose that h : [0,+∞) → R is a convex function. For x ≥ 0
and v ≥ 0 define

h′+(x, v) := lim
t↓0

h(x + tv)− h(x)

t
∈ R

and define h′−(x, v) similarly for x > 0 and v ≤ 0. For future use we introduce the
notation

ρ+ := h′(·,+1), ρ− := −h′(·,−1) and ρ := (1/2)(ρ+ + ρ−)

on (0,+∞). It holds that h is differentiable a.e. and h′ = ρ a.e. on (0,+∞). Define
[ρ] := ρ+ − ρ−. Then [ρ] ≥ 0 and vanishes a.e. on (0,+∞).

Lemma 2.4 Suppose that the function f takes the form (1.3) where h : [0,+∞) → R

is a convex function. Then

(i) the directional derivative f ′+(x, v) exists in R for each x ∈ R
2 and v ∈ R

2;
(ii) for v ∈ R

2,

f ′+(x, v) =
{

f (x)h′+(|x |, sgn〈x, v〉) |〈x,v〉||x | for x ∈ R
2\{0};

f (0)h′+(0,+1)|v| for x = 0;

(iii) if M is a C1 hypersurface inR2 such that cos σ �= 0 on M then f is differentiable
H 1-a.e. on M and

(∇ f )(x) = f (x)ρ(|x |) 〈x, ·〉|x |

forH 1-a.e. x ∈ M.

Proof The assertion in (i) follows from the monotonicity of chords property while
(ii) is straightforward. (iii) Let x ∈ M and γ1 : I → M be a C1-parametrisation of
M near x as above. Now r1 ∈ C1(I ) and ṙ1(0) = cos σ(x) �= 0 so we may assume
that r1 : I → r1(I ) ⊂ (0,+∞) is a C1 diffeomorphism. The differentiability set
D(h) of h has full Lebesgue measure in [0,+∞). It follows by [1] Proposition 2.49
that r−11 (D(h)) has full measure in I . This entails that f is differentiableH 1-a.e. on
γ1(I ) ⊂ M . ��

3 Existence and C1 regularity

We start with an existence theorem.
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826 I. McGillivray

Theorem 3.1 Assume that f is a positive radial lower-semicontinuousnon-decreasing
density on R2 which diverges to infinity. Then for each v > 0,

(i) (1.2) admits a minimiser;
(ii) any minimiser of (1.2) is essentially bounded.

Proof See [22] Theorems 3.3 and 5.9. ��
But the bulk of this section will be devoted to a discussion of C1 regularity.

Proposition 3.2 Let f be a positive locally Lipschitz density on R
2. Let E ⊂ R

2 be
a bounded set with finite perimeter. Let X ∈ C∞c (R2,R2). Then

δV f (X) =
∫

E
div( f X) dx = −

∫

F E
f 〈νE , X〉 dH 1.

Proof Let t ∈ R. By the area formula ( [1] Theorem 2.71 and (2.74)),

V f (ϕt (E)) =
∫

ϕt (E)

f dx =
∫

E
( f ◦ ϕt ) J2d(ϕt )x dx (3.1)

and

V f (ϕt (E))− V f (E) =
∫

E
( f ◦ ϕt )J2dϕt − f dx

=
∫

E
( f ◦ ϕt )(J2dϕt − 1) dx +

∫

E
f ◦ ϕt − f dx .

The density f is locally Lipschitz and in particular differentiable a.e. on R
2 (see [1]

2.3 for example). By the dominated convergence theorem and Lemma 2.2,

δV f (X) =
∫

E

{
f div(X)+ 〈∇ f, X〉

}
dx =

∫

E
div( f X) dx

= −
∫

F E
f 〈νE , X〉 dH 1

by the generalised Gauss–Green formula [1] Theorem 3.36. ��
Proposition 3.3 Let f be a positive locally Lipschitz density on R

2. Let E ⊂ R
2 be

a bounded set with finite perimeter. Let X ∈ C∞c (R2,R2). Then there exist constants
C > 0 and δ > 0 such that

|Pf (ϕt (E))− Pf (E)| ≤ C |t |

for |t | < δ.
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Proof Let t ∈ R. By Lemma 2.1 and [1] Theorem 3.59,

Pf (ϕt (E)) =
∫

R2
f d|Dχϕt (E)| =

∫

Fϕt (E)

f dH 1 =
∫

ϕt (F E)

f dH 1.

As F E is countably 1-rectifiable ( [1] Theorem 3.59) we may use the generalised
area formula [1] Theorem 2.91 to write

Pf (ϕt (E)) =
∫

F E
( f ◦ ϕt )J1d

F E (ϕt )x dH
1.

For each x ∈ F E and any t ∈ R,

|( f ◦ ϕt )(x)− f (x)| ≤ K |ϕ(t, x)− x | ≤ K‖X‖∞|t |

where K is the Lipschitz constant of f on supp[X ]. The result follows upon writing

Pf (ϕt (E))− Pf (E) =
∫

F E
( f ◦ ϕt )(J1d

F E (ϕt )x − 1)

+ [ f ◦ ϕt − f ] dH 1 (3.2)

and using Lemma 2.2. ��
Lemma 3.4 Let f be a positive locally Lipschitz density on R

2. Let E ⊂ R
2 be a

bounded set with finite perimeter and p ∈ F E. For any r > 0 there exists X ∈
C∞c (R2,R2) with supp[X ] ⊂ B(p, r) such that δV f (X) = 1.

Proof By (2.2) and [1] Theorem 3.59 and (3.57) in particular,

Pf (E, B(p, r)) =
∫

B(p,r)∩F E
f dH 1 > 0

for any r > 0. By the variational characterisation of the f -perimeter relative to B(p, r)
we can find Y ∈ C∞c (R2,R2) with supp[Y ] ⊂ B(p, r) such that

0 <

∫

E∩B(p,r)
div( f Y ) dx = −

∫

F E∩B(p,r)
f 〈νE ,Y 〉 dH 1 =: c

where we make use of the generalised Gauss–Green formula (cf. [1] Theorem 3.36).
Put X := (1/c)Y . Then X ∈ C∞c (R2,R2) with supp[X ] ⊂ B(p, r) and δV f (X) = 1
according to Proposition 3.2. ��
Proposition 3.5 Let f be a positive lower semi-continuous density on R

2. Let U be
a bounded open set in R

2 with Lipschitz boundary. Let E, F1, F2 be bounded sets in
R
2 with finite perimeter. Assume that EΔF1 ⊂⊂ U and EΔF2 ⊂⊂ R

2\U. Define

F :=
[
F1 ∩U

]
∪

[
F2\U

]
.
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828 I. McGillivray

Then F is a set of finite perimeter in R2 and

Pf (E)+ Pf (F) = Pf (F1)+ Pf (F2).

Proof The function χE |U ∈ BV(U ) and D(χE |U ) = (DχE )|U . We write χU
E for the

boundary trace of χE |U (see [1] Theorem 3.87); then χU
E ∈ L1(∂U,H 1 ∂U ) (cf.

[1] Theorem 3.88). We use similar notation elsewhere. By [1] Corollary 3.89,

DχE = DχE U + (χU
E − χ

R
2\U

E )νUH 1 ∂U + DχE (R2\U );
DχF = DχF1 U + (χU

F1 − χ
R
2\U

F2
)νUH 1 ∂U + DχF2 (R2\U );

DχF1 = DχF1 U + (χU
F1 − χ

R
2\U

E )νUH 1 ∂U + DχE (R2\U );
DχF2 = DχE U + (χU

E − χ
R
2\U

F2
)νUH 1 ∂U + DχF2 (R2\U ).

From the definition of the total variation measure ([1] Definition 1.4),

|DχE | = |DχE | U + |χU
E − χ

R
2\U

E |H 1 ∂U + |DχE | (R2\U );
|DχF | = |DχF1 | U + |χU

E − χ
R
2\U

E |H 1 ∂U + |DχF2 | (R2\U );
|DχF1 | = |DχF1 | U + |χU

E − χ
R
2\U

E |H 1 ∂U + |DχE | (R2\U );
|DχF2 | = |DχE | U + |χU

E − χ
R
2\U

E |H 1 ∂U + |DχF2 | (R2\U );

where we also use the fact that χU
F1
= χU

E as EΔF1 ⊂⊂ U and similarly for F2. The
result now follows. ��
Proposition 3.6 Assume that f is a positive locally Lipschitz density onR2. Let v > 0
and suppose that the set E is a bounded minimiser of (1.2). Let U be a bounded open
set in R2. There exist constants C > 0 and δ > 0 with the following property. For any
x ∈ U and 0 < r < δ,

P f (E)− Pf (F) ≤ C
∣∣V f (E)− V f (F)

∣∣ (3.3)

where F is any set with finite perimeter in R2 such that EΔF ⊂⊂ B(x, r).

Proof The proof follows that of [21] Proposition 3.1. We assume to the contrary that

(∀C > 0)(∀ δ > 0)(∃ x ∈ U )(∃ r ∈ (0, δ))(∃ F ⊂ R
2)

[
FΔE ⊂⊂ B(x, r) ∧ΔPf > C |ΔV f |

]
(3.4)

in the language of quantifiers where we have taken some liberties with notation.
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Choose p1, p2 ∈ F E with p1 �= p2. Choose r0 > 0 such that the open balls
B(p1, r0) and B(p2, r0) are disjoint. Choose vector fields X j ∈ C∞c (R2,R2) with
supp[X j ] ⊂ B(p j , r0) such that

δV f (X j ) = 1 and |Pf (ϕ
( j)
t (E))− Pf (E)| ≤ a j |t | for |t | < δ j and j = 1, 2

(3.5)

as in Lemma 3.4 and Proposition 3.3. Put a := max{a1, a2}. By (3.5),

V f (ϕ
( j)
t (E))− V f (E) = t + o(t) as t → 0 for j = 1, 2.

So there exist ε > 0 and 1 > η > 0 such that

t − η|t | < V f (ϕ
( j)
t (E))− V f (E) < t + η|t |;

|Pf (ϕ
( j)
t (E))− Pf (E)| < (a + 1)|t |; (3.6)

for |t | < ε and j = 1, 2. In particular,

|V f (ϕ
( j)
t (E))− V f (E)| > (1− η)|t |;

|Pf (ϕ
( j)
t (E))− Pf (E)| < 1+ a

1− η
|V f (ϕ

( j)
t (E))− V f (E)| for |t | < ε; (3.7)

for |t | < ε and j = 1, 2.
In (3.4) choose C = (1+ a)/(1− η) and δ > 0 such that

(a) 0 < 2δ < dist(B(p1, r0), B(p2, r0)),
(b) sup{V f (B(x, δ)) : x ∈ U } < (1− η) ε.

Choose x, r and F1 as in (3.4). In light of (a) wemay assume that B(x, r)∩B(p1, r0) =
∅. By (b),

|V f (F1)− V f (E)| ≤ V f (B(x, r)) ≤ V f (B(x, δ)) < (1− η) ε. (3.8)

From (3.6) and (3.8) we can find t ∈ (−ε, ε) such that with F2 := ϕ
(1)
t (E),

V f (F2)− V f (E) = −
{
V f (F1)− V f (E)

}
(3.9)

by the intermediate value theorem. From (3.4),

Pf (F1) < Pf (E)− C |V f (F1)− V f (E)| (3.10)

while from (3.7),

Pf (F2) < Pf (E)+ C |V f (F2)− V f (E)|. (3.11)
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Let F be the set

F :=
[
F1\B(p1, r0))

]
∪

[
B(p1, r0) ∩ F2

]
.

Note that EΔF2 ⊂⊂ B(p1, r0). By Proposition 3.5, F is a bounded set of finite
perimeter in R2 and

Pf (E)+ Pf (F) = Pf (F1)+ Pf (F2).

We then infer from (3.10), (3.11) and (3.9) that

Pf (F) = Pf (F1)+ Pf (F2)− Pf (E)

< Pf (E)− C |V f (F1)− V f (E)| + Pf (E)

+ C |V f (F2)− V f (E)| − Pf (E) = Pf (E).

On the other hand, V f (F) = V f (F1) + V f (F2) − V f (E) = V f (E) by (3.9). We
therefore obtain a contradiction to the f -isoperimetric property of E . ��

Let E be a set of finite perimeter in R
2 and U a bounded open set in R

2. The
minimality excess is the function ψ defined by

ψ(E,U ) := P(E,U )− ν(E,U ) (3.12)

where

ν(E,U ) := inf{P(F,U ) : F is a set of finite perimeter with FΔE ⊂⊂ U }

as in [27] (1.9). We recall that the boundary of E is said to be almost minimal in R2 if
for each bounded open setU in R2 there exists T > 0 and a positive constant K such
that for every x ∈ U and r ∈ (0, T ),

ψ(E, B(x, r)) ≤ Kr2. (3.13)

This definition corresponds to [27] Definition 1.5.

Theorem 3.7 Assume that f is a positive locally Lipschitz density on R
2. Let v > 0

and assume that E is a bounded minimiser of (1.2). Then the boundary of E is almost
minimal in R2.

Proof Let U be a bounded open set in R
2 and C > 0 and δ > 0 as in Proposition

3.6. The open δ-neighbourhood of U is denoted Iδ(U ). Let x ∈ U and r ∈ (0, δ). Put
V := I2δ(U ). For the sake of brevity write m := infB(x,r) f and M := supB(x,r) f .
Let F be a set of finite perimeter in R

2 such that FΔE ⊂⊂ B(x, r). By Proposition
3.6,
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P(E, B(x, r))− P(F, B(x, r))

≤ 1

m
Pf (E, B(x, r))− 1

M
Pf (F, B(x, r))

= 1

m

(
Pf (E, B(x, r))− Pf (F, B(x, r))

)
+

( 1

m
− 1

M

)
Pf (F, B(x, r))

≤ 1

m

(
Pf (E, B(x, r))− Pf (F, B(x, r))

)
+ M − m

m2 Pf (F, B(x, r))

≤ C

infV f
|V f (E)− V f (F)| + (2Lr)

supV f

(infV f )2
P(F, B(x, r))

≤ Cπr2
supV f

infV f
+ (2Lr)

supV f

(infV f )2
P(F, B(x, r))

where L stands for the Lipschitz constant of the restriction of f to V . We then derive
that

ψ(E, B(x, r)) ≤ Cπr2
supV f

infV f
+ (2Lr)

supV f

(infV f )2
ν(E, B(x, r)).

By [13] (5.14), ν(E, B(x, r)) ≤ πr . The inequality in (3.13) now follows. ��
Theorem 3.8 Assume that f is a positive locally Lipschitz density on R

2. Let v > 0
and suppose that E is a bounded minimiser of (1.2). Then there exists a set Ẽ ⊂ R

2

such that

(i) Ẽ is a bounded minimiser of (1.2);
(ii) Ẽ is equivalent to E;
(iii) Ẽ is open and ∂ Ẽ is a C1 hypersurface in R

2.

Proof By [13] Proposition 3.1 there exists a Borel set F equivalent to E with the
property that

∂F = {x ∈ R
2 : 0 < |F ∩ B(x, ρ)| < πρ2 for each ρ > 0}.

By Theorem 3.7 and [27] Theorem 1.9, ∂F is a C1 hypersurface in R2 (taking note of
differences in notation). The set

Ẽ := {x ∈ R
2 : |F ∩ B(x, ρ)| = πρ2 for some ρ > 0}

satisfies (i)–(iii). ��

4 Weakly bounded curvature and spherical cap symmetry

Theorem 4.1 Assume that f is a positive locally Lipschitz density on R
2. Let v > 0

and suppose that E is a bounded minimiser of (1.2). Then there exists a set Ẽ ⊂ R
2

such that

(i) Ẽ is a bounded minimiser of (1.2);
(ii) Ẽ is equivalent to E;
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(iii) Ẽ is open and ∂ Ẽ is a C1,1 hypersurface in R
2.

Proof Wemay assume that E has the properties listed in Theorem 3.8. Put M := ∂E .
Let x ∈ M and U a bounded open set containing x . Choose C > 0 and δ > 0 as in
Proposition 3.6. Let 0 < r < δ and X ∈ C∞c (R2,R2) with supp[X ] ⊂ B(x, r). Then

Pf (E)− Pf (ϕt (E)) ≤ C |V f (E)− V f (ϕt (E))|

for each t ∈ R. From the identity (3.2),

−
∫

M
( f ◦ ϕt )(J1d

M (ϕt )x − 1) dH 1 ≤ C |V f (E)− V f (ϕt (E))|

+
∫

M
[ f ◦ ϕt − f ] dH 1

≤ C |V f (E)− V f (ϕt (E))| + √2K‖X‖∞H 1(M ∩ supp[X ])t

where K stands for the Lipschitz constant of f restricted to U . On dividing by t and
taking the limit t → 0 we obtain

−
∫

M
f divM X dH 1 ≤ C

∣∣∣
∫

M
f 〈n, X〉 dH 1

∣∣∣
+ √2K‖X‖∞H 1(M ∩ supp[X ])

upon using Lemma 2.2 and Proposition 3.2. Replacing X by −X we derive that

∣∣∣
∫

M
f divM X dH 1

∣∣∣ ≤ C1‖X‖∞H 1(M ∩ supp[X ])

whereC1 = C‖ f ‖L∞(U )+
√
2K . Let γ1 : I → M be a localC1 parametrisation of M

near x . Suppose that Y ∈ C1
c (I,R

2) with supp[Y ] ⊂ I and that γ1(I ) ⊂ M ∩ B(x, r).
Note that there exists X ∈ C∞c (R2,R2)with supp[X ] ⊂ B(x, r) such that X ◦γ1 = Y
on I . The above estimate entails that

∣∣∣
∫

I
( f ◦ γ1)〈Ẏ , t〉 ds

∣∣∣ ≤ C1

∣∣∣supp[Y ]
∣∣∣‖Y‖∞.

This means that the function ( f ◦ γ1)t belongs to BV(I ) and this implies in turn that
t ∈ BV(I ). For s1, s2 ∈ I with s1 < s2,

|t (s2)− t (s1)| = |Dt ((s1, s2))| ≤ |Dt |((s1, s2))
= sup

{ ∫

(s1,s2)
〈t, Ẏ 〉 ds : Y ∈ C1

c ((s1, s2)) and ‖Y‖∞ ≤ 1
}

≤ c sup
{ ∫

(s1,s2)
( f ◦ γ1)〈t, Ẏ 〉 ds : Y ∈ C1

c ((s1, s2)) and ‖Y‖∞ ≤ 1
}

≤ cC1|s2 − s1|
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where 1/c = infU f > 0. It follows that M is of class C1,1. ��
We turn to the topic of spherical cap symmetrisation. Denote by S

1
τ the centred

circle in R
2 with radius τ > 0. We sometimes write S1 for S11. Given x ∈ R

2, v ∈ S
1

and α ∈ (0, π ] the open cone with vertex x , axis v and opening angle 2α is the set

C(x, v, α) :=
{
y ∈ R

2 : 〈y − x, v〉 > |y − x | cosα
}
.

Let E be anL 2-measurable set in R2 and τ > 0. The τ -section Eτ of E is the set
Eτ := E ∩ S

1
τ . Put

L(τ ) = LE (τ ) :=H 1(Eτ ) for τ > 0 (4.1)

and p(E) := {τ > 0 : L(τ ) > 0}. The function L isL 1-measurable by [1] Theorem
2.93. Given τ > 0 and 0 < α ≤ π the spherical cap C(τ, α) is the set

C(τ, α) :=
{
S
1
τ ∩ C(0, e1, α) if 0 < α < π;

S
1
τ if α = π;

and has H 1-measure s(τ, α) := 2ατ . The spherical cap symmetral Esc of the set E
is defined by

Esc :=
⋃

τ∈p(E)

C(τ, α) (4.2)

where α ∈ (0, π ] is determined by s(τ, α) = L(τ ). Observe that Esc is a L 2-
measurable set inR2 and V f (Esc) = V f (E). Note also that if B is a centred open ball
then Bsc = B\{0}. We say that E is spherical cap symmetric ifH 1((EΔEsc)τ ) = 0
for each τ > 0. This definition is broad but suits our purposes.

The result below is stated in [22] Theorem 6.2 and a sketch proof given. A proof
along the lines of [2] Theorem 1.1 can be found in [23]. First, let B be a Borel set in
(0,+∞); then the annulus A(B) over B is the set A(B) := {x ∈ R

2 : |x | ∈ B}.
Theorem 4.2 Let E be a set of finite perimeter in R

2. Then Esc is a set of finite
perimeter and

P(Esc, A(B)) ≤ P(E, A(B)) (4.3)

for any Borel set B ⊂ (0,∞) and the same inequality holds with Esc replaced by any
set F that isL 2-equivalent to Esc.

Corollary 4.3 Let f be a positive lower semi-continuous radial function on R
2. Let

E be a set of finite perimeter in R2. Then Pf (Esc) ≤ Pf (E).

Proof Assume that Pf (E) < +∞. We remark that f is Borel measurable as f is
lower semi-continuous. Let ( fh) be a sequence of simple Borel measurable radial
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functions on R
2 such that 0 ≤ fh ≤ f and fh ↑ f on R

2 as h → ∞. By Theorem
4.2,

Pfh (E
sc) =

∫

R2
fh d|DχEsc | ≤

∫

R2
fh d|DχE | = Pfh (E)

for each h. Taking the limit h → ∞ the monotone convergence theorem gives
Pf (Esc) ≤ Pf (E). ��
Lemma 4.4 Let E be an L 2-measurable set in R

2 such that E\{0} = Esc. Then
there exists an L 2-measurable set F equivalent to E such that

(i) ∂F = {x ∈ R
2 : 0 < |F ∩ B(x, ρ)| < |B(x, ρ)| for any ρ > 0};

(ii) F is spherical cap symmetric.

Proof Put

E1 := {x ∈ R
2 : |E ∩ B(x, ρ)| = |B(x, ρ)| for some ρ > 0};

E0 := {x ∈ R
2 : |E ∩ B(x, ρ)| = 0 for some ρ > 0}.

We claim that E1 is spherical cap symmetric. For take x ∈ E1 with τ = |x | > 0 and
|θ(x)| ∈ (0, π ]. Now |E ∩ B(x, ρ)| = |B(x, ρ)| for some ρ > 0. Let y ∈ R

2 with
|y| = τ and |θ(y)| < |θ(x)|. Choose a rotation O ∈ SO(2) such that OB(x, ρ) =
B(y, ρ). As E\{0} = Esc, |E ∩ B(y, ρ)| = |O(E ∩ B(x, ρ))| = |E ∩ B(x, ρ)| =
|B(x, ρ)| = |B(y, ρ)|. The claim follows. It follows in a similar way that R2\E0 is
spherical cap symmetric. It can then be seen that the set F := (E1 ∪ E)\E0 inherits
this property. As in [13] Proposition 3.1 the set F is equivalent to E and enjoys the
property in (i). ��
Theorem 4.5 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Then there exists
anL 2-measurable set Ẽ with the properties

(i) Ẽ is a minimiser of (1.2);
(ii) L Ẽ = L a.e. on (0,+∞);
(iii) Ẽ is open, bounded and has C1,1 boundary;
(iv) Ẽ\{0} = Ẽsc.

Proof Let E be a boundedminimiser for (1.2). Then E1 := Esc is a boundedminimiser
of (1.2) by Corollary 4.3 and LE = LE1 on (0,+∞). Now put E2 := F with F as in
Lemma 4.4. Then LE2 = L a.e. on (0,+∞) as E2 is equivalent to E1, E2 is a bounded
minimiser of (1.2) and E2 is spherical cap symmetric. Moreover, ∂E2 = {x ∈ R

2 :
0 < |E2 ∩ B(x, ρ)| < |B(x, ρ)| for any ρ > 0}. As in the proof of Theorem 3.8, ∂E2
is a C1 hypersurface in R2. Put

Ẽ := {x ∈ R
2 : |E2 ∩ B(x, ρ)| = |B(x, ρ)| for some ρ > 0}.

Then Ẽ is equivalent to E2 so that (ii) holds, and is a bounded minimiser of (1.2);
Ẽ is open and ∂ Ẽ = ∂E2 is C1. In fact, ∂ Ẽ is of class C1,1 by Theorem 4.1. As E2
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is spherical cap symmetric the same is true of Ẽ . But Ẽ is open which entails that
Ẽ\{0} = Ẽsc. ��

5 More on spherical cap symmetry

Let

H := {x = (x1, x2) ∈ R
2 : x2 > 0}

stand for the open upper half-plane in R
2 and

S : R2 → R
2; x = (x1, x2) �→ (x1,−x2)

for reflection in the x1-axis. Let O ∈ SO(2) represent rotation anti-clockwise through
π/2.

Lemma 5.1 Let E be an open set inR2 withC1 boundary M and assume that E\{0} =
Esc. Let x ∈ M\{0}. Then
(i) Sx ∈ M\{0};
(ii) n(Sx) = Sn(x);
(iii) cos σ(Sx) = − cos σ(x).

Proof (i) The closure E of E is spherical cap symmetric. The spherical cap symmetral
E is invariant under S from the representation (4.2). (ii) is a consequence of this last
observation. (iii) Note that t (Sx) = O�n(Sx) = O�Sn(x). Then

cos σ(Sx) = 〈Sx, t (Sx)〉 = 〈Sx, O�Sn(x)〉 = 〈x, SO�Sn(x)〉
= 〈x, On(x)〉 = −〈x, O�n(x)〉 = cos σ(x)

as SO�S = O and O = −O�. ��
We introduce the projection π : R2 → [0,+∞); x �→ |x |.

Lemma 5.2 Let E be an open set in R2 with boundary M and assume that E\{0} =
Esc.

(i) Suppose 0 �= x ∈ R
2\E and θ(x) ∈ (0, π ]. Then there exists an open interval I

in (0,+∞) containing τ and α ∈ (0, θ(x)) such that A(I )\S(α) ⊂ R
2\E.

(ii) Suppose 0 �= x ∈ E and θ(x) ∈ [0, π). Then there exists an open interval I in
(0,+∞) containing τ and α ∈ (θ(x), π) such that A(I ) ∩ S(α) ⊂ E.

(iii) For each 0 < τ ∈ π(M), Mτ is the union of two closed spherical arcs in S
1
τ

symmetric about the x1-axis.

Proof (i) We can find α ∈ (0, θ(x)) such that S1τ\S(α) ⊂ R
2\E as can be seen from

definition (4.2). This latter set is compact so dist(S1τ\S(α), E) > 0. This means that
the ε-neighbourhood of S1τ\S(α) is contained in R

2\E for ε > 0 small. The claim
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follows. (ii) Again from (4.2) we can find α ∈ (θ(x), π) such that S1τ ∩ S(α) ⊂ E
and the assertion follows as before.
(iii) Suppose x1, x2 are distinct points in Mτ with 0 ≤ θ(x1) < θ(x2) ≤ π . Suppose y
lies in the interior of the spherical arc joining x1 and x2. If y ∈ R

2\E then x2 ∈ R
2\E

by (i) and hence x2 /∈ M . If y ∈ E we obtain the contradiction that x1 ∈ E by (ii).
Therefore y ∈ M . We infer that the closed spherical arc joining x1 and x2 lies in Mτ .
The claim follows noting that Mτ is closed. ��
Lemma 5.3 Let E be an open set in R2 with C1 boundary M. Let x ∈ M. Then

lim inf
E�y→x

〈 y − x

|y − x | , n(x)
〉
≥ 0.

Proof Assume for a contradiction that

lim inf
E�y→x

〈 y − x

|y − x | , n(x)
〉
∈ [−1, 0).

There exists η ∈ (0, 1) and a sequence (yh) in E such that yh → x as h →∞ and

〈 yh − x

|yh − x | , n(x)
〉
< −η (5.1)

for each h ∈ N. Choose α ∈ (0, π/2) such that cosα = η. As M is C1 there exists
r > 0 such that

B(x, r) ∩ C(x,−n(x), α) ∩ E = ∅.

By choosing h sufficiently large we can find yh ∈ B(x, r)with the additional property
that yh ∈ C(x,−n(x), α) by (5.1). We are thus led to a contradiction. ��
Lemma 5.4 Let E be an open set inR2 withC1 boundary M and assume that E\{0} =
Esc. For each 0 < τ ∈ π(M),

(i) | cos σ | is constant on Mτ ;
(ii) cos σ = 0 on Mτ ∩ {x2 = 0};
(iii) 〈Ox, n(x)〉 ≤ 0 for x ∈ Mτ ∩ H
(iv) cos σ ≤ 0 on Mτ ∩ H;

and if cos σ �≡ 0 on Mτ then

(v) τ ∈ p(E);
(vi) Mτ consists of two disjoint singletons in S

1
τ symmetric about the x1-axis;

(vii) L(τ ) ∈ (0, 2πτ);
(viii) Mτ = {(τ cos(L(τ )/2τ),±τ sin(L(τ )/2τ)}.
Proof (i)By Lemma 5.2, Mτ is the union of two closed spherical arcs in S1τ symmetric
about the x1-axis. In case Mτ ∩ H consists of a singleton the assertion follows from
Lemma 5.1. Now suppose thatMτ ∩H consists of a spherical arc in S1τ with non-empty
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interior. It can be seen that cos σ vanishes on the interior of this arc as 0 = r ′1 = cos σ1
in a local parametrisation by (2.9). By continuity cos σ = 0 on Mτ . (ii) follows from
Lemma 5.1. (iii) Let x ∈ Mτ ∩ H so θ(x) ∈ (0, π). Then S(θ(x)) ∩ S

1
τ ⊂ E as E is

spherical cap symmetric. Then

0 ≤ lim
S(θ(x))∩S1τ�y→x

〈 y − x

|y − x | , n(x)
〉
= −〈Ox, n(x)〉

by Lemma 5.3. (iv) The adjoint transformation O� represents rotation clockwise
through π/2. Let x ∈ Mτ ∩ H . By (iii),

0 ≥ 〈Ox, n(x)〉 = 〈x, O�n(x)〉 = 〈x, t (x)〉 = τ cos σ(x)

and this leads to the result. (v) As cos σ �≡ 0 on Mτ we can find x ∈ Mτ ∩ H . We
claim that S1τ ∩ S(θ(x)) ⊂ E . For suppose that y ∈ S

1
τ ∩ S(θ(x)) but y /∈ E . We may

suppose that 0 ≤ θ(y) < θ(x) < π . If y ∈ R
2\E then x ∈ R

2\E by Lemma 5.2. On
the other hand, if y ∈ M then the spherical arc in H joining y to x is contained in M
again by Lemma 5.2. This arc also has non-empty interior in S

1
τ . Now cos σ = 0 on

its interior so cos(σ (x)) = 0 by (i) contradicting the hypothesis. A similar argument
deals with (vi) and this together with (v) in turn entails (vii) and (viii). ��
Lemma 5.5 Let E be an open set inR2 withC1 boundary M and assume that E\{0} =
Esc. Suppose that 0 ∈ M. Then

(i) (sin σ)(0+) = 0;
(ii) (cos σ)(0+) = −1.
Proof (i) Let γ1 be aC1 parametrisation of M in a neighbourhood of 0 with γ1(0) = 0
as above. Then n(0) = n1(0) = e1 and hence t (0) = t1(0) = −e2. By Taylor’s
Theorem γ1(s) = γ1(0) + t1(0)s + o(s) = −e2s + o(s) for s ∈ I . This means that
r1(s) = |γ1(s)| = s + o(s) and

cos θ1 = 〈e1, γ1〉
r1

= 〈e1, γ1〉
s

s

r1
→ 0

as s → 0 which entails that (cos θ1)(0−) = 0. Now t1 is continuous on I so t1 =
−e2 + o(1) and cosα1 = 〈e1, t1〉 = o(1). We infer that (cosα1)(0−) = 0. By (2.11),
cosα1 = cos σ1 cos θ1 − sin σ1 sin θ1 on I and hence (sin σ1)(0−) = 0. We deduce
that (sin σ)(0+) = 0. Item (ii) follows from (i) and Lemma 5.4. ��

The set

Ω := π
[
(M\{0}) ∩ {cos σ �= 0}

]
(5.2)

plays an important rôle in the proof of Theorem 1.1.

Lemma 5.6 Let E be an open set inR2 withC1 boundary M and assume that E\{0} =
Esc. Then Ω is an open set in (0,+∞).
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Proof Suppose 0 < τ ∈ Ω . Choose x ∈ Mτ ∩ {cos σ �= 0}. Let γ1 : I → M be a
local C1 parametrisation of M in a neighbourhood of x such that γ1(0) = x as before.
By shrinking I if necessary we may assume that r1 �= 0 and cos σ1 �= 0 on I . Then
the set {r1(s) : s ∈ I } ⊂ Ω is connected and so an interval in R (see for example [25]
Theorems 6.A and 6.B). By (2.9), r ′1(0) = cos σ1(0) = cos σ(p) �= 0. This means
that the set {r1(s) : s ∈ I } contains an open interval about τ . ��

6 Generalised (mean) curvature

Given a set E of finite perimeter in R
2 the first variation δV f (Z) resp. δP+f (Z) of

weighted volume and perimeter along a time-dependent vector field Z are defined as
in (2.13) and (2.14).

Proposition 6.1 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Let E be a bounded open set in R2 with C1 boundary M. Let Z be a
time-dependent vector field. Then

δP+f (Z) =
∫

M
f ′+(·, Z0)+ f divM Z0 dH

1

where Z0 := Z(0, ·) ∈ C1
c (R

2,R2).

Proof The identity (3.2) holds for each t ∈ I with M in place of F E . The assertion
follows on appealing to Lemma 2.3 and Lemma 2.4 with the help of the dominated
convergence theorem. ��

Given X,Y ∈ C∞c (R2,R2) let ψ resp. χ stand for the 1-parameter group of C∞
diffeomorphisms of R2 associated to the vector fields X resp. Y as in (2.12). Let I be
an open interval in R containing the point 0. Suppose that the function σ : I → R is
C1. Define a flow via

ϕ : I × R
2 → R

2; (t, x) �→ χ(σ(t), ψ(t, x)).

Lemma 6.2 The time-dependent vector field Z associated with the flow ϕ is given by

Z(t, x) = σ ′(t)Y (χ(σ (t), ψ(t, x)))+ dχ(σ(t), ψ(t, x))X (ψ(t, x)) (6.1)

for (t, x) ∈ I × R
2 and satisfies (Z.1) and (Z.2).

Proof For t ∈ I and x ∈ R
2 we compute using (2.12),

∂tϕ(t, x) = (∂tχ)(σ (t), ψ(t, x))σ ′(t)+ dχ(σ(t), ψ(t, x))∂tψ(t, x)

and this gives (6.1). Put K1 := supp[X ], K2 := supp[Y ] and K := K1 ∪ K2. Then
(Z .2) holds with this choice of K . ��

123



An isoperimetric inequality in the plane with a log... 839

Let E be a bounded open set in R2 with C1 boundary M . Define Λ := (M\{0}) ∩
{cos σ = 0} and

Λ1 := {x ∈ M :H 1(Λ ∩ B(x, ρ)) =H 1(M ∩ B(x, ρ)) for some ρ > 0}. (6.2)

For future reference put Λ±1 := Λ1 ∩ {x ∈ M : ±〈x, n〉 > 0}.
Lemma 6.3 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing convex
function. Let E be a bounded open set in R2 with C1,1 boundary M and suppose that
E\{0} = Esc. Then

(i) Λ1 is a countable disjoint union of well-separated open circular arcs centred at
0;

(ii) H 1(Λ1\Λ1) = 0;
(iii) f is differentiable H 1-a.e. on M\Λ1.

The term well-separated in (i) means the following: if Γ is an open circular arc in
Λ1 with Γ ∩ (Λ1\Γ ) = ∅ then d(Γ,Λ1\Γ ) > 0.

Proof (i) Let x ∈ Λ1 and γ1 : I → M a C1,1 parametrisation of M near x . By
shrinking I if necessary we may assume that γ1(I ) ⊂ M ∩ B(x, ρ) with ρ as in
(6.2). So cos σ = 0H 1-a.e. on γ1(I ) and hence cos σ1 = 0 a.e. on I . This means that
cos σ1 = 0 on I as σ1 ∈ C0,1(I ) and that r1 is constant on I by (2.9). Using (2.10) it can
be seen that γ1(I ) is an open circular arc centred at 0. By compactness of M it follows
that Λ1 is a countable disjoint union of open circular arcs centred on 0. The well-
separated property flows from the fact that M is C1. (ii) follows as a consequence of
this property. (iii) Let x ∈ M\Λ1 and γ1 : I → M aC1,1 parametrisation of M near x
with properties as before.We assume that x lies in the upper half-plane H . By shrinking
I if necessary we may assume that γ1(I ) ⊂ (M\Λ1) ∩ H . Let s1, s2, s3 ∈ I with
s1 < s2 < s3. Then y := γ1(s2) ∈ M\Λ1. SoH 1(M∩{cos σ �= 0}∩B(y, ρ)) > 0 for
each ρ > 0. This means that for small η > 0 the set γ1((s2−η, s2+η))∩{cos σ �= 0}
has positiveH 1-measure. Consequently, r1(s3)−r1(s1) =

∫ s3
s1

cos σ1 ds < 0 bearing
inmind Lemma 5.4. This shows that r1 is strictly decreasing on I . So h is differentiable
a.e. on r1(I ) ⊂ (0,+∞) in virtue of the fact that h is convex and hence locally
Lipschitz. This entails (iii). ��
Proposition 6.4 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be aminimiser of (1.2). Assume that E is a bounded
open set in R

2 with C1 boundary M and suppose that E\{0} = Esc. Suppose that
M\Λ1 �= ∅. Then there exists λ ∈ R such that for any X ∈ C1

c (R
2,R2),

0 ≤
∫

M

{
f ′+(·, X)+ f divM X − λ f 〈n, X〉

}
dH 1.

Proof Let X ∈ C∞c (R2,R2). Let x ∈ M and r > 0 such that M ∩ B(x, r) ⊂ M\Λ1.
Choose Y ∈ C∞c (R2,R2) with supp[Y ] ⊂ B(x, r) as in Lemma 3.4. Let ψ resp. χ

stand for the 1-parameter group ofC∞ diffeomorphisms ofR2 associated to the vector
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fields X resp. Y as in (2.12). For each (s, t) ∈ R
2 the set χs(ψt (E)) is an open set in

R
2 with C1 boundary and ∂(χs ◦ ψt )(E) = (χs ◦ ψt )(M) by Lemma 2.1. Define

V (s, t) := V f (χt (ψs(E)))− V f (E),

P(s, t) := Pf (χt (ψs(E))),

for (s, t) ∈ R
2. We write F = (χt ◦ ψs)(E). Arguing as in Proposition 3.2,

∂t V (s, t) = lim
h→0

(1/h){V f (χh(F))− V f (F)} =
∫

F
div( f Y ) dx

=
∫

E
(div( f Y ) ◦ χt ◦ ψs) J2d(χt ◦ ψs)x dx

with an application of the area formula (cf. [1] Theorem 2.71). This last varies con-
tinuously in (s, t). The same holds for partial differentiation with respect to s. Indeed,
put η := χt ◦ ψs . Then noting that J2d(η ◦ ψh) = (J2dη) ◦ ψh J2dψh and using the
dominated convergence theorem,

∂sV (s, t) = lim
h→0

(1/h)
{
V f (η(ψh(E)))− V f (η(E))

}

= lim
h→0

(1/h)
{ ∫

E
( f ◦ η ◦ ψh)J2d(η ◦ ψh)x dx −

∫

E
( f ◦ η)J2dηx dx

}

= lim
h→0

(1/h)
{ ∫

E
[( f ◦ η ◦ ψh)− ( f ◦ η)]J2d(η ◦ ψh)x dx

+
∫

E
( f ◦ η)[(J2dη ◦ ψh − J2dη]J2dψh dx

+
∫

E
( f ◦ η)J2dη[J2dψh − 1] dx

}

=
∫

E
〈∇( f ◦ η), X〉J2dηx dx +

∫

E
( f ◦ η)〈∇ J2dη, X〉 dx

+
∫

E
( f ◦ η)J2dη div X dx

where the explanation for the last term can be found in the proof of Proposition 3.2. In
this regard we note that d(dχt ) (for example) is continuous on I×R

2 (cf. [1] Theorem
3.3 and Exercise 3.2) and in particular∇ J2dχt is continuous on I×R

2. The expression
above also varies continuously in (s, t) as can be seen with the help of the dominated
convergence theorem. This means that V (·, ·) is continuously differentiable on R

2.
Note that

∂t V (0, 0) =
∫

E
div( f Y ) dx = 1
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by choice of Y . By the implicit function theorem there exists η > 0 and a C1 function
σ : (−η, η) → R such that σ(0) = 0 and V (s, σ (s)) = 0 for s ∈ (−η, η); moreover,

σ ′(0) = −∂sV (0, 0) = −
∫

E

{
〈∇ f, X〉 + f div X

}
dx

= −
∫

E
div( f X) dx =

∫

M
f 〈n, X〉 dH 1

by the Gauss–Green formula (cf. [1] Theorem 3.36).
The mapping

ϕ : (−η, η)× R
2 → R

2; t �→ χ(σ(t), ψ(t, x))

satisfies conditions (F.1)–(F.4) above with I = (−η, η) where the associated time-
dependent vector field Z is given as in (6.1) and satisfies (Z.1) and (Z.2); moreover,
Z0 = Z(0, ·) = σ ′(0)Y + X . Note that Z0 = X on M\B(x, r).

The mapping I → R; t �→ Pf (ϕt (E)) is right-differentiable at t = 0 as can be
seen from Proposition 6.1 and has non-negative right-derivative there. By Proposition
6.1 and Lemma 6.3,

0 ≤ δP+f (Z) =
∫

M
f ′+(·, Z0)+ f divM Z0 dH

1

=
∫

M\Λ1

f ′+(·, Z0)+ f divM Z0 dH
1

+
∫

Λ1

f ′+(·, X)+ f divM X dH 1

=
∫

M\Λ1

σ ′(0)〈∇ f,Y 〉 + 〈∇ f, X〉

+ σ ′(0) f divMY + f divM X dH 1

+
∫

Λ1

f ′+(·, X)+ f divM X dH 1

=
∫

M
f ′+(·, X)+ f divM X dH 1

+ σ ′(0)
∫

M
f ′+(·,Y )+ f divMY dH 1. (6.3)

The identity then follows upon inserting the expression for σ ′(0) above with λ =
− ∫

M f ′+(·,Y )+ f divMY dH 1. The claim follows for X ∈ C1
c (R

2,R2) by a density
argument. ��
Theorem 6.5 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be a minimiser of (1.2). Assume that E is a
bounded open set in R

2 with C1,1 boundary M and suppose that E\{0} = Esc.
Suppose that M\Λ1 �= ∅. Then there exists λ ∈ R such that
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(i) k + ρ sin σ + λ = 0 H 1-a.e. on M\Λ1;
(ii) ρ− − λ ≤ k ≤ ρ+ − λ on Λ+1 ;
(iii) −ρ+ − λ ≤ k ≤ −ρ− − λ on Λ−1 .

The expression k + ρ sin σ is called the generalised (mean) curvature of M .

Proof (i) Let x ∈ M and r > 0 such that M ∩ B(x, r) ⊂ M\Λ1. Choose
X ∈ C1

c (R
2,R2) with supp[X ] ⊂ B(x, r). We know from Lemma 6.3 that f is

differentiable H 1-a.e. on supp[X ]. Let λ be as in Proposition 6.4. Replacing X by
−X we deduce from Proposition 6.4 that

0 =
∫

M

{
〈∇ f, X〉 + f divM X − λ f 〈n, X〉

}
dH 1.

The divergence theorem on manifolds (cf. [1] Theorem 7.34) holds also for C1,1

manifolds. So
∫

M
〈∇ f, X〉 + f divM X dH 1 =

∫

M
∂n f 〈n, X〉 + 〈∇M f, X〉 + f divM X dH 1

=
∫

M
∂n f 〈n, X〉 + divM ( f X) dH 1

=
∫

M
∂n f 〈n, X〉 − H f 〈n, X〉 dH 1

=
∫

M
f u {∂n log f − H} dH 1

where u = 〈n, X〉. Combining this with the equality above we see that

∫

M
u f {∂n log f − H − λ} dH 1 = 0

for all X ∈ C1
c (R

2,R2). This leads to the result.
(ii) Let x ∈ M and r > 0 such that M ∩ B(x, r) ⊂ Λ+1 . Let φ ∈ C1(S1r ) with support
in S1r ∩ B(x, r). We can construct X ∈ C1

c (R
2,R2) with the property that X = φn on

M ∩ B(x, r). By Lemma 2.4,

f ′+(·, X) = f h′+(|x |, sgn〈x, X〉)|〈n, X〉| = f h′+(|x |, sgn φ〈x, n〉)|φ|

on Λ1. Let us assume that φ ≥ 0. As 〈·, n〉 > 0 on Λ+1 we have that f ′+(·, X) =
f φh′+(|x |,+1) = f φρ+ so by Proposition 6.4,

0 ≤
∫

M

{
f ′+(·, X)+ f divM X − λ f 〈n, X〉

}
dH 1

=
∫

M
f φ

{
ρ+ − k − λ

}
dH 1.
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We conclude that ρ+ − k − λ ≥ 0 on M ∩ B(x, r). Now assume that φ ≤ 0. Then
f ′+(·, X) = − f φh′+(|x |,−1) = f φρ− so

0 ≤
∫

M
f φ

{
ρ− − k − λ

}
dH 1

and hence ρ− − k − λ ≤ 0 on M ∩ B(x, r). This shows (ii).
(iii) The argument is similar. Assume in the first instance that φ ≥ 0. Then f ′+(·, X) =
f φh′+(|x |,−1) = − f φρ− so

0 ≤
∫

M
f φ

{
− ρ− − k − λ

}
dH 1.

We conclude that −ρ− − k − λ ≥ 0 on M ∩ B(x, r). Next suppose that φ ≤ 0. Then
f ′+(·, X) = − f φh′+(|x |,+1) = − f φρ+ so

0 ≤
∫

M
f φ

{
− ρ+ − k − λ

}
dH 1

and −ρ+ − k − λ ≤ 0 on M ∩ B(x, r). ��
Let E be an open set in R

2 with C1 boundary M and assume that E\{0} = Esc

and that Ω is as in (5.2). Bearing in mind Lemma 5.4 we may define

θ2 : Ω → (0, π); τ �→ L(τ )/2τ ; (6.4)

γ : Ω → M; τ �→ (τ cos θ2(τ ), τ sin θ2(τ )). (6.5)

The function

u : Ω → [−1, 1]; τ �→ sin(σ (γ (τ ))). (6.6)

plays a key role.

Theorem 6.6 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E
is open with C1,1 boundary M and that E\{0} = Esc. Suppose that M\Λ1 �= ∅ and
let λ be as in Theorem 6.5. Then u ∈ C0,1(Ω) and

u′ + (1/τ + ρ)u + λ = 0

a.e. on Ω .

Proof Let τ ∈ Ω and x a point in the open upper half-plane such that x ∈ Mτ .
There exists a C1,1 parametrisation γ1 : I → M of M in a neighbourhood of x with
γ1(0) = x as above. Put u1 := sin σ1 on I . By shrinking the open interval I if necessary
we may assume that r1 : I → r1(I ) is a diffeomorphism and that r1(I ) ⊂⊂ Ω . Note
that γ = γ1 ◦ r−11 and u = u1 ◦ r−11 on r1(I ). It follows that u ∈ C0,1(Ω). By (2.9),
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u′ = u̇1
ṙ1
◦ r−11 = σ̇1 ◦ r−11

a.e. on r1(I ). As α̇1 = k1 a.e. on I and using the identity (2.10) we see that σ̇1 =
α̇1 − θ̇1 = k1 − (1/r1) sin σ1 a.e on I . Thus,

u′ = k − (1/τ) sin(σ ◦ γ ) = k − (1/τ)u

a.e. on r1(I ). By Theorem 6.5 there exists λ ∈ R such that k + ρ sin σ + λ = 0
H 1-a.e. on M . So

u′ = −ρ(τ)u − λ− (1/τ)u = −(1/τ + ρ(τ))u − λ

a.e. on r1(I ). The result follows. ��
Lemma 6.7 Suppose that E is a bounded open set in R

2 with C1 boundary M and
that E\{0} = Esc. Then

(i) θ2 ∈ C1(Ω);
(ii) θ ′2 = − 1

τ
u√
1−u2 on Ω .

Proof Let τ ∈ Ω and x a point in the open upper half-plane such that x ∈ Mτ .
There exists a C1 parametrisation γ1 : I → M of M in a neighbourhood of x with
γ1(0) = x as above. By shrinking the open interval I if necessary we may assume
that r1 : I → r1(I ) is a diffeomorphism and that r1(I ) ⊂⊂ Ω . It then holds that

θ2 = θ1 ◦ r−11 and σ ◦ γ = σ1 ◦ r−11

on r1(I ) by choosing an appropriate branch of θ1. It follows that θ2 ∈ C1(Ω). By the
chain-rule, (2.10) and (2.9),

θ ′2 =
θ̇1

ṙ1
◦ r−11 =

(
1

r1
tan σ1

)
◦ r−11

= (1/τ) tan(σ ◦ γ )

on r1(I ). By Lemma 5.4, cos(σ ◦ γ ) = −√1− u2 on Ω . This entails (ii). ��

7 Convexity

Lemma 7.1 Let E be a bounded open set in R
2 with C1,1 boundary M and assume

that E\{0} = Esc. Put d := sup{|x | : x ∈ M} > 0 and b := (d, 0). Let γ1 : I → M
be a C1,1 parametrisation of M near b with γ1(0) = b. Then

lim
δ↓0

{
ess sup[−δ,δ]k1

}
≥ 1/d.
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Proof For s ∈ I ,

γ1(s) = de1 + se2 +
∫ s

0

{
γ̇1(u)− γ̇1(0)

}
du

and

γ̇1(u)− γ̇1(0) =
∫ u

0
k1n1 dv

by (2.6). By the Fubini–Tonelli Theorem,

γ1(s) = de1 + se2 +
∫ s

0
(s − u)k1(u)n1(u) du = de1 + se2 + R(s)

for s ∈ I . Assume for a contradiction that

lim
δ↓0

{
ess sup[−δ,δ]k1

}
< l < 1/d

for some l ∈ R. Then we can find δ > 0 such that k1 < l a.e. on [−δ, δ]. So

〈R(s), e1〉 =
∫ s

0
(s − u)k1(u)〈n1(u), e1〉 du > −(1/2)s2l(1+ o(1))

as s ↓ 0 and

r1(s)
2 − d2 = 2d〈R(s), e1〉 + s2 + o(s2)

> −dls2(1+ o(1))+ s2 + o(s2)

as s ↓ 0. Alternatively,

r1(s)2 − d2

s2
> 1− dl + o(1).

As 1− dl > 0 we can find s ∈ I with r1(s) > d, contradicting the definition of d. ��
Lemma 7.2 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing convex
function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E is
open with C1,1 boundary M and that E\{0} = Esc. Suppose that M\Λ1 �= ∅. Then
λ ≤ −1/d − ρ−(d) < 0 with λ as in Theorem 6.5.

Proof We write M as the disjoint union M = (M\Λ1) ∪ Λ1. Let b be as above.
Suppose that b ∈ Λ1. Then b ∈ Λ1; in fact, b ∈ Λ−1 . By Theorem 6.5, λ ≤ −ρ− − k
at b. By Lemma 7.1, λ ≤ −1/d − ρ−(d) upon considering an appropriate sequence
in M converging to b. Now suppose that b lies in the open set M\Λ1 in M . Let
γ1 : I → M be aC1,1 parametrisation of M near b with γ1(I ) ⊂ M\Λ1. By Theorem
6.5, k1 + ρ(r1) sin σ1 + λ = 0 a.e. on I . Now sin σ1(s) → 1 as s → 0. In light of
Lemma 7.1, 1/d + ρ(d−)+ λ ≤ 0 and λ ≤ −1/d − ρ−(d). ��
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Theorem 7.3 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E is
open with C1,1 boundary M and that E\{0} = Esc. Suppose that M\Λ1 �= ∅. Then
E is convex.

Proof The proof runs along similar lines as [22] Theorem 6.5. By Theorem 6.5,
k + ρ sin σ + λ = 0 H 1-a.e. on M\Λ1. By Lemma 7.2,

0 ≤ k + ρ−(d)+ λ ≤ k − 1/d

and k ≥ 1/d H 1-a.e. on M\Λ1. On Λ+1 , k ≥ ρ− − λ ≥ ρ− + ρ−(d) + 1/d > 0;
on the other hand, k < 0 on Λ+1 . So in fact Λ+1 = ∅. If b ∈ Λ−1 then k = 1/d. On
Λ−1 ∩ B(0, d), k ≥ −ρ+ − λ ≥ −ρ+ + ρ−(d)+ 1/d ≥ 1/d. Therefore k ≥ 1/d > 0
H 1-a.e. on M . The set E is then convex by a modification of [26] Theorem 1.8 and
Proposition 1.4. It is sufficient that the function f (here α1) in the proof of the former
theorem is non-decreasing. ��

8 A reverse Hermite–Hadamard inequality

Let 0 ≤ a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function on [a, b].
Let h be a primitive of ρ on [a, b] so that h ∈ C0,1([a, b]) and introduce the functions

f : [a, b] → R; x �→ eh(x); (8.1)

g : [a, b] → R; x �→ xf(x). (8.2)

Then

g′ = (1/x + ρ)g = f+ gρ (8.3)

a.e. on (a, b). Define

m = m(ρ, a, b) := g(b)− g(a)∫ b
a g dt

. (8.4)

If ρ takes the constant value R � λ ≥ 0 on [a, b] we use the notation m(λ, a, b) and
we write m0 = m(0, a, b). A computation gives

m0 = m(0, a, b) = A(a, b)−1 (8.5)

where A(a, b) := (a + b)/2 stands for the arithmetic mean of a and b.

Lemma 8.1 Let 0 ≤ a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Then m0 ≤ m.
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Proof Note that g is convex on [a, b] as can be seen from (8.3). By the Hermite-
Hadamard inequality (cf. [15,17]),

1

b − a

∫ b

a
g dt ≤ g(a)+ g(b)

2
. (8.6)

The inequality (b − a)(g(a)+ g(b)) ≤ (a + b)(g(b)− g(a)) entails

∫ b

a
g dt ≤ a + b

2
(g(b)− g(a))

and the result follows on rearrangement. ��
Lemma 8.2 Let 0 ≤ a < b < +∞ and λ > 0. Then m(λ, a, b) < λ+ A(a, b)−1.

Proof First suppose that λ = 1 and take h : [a, b] → R; t �→ t . In this case,

∫ b

a
g dt =

∫ b

a
tet dt = (b − 1)eb − (a − 1)ea

and

m(1, a, b) = beb − aea

(b − 1)eb − (a − 1)ea
.

The inequality in the statement is equivalent to

(a + b)(beb − aea) < ((b − 1)eb − (a − 1)ea)(2+ a + b)

which in turn is equivalent to the statement tanh[(b− a)/2] < (b− a)/2 which holds
for any b > a.

For λ > 0 take h : [a, b] → R; t �→ λt . Substitution gives

∫ b

a
g dt = (1/λ)2[(λb − 1)eλb − (λa − 1)eλa] and

g(b)− g(a) = (1/λ)[λbeλb − λaeλa]

so from above

m(λ, a, b) = λm(1, λa, λb) < λ
{
1+ A(λa, λb)−1

}
= λ+ A(a, b)−1.

��
Theorem 8.3 Let 0 ≤ a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Then
(i) m(ρ, a, b) ≤ ρ(b−)+ A(a, b)−1;

123



848 I. McGillivray

(ii) equality holds if and only if ρ ≡ 0 on [a, b).

Proof (i) Define h := ∫ ·
a ρ dτ on [a, b] so that h′ = ρ a.e. on (a, b). Define h1 :

[a, b] → R; t �→ h(b)− ρ(b−)(b − t). Then h1(b) = h(b), h′1 = ρ(b−) ≥ ρ = h′
a.e. on (a, b) and hence h ≥ h1 on [a, b]. We derive

∫ b

a
g dt =

∫ b

a
teh(t) dt ≥

∫ b

a
teh1(t) dt =

∫ b

a
g1 dt

and

g(b)− g(a) = beh(b) − aeh(a) = beh1(b) − aeh(a)

≤ beh1(b) − aeh1(a) = g1(b)− g1(a)

with obvious notation. This entails that m(ρ, a, b) ≤ m(ρ(b−), a, b) and the result
follows with the help of Lemma 8.2.
(ii) Suppose that ρ �≡ 0 on [a, b). If ρ is constant on [a, b] the assertion follows from
Lemma 8.2. Assume then that ρ is not constant on [a, b). Then h �≡ h1 on [a, b] in the
above notation and

∫ b
a teh(t) dt >

∫ b
a teh1(t) dt which entails strict inequality in (i). ��

With the above notation define

m̂ = m̂(ρ, a, b) := g(a)+ g(b)∫ b
a g dt

. (8.7)

A computation gives

m̂0 := m̂(0, a, b) = 2

b − a
. (8.8)

Lemma 8.4 Let 0 ≤ a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Then m̂ ≥ m̂0.

Proof This follows by the Hermite-Hadamard inequality (8.6). ��
We prove a reverse Hermite-Hadamard inequality.

Theorem 8.5 Let 0 ≤ a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Then
(i) (b − a)m̂(ρ, a, b) ≤ 2+ aρ(a+)+ bρ(b−);
(ii) equality holds if and only if ρ ≡ 0 on [a, b).

This last inequality can be written in the form

g(a)+ g(b)

2+ aρ(a+)+ bρ(b−)
≤ 1

b − a

∫ b

a
g dt;

comparing with (8.6) justifies naming this a reverse Hermite-Hadamard inequality.
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Proof (i) We assume in the first instance that ρ ∈ C1((a, b)). We prove the above
result in the form

∫ b

a
g dt ≥ (b − a)

g(a)+ g(b)

2+ aρ(a)+ bρ(b)
. (8.9)

Put

w := (t − a)(g(a)+ g)

2+ aρ(a)+ tρ

for t ∈ [a, b] so that
∫ b

a
w′ dt = (b − a)

g(a)+ g(b)

2+ aρ(a)+ bρ(b)
.

Then using (8.3),

w′ = (g(a)+ g + (t − a)g′)(2+ aρ(a)+ tρ)− (t − a)(g(a)+ g)(ρ + tρ′)
(2+ aρ(a)+ tρ)2

= (g(a)− ag′ + (2+ tρ)g)(2+ aρ(a)+ tρ)− (t − a)(g(a)+ g)(ρ + tρ′)
(2+ aρ(a)+ tρ)2

= (2+ tρ)(2+ aρ(a)+ tρ)

(2+ aρ(a)+ tρ)2
g

+ (g(a)− ag′)(2+ aρ(a)+ tρ)− (t − a)(g(a)+ g)(ρ + tρ′)
(2+ aρ(a)+ tρ)2

≤ g − 2g(a)

(2+ aρ(a)+ bρ(b))2
(t − a)ρ

≤ g (8.10)

on (a, b) as

g(a)− ag′ = a(f(a)− (1/t + ρ)g) = a(f(a)− f− ρg) ≤ 0.

An integration over [a, b] gives the result.
Let us now assume that ρ ≥ 0 is a non-decreasing bounded function on [a, b].

Extend ρ to R via

ρ̃(t) :=
⎧⎨
⎩

ρ(a+) for t ∈ (−∞, a];
ρ(t) for t ∈ (a, b];
ρ(b−) for t ∈ (b,+∞);

for t ∈ R. Let (ψε)ε>0 be a family of mollifiers (see e.g. [1] 2.1) and set ρ̃ε := ρ̃ � ψε

on R for each ε > 0. Then ρ̃ε ∈ C∞(R) and is non-decreasing on R for each ε > 0.
Put ρε := ρ̃ε |[a,b] for each ε > 0. Then (ρε)ε>0 converges to ρ in L1((a, b)) by [1]
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2.1 for example. Note that hε :=
∫ ·
a ρε dt → h pointwise on [a, b] as ε ↓ 0 and that

(hε) is uniformly bounded on [a, b]. Moreover, ρε(a)→ ρ(a+) and ρε(b) → ρ(b−)

as ε ↓ 0. By the above result,

(b − a)m̂(ρε, a, b) ≤ 2+ aρε(a)+ bρε(b)

for each ε > 0. The inequality follows on taking the limit ε ↓ 0 with the help of the
dominated convergence theorem.
(ii)We now consider the equality case. We claim that

(b − a)
g(a)+ g(b)

2+ aρ(a+)+ bρ(b−)
≤

∫ b

a
g dt

− 2g(a)

(2+ aρ(a+)+ bρ(b−))2

∫ b

a
(t − a)ρ dt; (8.11)

this entails the equality condition in (ii). First suppose that ρ ∈ C1((a, b)). In this case
the inequality in (8.10) implies (8.11) upon integration. Now suppose that ρ ≥ 0 is a
non-decreasing bounded function on [a, b]. Then (8.11) holds with ρε in place of ρ

for each ε > 0. The inequality for ρ follows by the dominated convergence theorem.
��

9 Comparison theorems for first-order differential equations

Let L stand for the collection of Lebesgue measurable sets in [0,+∞). Define a
measure μ on ([0,+∞),L ) by μ(dx) := (1/x) dx . Let 0 ≤ a < b < +∞. Suppose
that u : [a, b] → R is an L 1-measurable function with the property that

μ({u > t}) < +∞ for each t > 0. (9.1)

The distribution function μu : (0,+∞) → [0,+∞) of u with respect to μ is given
by

μu(t) := μ({u > t}) for t > 0.

Note that μu is right-continuous and non-increasing on (0,∞) and μu(t) → 0 as
t →∞.

Let u be a Lipschitz function on [a, b]. Define

Z1 := {u differentiable and u′ = 0}, Z2 := {u not differentiable} and Z := Z1 ∪ Z2.

By [1] Lemma 2.96, Z ∩ {u = t} = ∅ for L 1-a.e. t ∈ R and hence N := u(Z) ⊂ R

isL 1-negligible. We make use of the coarea formula ( [1] Theorem 2.93 and (2.74)),

∫

[a,b]
φ|u′| dx =

∫ ∞

−∞

∫

{u=t}
φ dH 0 dt (9.2)
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for any L 1-measurable function φ : [a, b] → [0,∞].
Lemma 9.1 Let 0 ≤ a < b < +∞ and u a Lipschitz function on [a, b]. Then
(i) μu ∈ BVloc((0,+∞));
(ii) Dμu = −u�μ;
(iii) Dμa

u = Dμu ((0,+∞)\N );
(iv) Dμs

u = Dμu N;

(v) A :=
{
t ∈ (0,+∞) : L 1(Z ∩ {u = t}) > 0

}
is the set of atoms of Dμu and

Dμ
j
u = Dμu A;

(vi) μu is differentiable L 1-a.e. on (0,+∞) with derivative given by

μ′u(t) = −
∫

{u=t}\Z
1

|u′|
dH 0

τ

forL 1-a.e. t ∈ (0,+∞);
(vii) Ran(u) ∩ [0,+∞) = supp(Dμu).

The notation above Dμa
u, Dμs

u, Dμ
j
u stands for the absolutely continuous resp.

singular resp. jump part of the measure Dμu (see [1] 3.2 for example).

Proof For any ϕ ∈ C∞c ((0,+∞)) with supp[ϕ] ⊂ (τ,+∞) for some τ > 0,

∫ ∞

0
μuϕ

′ dt =
∫

[a,b]
ϕ ◦ u dμ

=
∫

[a,b]
χ{u>τ }ϕ ◦ u dμ (9.3)

by Fubini’s theorem; so μu ∈ BVloc((0,+∞)) and Dμu is the push-forward of μ

under u, Dμu = −u�μ (cf. [1] 1.70). By (9.2),

Dμu ((0,+∞)\N )(A) = −μ({u ∈ A}\Z)

= −
∫

A

∫

{u=t}\Z
1

|u′|
dH0

τ
dt

for any L 1-measurable set A in (0,+∞). In light of the above, we may identify
Dμa

u = Dμu ((0,+∞)\N ) and Dμs
u = Dμu N . The set of atoms of Dμu is

defined by A := {t ∈ (0,+∞) : Dμu({t}) �= 0}. For t > 0,

Dμu({t}) = Dμs
u({t}) = (Dμu N )(({t})

= −u�μ(N ∩ {t}) = −μ(Z ∩ {u = t})

and this entails (v). The monotone function μu is a good representative within its
equivalence class and is differentiable L 1-a.e. on (0,+∞) with derivative given by
the density of Dμu with respect to L 1 by [1] Theorem 3.28. Item (vi) follows from
(9.2) and (iii). Item (vii) follows from (ii). ��
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Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function on
[a, b]. Let η ∈ {±1}2. We study solutions to the first-order linear ordinary differential
equation

u′ + (1/x + ρ)u + λ = 0 a.e. on (a, b) with u(a) = η1 and u(b) = η2 (9.4)

where u ∈ C0,1([a, b]) and λ ∈ R. In case ρ ≡ 0 on [a, b] we use the notation u0.

Lemma 9.2 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Let η ∈ {±1}2. Then
(i) there exists a solution (u, λ) of (9.4) with u ∈ C0,1([a, b]) and λ = λη ∈ R;
(ii) the pair (u, λ) in (i) is unique;
(iii) λη is given by

−λ(1,1) = λ(−1,−1) = m; λ(1,−1) = −λ(−1,1) = m̂;

(iv) if η = (1, 1) or η = (−1,−1) then u is uniformly bounded away from zero on
[a, b].

Proof (i) For η = (1, 1) define u : [a, b] → R by

u(t) := m
∫ t
a g ds + g(a)

g(t)
for t ∈ [a, b] (9.5)

with m as in (8.4). Then u ∈ C0,1([a, b]) and satisfies (9.4) with λ = −m. For
η = (1,−1) set u = (−m̂ ∫ ·

a g ds + g(a))/g with λ = m̂. The cases η = (−1,−1)
and η = (−1, 1) can be dealt with using linearity. (ii)We consider the case η = (1, 1).
Suppose that (u1, λ1) resp. (u2, λ2) solve (9.4). By linearity u := u1 − u2 solves

u′ + (1/x + ρ)u + λ = 0 a.e. on (a, b) with u(a) = u(b) = 0

where λ = λ1 − λ2. An integration gives that u = (−λ
∫ ·
a g ds + c)/g for some

constant c ∈ R and the boundary conditions entail that λ = c = 0. The other cases
are similar. (iii) follows as in (i). (iv) If η = (1, 1) then u > 0 on [a, b] from (9.5) as
m > 0. ��

The boundary condition η1η2 = −1.
Lemma 9.3 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Let (u, λ) solve (9.4) with η = (1,−1). Then
(i) there exists a unique c ∈ (a, b) with u(c) = 0;
(ii) u′ < 0 a.e. on [a, c] and u is strictly decreasing on [a, c];
(iii) Dμs

u = 0.
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Proof (i)We first observe that u′ ≤ −m̂ < 0 a.e. on {u ≥ 0} in view of (9.4). Suppose
u(c1) = u(c2) = 0 for some c1, c2 ∈ (a, b) with c1 < c2. We may assume that
u ≥ 0 on [c1, c2]. This contradicts the above observation. Item (ii) is plain. For any
L 1-measurable set B in (0,+∞), Dμs

u(B) = μ({u ∈ B} ∩ Z) = 0 using Lemma
9.1 and (ii). ��
Lemma 9.4 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Let (u, λ) solve (9.4) with η = (1,−1). Assume that
(a) u is differentiable at both a and b and that (9.4) holds there;
(b) u′(a) < 0 and u′(b) < 0;
(c) ρ is differentiable at a and b.

Put v := −u. Then
(i)

∫
{v=1}\Zv

1
|v′|

dH 0

τ
≥ ∫

{u=1}\Zu

1
|u′|

dH 0

τ
;

(ii) equality holds if and only if ρ ≡ 0 on [a, b).

Proof First, {u = 1} = {a} by Lemma 9.3. Further 0 < −au′(a) = 1+ a[m̂ + ρ(a)]
from (9.4). On the other hand {v = 1} ⊃ {b} and 0 < bv′(b) = −1 + b[m̂ − ρ(b)].
Thus

∫

{v=1}\Zv

1

|v′|
dH 0

τ
−

∫

{u=1}\Zu

1

|u′|
dH 0

τ

≥ 1

−1+ b[m̂ − ρ(b)] −
1

1+ a[m̂ + ρ(a)] .

By Theorem 8.5, 0 ≤ 2 + (a − b)m̂ + aρ(a)+ bρ(b), noting that ρ(a) = ρ(a+) in
virtue of (c) and similarly at b. A rearrangement leads to the inequality. The equality
assertion follows from Theorem 8.5. ��
Theorem 9.5 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Suppose that (u, λ) solves (9.4) with η = (1,−1) and set v := −u.
Assume that u > −1 on [a, b). Then

(i) −μ′v ≥ −μ′u for L 1-a.e. t ∈ (0, 1);
(ii) if ρ �≡ 0 on [a, b) then there exists t0 ∈ (0, 1) such that−μ′v > −μ′u forL 1-a.e.

t ∈ (t0, 1);
(iii) for t ∈ [−1, 1],

μu0(t) = log
{−(b − a)t +√

(b − a)2t2 + 4ab

2a

}

and μv0 = μu0 on [−1, 1];
in obvious notation.

Proof (i) The set

Yu := Z2,u ∪
(
{u′ + (1/x + ρ)u + λ �= 0}\Z2,u

)
∪ {ρ not differentiable} ⊂ [a, b]
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(in obvious notation) is a null set in [a, b] and likewise for Yv . By [1] Lemma 2.95 and
Lemma 2.96, {u = t}∩(Yu∪Z1,u) = ∅ for a.e. t ∈ (0, 1) and likewise for the function
v. Let t ∈ (0, 1) and assume that {u = t}∩(Yu∪Z1,u) = ∅ and {v = t}∩(Yv∪Z1,v) =
∅. Put c := max{u ≥ t}. Then c ∈ (a, b), {u > t} = [a, c) by Lemma 9.3 and u is
differentiable at c with u′(c) < 0. Put d := max{v ≤ t} = max{u ≥ −t}. As u is
continuous on [a, b] it holds that a < c < d < b. Moreover, u′(d) < 0 as v(d) = t
and d /∈ Zv . Put ũ := u/t and ṽ := v/t on [c, d]. Then

ũ′ + (1/τ + ρ)̃u + m̂/t = 0 a.e. on (c, d) and ũ(c) = −ũ(d) = 1;
ṽ′ + (1/τ + ρ)̃v − m̂/t = 0 a.e. on (c, d) and − ṽ(c) = ṽ(d) = 1.

By Lemma 9.4,

∫

{v=t}\Zv

1

|v′|
dH 0

τ
≥

∫

[c,d]∩{v=t}\Zv

1

|v′|
dH 0

τ

= (1/t)
∫

[c,d]∩{̃v=1}\Zv

1

|̃v′|
dH 0

τ

≥ (1/t)
∫

[c,d]∩{̃u=1}\Zu

1

|̃u′|
dH 0

τ

=
∫

{u=t}\Zu

1

|u′|
dH 0

τ
.

By Lemma 9.1,

−μ′u(t) =
∫

{u=t}\Zu

1

|u′|
dH 0

τ

forL 1-a.e. t ∈ (0, 1) and a similar formula holds for v. The assertion in (i) follows.
(ii) Assume that ρ �≡ 0 on [a, b). Put α := inf{ρ > 0} ∈ [a, b). Note that max{v ≤
t} → b as t ↑ 1 as v < 1 on [a, b) by assumption. Choose t0 ∈ (0, 1) such that
max{v ≤ t0} > α. Then for t > t0,

a < max{u ≥ t} < max{u ≥ −t0} = max{v ≤ t0} < max{v ≤ t} < d;

that is, the interval [c, d]with c, d as described above intersects (α, b]. So forL 1-a.e.
t ∈ (t0, 1),

∫

{v=t}\Zv

1

|v′|
dH 0

τ
>

∫

{u=t}\Zu

1

|u′|
dH 0

τ
.

by the equality condition in Lemma 9.4. The conclusion follows from the representa-
tion of μu resp. μv in Lemma 9.1.
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(iii) A direct computation gives

u0(τ ) = 1

b − a

{
− τ + ab

τ

}

for τ ∈ [a, b]; u0 is strictly decreasing on its domain. This leads to the formula in (iii).
A similar computation gives

μv0(t) = log
{ 2b

(b − a)t +√
(b − a)2t2 + 4ab

}

for t ∈ [−1, 1]. Rationalising the denominator results in the stated equality. ��
Corollary 9.6 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Suppose that (u, λ) solves (9.4) with η = (1,−1) and set v := −u.
Assume that u > −1 on [a, b). Then

(i) μu(t) ≤ μv(t) for each t ∈ (0, 1);
(ii) if ρ �≡ 0 on [a, b) then μu(t) < μv(t) for each t ∈ (0, 1).

Proof (i) By [1] Theorem 3.28 and Lemma 9.3,

μu(t) = μu(t)− μu(1) = −Dμu((t, 1])
= −Dμa

u((t, 1])− Dμs
u((t, 1])

= −
∫

(t,1]
μ′u ds

for each t ∈ (0, 1) as μu(1) = 0. On the other hand,

μv(t) = μv(1)+ (μv(t)− μv(1)) = μv(1)− Dμv((t, 1])
= μv(1)−

∫

(t,1]
μ′v ds − Dμs

v((t, 1])

for each t ∈ (0, 1). The claim follows from Theorem 9.5 noting that Dμs
v((t, 1]) ≤ 0

as can be seen from Lemma 9.1. Item (ii) follows from Theorem 9.5 (ii). ��
Corollary 9.7 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Suppose that (u, λ) solves (9.4) with η = (1,−1). Assume that
u > −1 on [a, b). Let ϕ ∈ C1((−1, 1)) be an odd strictly increasing function with
ϕ ∈ L1((−1, 1)). Then
(i)

∫
{u>0} ϕ(u) dμ < +∞;

(ii)
∫ b
a ϕ(u) dμ ≤ 0;

(iii) equality holds in (ii) if and only if ρ ≡ 0 on [a, b).

In particular,

(iv)
∫ b
a

u√
1−u2 dμ ≤ 0 with equality if and only if ρ ≡ 0 on [a, b).
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Proof (i) Put I := {1 > u > 0}. The function u : I → (0, 1) is C0,1 and u′ ≤ −m̂
a.e. on I by Lemma 9.3. It has C0,1 inverse v : (0, 1) → I, v′ = 1/(u′ ◦ v) and
|v′| ≤ 1/m̂ a.e. on (0, 1). By a change of variables,

∫

{u>0}
ϕ(u) dμ =

∫ 1

0
ϕ(v′/v) dt

from which the claim is apparent. (ii) The integral is well-defined because ϕ(u)+ =
ϕ(u)χ{u>0} ∈ L1((a, b), μ) by (i). By Lemma 9.3 the set {u = 0} consists of a
singleton and has μ-measure zero. So

∫ b

a
ϕ(u) dμ =

∫

{u>0}
ϕ(u) dμ+

∫

{u<0}
ϕ(u) dμ

=
∫

{u>0}
ϕ(u) dμ−

∫

{v>0}
ϕ(v) dμ

where v := −u as ϕ is an odd function. We remark that in a similar way to (9.3),

∫ 1

0
ϕ′μu dt =

∫

{u>0}

{
ϕ(u)− ϕ(0)

}

dμ =
∫

{u>0}
ϕ(u) dμ

using oddness of ϕ and an analogous formula holds with v in place of u. Thus we may
write

∫ b

a
ϕ(u) dμ =

∫ 1

0
ϕ′μu dt −

∫ 1

0
ϕ′μv dt

=
∫ 1

0
ϕ′

{
μu − μv

}
dt ≤ 0

by Corollary 9.6 as ϕ′ > 0 on (0, 1). (iii) Suppose that ρ �≡ 0 on [a, b). Then
strict inequality holds in the above by Corollary 9.6. If ρ ≡ 0 on [a, b) the equality
follows from Theorem 9.5. (iv) follows from (ii) and (iii) with the particular choice
ϕ : (−1, 1) → R; t �→ t/

√
1− t2. ��

The boundary condition η1η2 = 1. Let 0 < a < b < +∞ and ρ ≥ 0 be a non-
decreasing bounded function on [a, b]. We study solutions of the auxilliary Riccati
equation

w′ + λw2 = (1/x + ρ)w a.e. on (a, b) with w(a) = w(b) = 1; (9.6)

with w ∈ C0,1([a, b]) and λ ∈ R. If ρ ≡ 0 on [a, b] then we write w0 instead of w.
Suppose (u, λ) solves (9.4) with η = (1, 1). Then u > 0 on [a, b] by Lemma 9.2 and
we may set w := 1/u. Then (w,−λ) satisfies (9.6).
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Lemma 9.8 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [a, b]. Then
(i) there exists a solution (w, λ) of (9.6) with w ∈ C0,1([a, b]) and λ ∈ R;
(ii) the pair (w, λ) in (i) is unique;
(iii) λ = m.

Proof (i) Define w : [a, b] → R by

w(t) := g(t)

m
∫ t
a g ds + g(a)

for t ∈ [a, b].

Then w ∈ C0,1([a, b]) and (w,m) satisfies (9.6). (ii) We claim that w > 0 on [a, b]
for any solution (w, λ) of (9.6). For otherwise, c := min{w = 0} ∈ (a, b). Then
u := 1/w on [a, c) satisfies

u′ +
(
1

τ
+ ρ

)
u − λ = 0 a.e. on (a, c) and u(a) = 1, u(c−) = +∞.

Integrating, we obtain

gu − g(a)− λ

∫ ·

a
g dt = 0 on [a, c)

and this entails the contradiction that u(c−) < +∞. We may now use the uniqueness
statement in Lemma 9.2. (iii) follows from (ii) and the particular solution given in (i).

��
We introduce the mapping

ω : (0,∞)× (0,∞) → R; (t, x) �→ −(2/t) coth(x/2).

For ξ > 0,

|ω(t, x)− ω(t, y)| ≤ cosech2[ξ/2](1/t)|x − y| (9.7)

for (t, x), (t, y) ∈ (0,∞) × (ξ,∞) and ω is locally Lipschitzian in x on (0,∞) ×
(0,∞) in the sense of [16] I.3. Let 0 < a < b < +∞ and set λ := A/G > 1. Here,
A = A(a, b) stands for the arithmetic mean of a, b as introduced in the previous
Section while G = G(a, b) := √|ab| stands for their geometric mean. We refer to
the inital value problem

z′ = ω(t, z) on (0, λ) and z(1) = μ((a, b)). (9.8)

Define

z0 : (0, λ) → R; t �→ 2 log
{λ+√λ2 − t2

t

}
.
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Lemma 9.9 Let 0 < a < b < +∞. Then

(i) w0(τ ) = 2Aτ
G2+τ 2

for τ ∈ [a, b];
(ii) ‖w0‖∞ = λ;
(iii) μw0 = z0 on [1, λ);
(iv) z0 satisfies (9.8) and this solution is unique;

(v)
∫
{w0=1}

1
|w′0|

dH 0

τ
= 2 coth(μ((a, b))/2);

(vi)
∫ b
a

1√
w2
0−1

dx
x = π .

Proof (i) follows as in the proof of Lemma 9.8 with g(t) = t while (ii) follows by
calculus. (iii) follows by solving the quadratic equation tτ 2 − 2Aτ + G2t = 0 for
τ with t ∈ (0, λ). Uniqueness in (iv) follows from [16] Theorem 3.1 as ω is locally
Lipschitzianwith respect to x in (0,∞)×(0,∞). For (v) note that |aw′0(a)| = 1−a/A
and |bw′0(b)| = b/A − 1 and

2 coth(μ((a, b))/2) = 2(a + b)/(b − a).

(vi)We may write

∫ b

a

1√
w2
0 − 1

dτ

τ
=

∫ b

a

ab + τ 2√
(a + b)2τ 2 − (ab + τ 2)2

dτ

τ

=
∫ b

a

ab + τ 2√
(τ 2 − a2)(b2 − τ 2)

dτ

τ
.

The substitution s = τ 2 followed by the Euler substitution (cf. [14] 2.251)

√
(s − a2)(b2 − s) = t (s − a2)

gives

∫ b

a

1√
w2
0 − 1

dτ

τ
=

∫ ∞

0

1

1+ t2
+ ab

b2 + a2t2
dt = π.

��
Lemma 9.10 Let 0 < a < b < +∞. Then

(i) for y > a the function x �→ by−ax
(y−a)(b−x) is strictly increasing on (−∞, b];

(ii) the function y �→ (b−a)y
(y−a)(b−y) is strictly increasing on [G, b];

(iii) for x < b the function y �→ by−ax
(y−a)(b−x) is strictly decreasing on [a,+∞)

Proof The proof is an exercise in calculus. ��
Lemma 9.11 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Let (w, λ) solve (9.6). Assume
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(i) w is differentiable at both a and b and that (9.6) holds there;
(ii) w′(a) > 0 and w′(b) < 0;
(iii) w > 1 on (a, b);
(iv) ρ is differentiable at a and b.

Then

∫

{w=1}\Zw

1

|w′|
dH 0

τ
≥ 2 coth(μ((a, b))/2)

with equality if and only if ρ ≡ 0 on [a, b).

Proof At the end-points x = a, b the condition (i) entails that w′ + m − ρ = 1/x =
w′0 + m0 so that

w′ − w′0 = m0 − m + ρ at x = a, b. (9.9)

We consider the four cases

(a) w′(a) ≥ w′0(a) and w′(b) ≥ w′0(b);
(b) w′(a) ≥ w′0(a) and w′(b) ≤ w′0(b);
(c) w′(a) ≤ w′0(a) and w′(b) ≥ w′0(b);
(d) w′(a) ≤ w′0(a) and w′(b) ≤ w′0(b);

in turn.

(a) Condition (a) together with (9.9) means that m0 − m + ρ(a) ≥ 0; that is, m −
ρ(a) ≤ m0. By (i) and (ii), bm−bρ(b)−1 = −bw′(b) > 0; orm−ρ(b) > 1/b.
Therefore,

0 < 1/b < m − ρ(b) ≤ m − ρ(a) ≤ 1/A

by (8.5). Put x := 1/(m − ρ(b)) and y := 1/(m − ρ(a)). Then

a < A ≤ y ≤ x < b.

We write

aw′(a) = −(m − ρ(a))a + 1 = −(1/y)a + 1 > 0;
bw′(b) = −(m − ρ(b))b + 1 = −(1/x)b + 1 < 0.

Making use of assumption (iii),

∫

{w=1}\Zw

1

|w′|
dH 0

x
= 1

−(1/y)a + 1
− 1

−(1/x)b + 1

= by − ax

(y − a)(b − x)
.
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By Lemma 9.10 (i) then (ii),

∫

{w=1}
1

|w′|
dH 0

x
≥ (b − a)y

(y − a)(b − y)
≥ (b − a)A

(A − a)(b − A)

= 2
a + b

b − a
= 2 coth(μ((a, b))/2).

If equality holds then ρ(a) = ρ(b) and ρ is constant on [a, b]. By Theorem 8.3
we conclude that ρ ≡ 0 on [a, b).

(b) Condition (b) together with (9.9) entails that 0 ≤ m0 − m + ρ(a) and 0 ≤
−m0 +m − ρ(b) whence 0 ≤ ρ(a)− ρ(b) upon adding; so ρ is constant on the
interval [a, b] by monotonicity. Define x and y as above. Then x = y and y ≥ A.
The result now follows in a similar way to case (a).

(c) In this case,

1

aw′(a)
− 1

bw′(b)
≥ 1

aw′0(a)
− 1

bw′0(b)
= 2 coth(μ((a, b))/2)

by Lemma 9.9. If equality holds then w′(b) = w′0(b) so that m0−m+ρ(b) = 0
and ρ vanishes on [a, b] by Theorem 8.3.

(d) Condition (d) together with (9.9) means that m0 − m + ρ(b) ≤ 0; that is, m ≥
ρ(b)+m0. On the other hand, by Theorem 8.3,m ≤ ρ(b)+m0. In consequence,
m = ρ(b)+ m0. It then follows that ρ ≡ 0 on [a, b] by Theorem 8.3. Now use
Lemma 9.9.

��
Lemma 9.12 Let φ : (0,+∞) → (0,+∞) be a convex non-increasing function with
inf(0,+∞) φ > 0. Let Λ be an at most countably infinite index set and (xh)h∈Λ a
sequence of points in (0,+∞) with

∑
h∈Λ xh < +∞. Then

∑
h∈Λ

φ(xh) ≥ φ

(∑
h∈Λ

xh

)

and the left-hand side takes the value +∞ in case Λ is countably infinite and is
otherwise finite.

Proof Suppose 0 < x1 < x2 < +∞. By convexity φ(x1) + φ(x2) ≥ 2φ( x1+x22 ) ≥
φ(x1 + x2) as φ is non-increasing. The result for finite Λ follows by induction. ��
Theorem 9.13 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Let (w, λ) solve (9.6). Assume that w > 1 on (a, b). Then

(i) for L 1-a.e. t ∈ (1, ‖w‖∞),

− μ′w ≥ (2/t) coth((1/2)μw); (9.10)
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(ii) if ρ �≡ 0 on [a, b) then there exists t0 ∈ (1, ‖w‖∞) such that strict inequality
holds in (9.10) for L 1-a.e. t ∈ (1, t0).

Proof (i) The set

Yw := Z2,w ∪
(
{w′ + mw2 �= (1/x + ρ)w}\Z2,w

)

∪{ρ not differentiable} ⊂ [a, b]

is a null set in [a, b]. By [1] Lemma 2.95 and Lemma 2.96, {w = t}∩(Yw∩ Z1,w) = ∅
for a.e. t > 1. Let t ∈ (1, ‖w‖∞) and assume that {w = t}∩(Yw∩Z1,w) = ∅.Wewrite
{w > t} =⋃

h∈Λ Ih whereΛ is an at most countably infinite index set and (Ih)h∈Λ are
disjoint non-empty well-separated open intervals in (a, b). The term well-separated
means that for each h ∈ Λ, infk∈Λ\{h} d(Ih, Ik) > 0. This follows from the fact that
w′ �= 0 on ∂ Ih for each h ∈ Λ. Put w̃ := w/t on {w > t} so

w̃′ + (mt)w̃2 = (1/x + ρ)w̃ a.e. on {w > t} and w̃ = 1 on {w = t}.

We use the fact that the mapping φ : (0,+∞) → (0,+∞); t �→ coth t satisfies the
hypotheses of Lemma 9.12. By Lemmas 9.11 and 9.12,

(0,+∞] �
∫

{w=t}\Zw

1

|w′|
dH 0

x
= (1/t)

∫

{w̃=1}
1

|w̃′|
dH 0

τ

= (1/t)
∑
h∈Λ

∫

∂ Ih

1

|w̃′|
dH 0

τ

≥ (2/t)
∑
h∈Λ

coth((1/2)μ(Ih))

≥ (2/t) coth

(
(1/2)

∑
h∈Λ

μ(Ih)

)

= (2/t) coth((1/2)μ({w > t})))
= (2/t) coth((1/2)μw(t)).

The statement now follows from Lemma 9.1.
(ii) Suppose that ρ �≡ 0 on [a, b). Put α := min{ρ > 0} ∈ [a, b). Now that {w >

t} ↑ (a, b) as t ↓ 1 as w > 1 on (a, b). Choose t0 ∈ (1, ‖w‖∞) such that {w >

t0} ∩ (α, b) �= ∅. Then for each t ∈ (1, t0) there exists h ∈ Λ such that ρ �≡ 0 on Ih .
The statement then follows by Lemma 9.11. ��

Lemma 9.14 Let ∅ �= S ⊂ R be bounded and suppose S has the property that for
each s ∈ S there exists δ > 0 such that [s, s + δ) ⊂ S. Then S isL 1-measurable and
|S| > 0.
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Proof For each s ∈ S put ts := inf{t > s : t /∈ S}. Then s < ts < +∞, [s, ts) ⊂ S
and ts /∈ S. Define

C :=
{
[s, t] : s ∈ S and t ∈ (s, ts)

}
.

Then C is a Vitali cover of S (see [6] Chapter 16 for example). By Vitali’s Covering
Theorem (cf. [6] Theorem 16.27) there exists an at most countably infinite subset
Λ ⊂ C consisting of pairwise disjoint intervals such that

∣∣∣∣∣S\
⋃
I∈Λ

I

∣∣∣∣∣ = 0.

Note that I ⊂ S for each I ∈ Λ. Consequently, S = ⋃
I∈Λ I ∪ N where N is an

L 1-null set and hence S isL 1-measurable. The positivity assertion is clear. ��
Theorem 9.15 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Let (w, λ) solve (9.6). Assume that w > 1 on (a, b). Put T :=
min{‖w0‖∞, ‖w‖∞} > 1. Then

(i) μw(t) ≤ μw0(t) for each t ∈ [1, T );
(ii) ‖w‖∞ ≤ ‖w0‖∞;
(iii) if ρ �≡ 0 on [a, b) then there exists t0 ∈ (1, ‖w‖∞) such that μw(t) < μw0(t)

for each t ∈ (1, t0).

Proof (i) We adapt the proof of [16] Theorem I.6.1. The assumption entails that
μw(1) = μw0(1) = μ((a, b)). Suppose for a contradiction that μw(t) > μw0(t) for
some t ∈ (1, T ).

For ε > 0 consider the initial value problem

z′ = ω(t, z)+ ε and z(1) = μ((a, b))+ ε (9.11)

on (0, T ). Choose υ ∈ (0, 1) and τ ∈ (t, T ). By [16] Lemma I.3.1 there exists ε0 > 0
such that for each 0 ≤ ε < ε0 (9.11) has a continuously differentiable solution zε
defined on [υ, τ ] and this solution is unique by [16] Theorem I.3.1. Moreover, the
sequence (zε)0<ε<ε0 converges uniformly to z0 on [υ, τ ].

Given 0 < ε < η < ε0 it holds that z0 ≤ zε ≤ zη on [1, τ ] by [16] Theorem
I.6.1. Note for example that z′0 ≤ ω(·, z0)+ ε on (1, τ ). In fact, (zε)0<ε<ε0 decreases
strictly to z0 on (1, τ ). For if, say, z0(s) = zε(s) for some s ∈ (1, τ ) then z′ε(s) =
ω(s, zε(s))+ε > ω(s, z0(s)) = z′0(s) by (9.11);while on the other hand z′ε(s) ≤ z′0(s)
by considering the left-derivative at s and using the fact that zε ≥ z0 on [1, τ ]. This
contradicts the strict inequality.

Choose ε1 ∈ (0, ε0) such that zε(t) < μw(t) for each 0 < ε < ε1. Now μw is
right-continuous and strictly decreasing as μw(t)− μw(s) = −μ({s < w ≤ t}) < 0
for 1 ≤ s < t < ‖w‖∞ by continuity of w. So the set {zε < μw} ∩ (1, t) is open
and non-empty in (0,+∞) for each ε ∈ (0, ε1). Thus there exists a unique sε ∈ [1, t)
such that
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μw > zε on (sε, t] and μw(sε) = zε(sε)

for each ε ∈ (0, ε1). As zε(1) > μ((a, b)) it holds that each sε > 1. Note that
1 < sε < sη whenever 0 < ε < η as (zε)0<ε<ε0

decreases strictly to z0 as ε ↓ 0.
Define

S :=
{
sε : 0 < ε < ε1

}
⊂ (1, t).

We claim that for each s ∈ S there exists δ > 0 such that [s, s + δ) ⊂ S. This entails
that S is L 1-measurable with positive L 1-measure by Lemma 9.14.

Suppose s = sε ∈ S for some ε ∈ (0, ε1) and put z := zε(s) = μw(s). Put
k := cosech2(z0(t)/2). For 0 ≤ ζ < η < ε1 define

Ωζ,η :=
{
(u, y) ∈ R

2 : u ∈ (0, t) and zζ (u) < y < zη(u)
}

and note that this is an open set in R
2. We remark that for each (u, y) ∈ Ωζ,η there

exists a unique ν ∈ (ζ, η) such that y = zν(u). Given r > 0 with s + r < t set

Q = Qr :=
{
(u, y) ∈ R

2 : s ≤ u < s + r and |y − z| < ‖zε − z‖C([s,s+r ])
}
.

Choose r ∈ (0, t − s) and ε2 ∈ (ε, ε1) such that

(a) Qr ⊂ Ω0,ε1 ;
(b) ‖zε − z‖C([s,s+r ]) < sε/(2k);
(c) supη∈(ε,ε2)

‖zη − z‖C([s,s+r ]) ≤ ‖zε − z‖C([s,s+r ]);
(d) zη < μw on [s + r, t] for each η ∈ (ε, ε2).

We can find δ ∈ (0, r) such that zε < μw < zε2 on (s, s + δ) as zε2(s) > z; in other
words, the graph of μw restricted to (s, s + δ) is contained in Ωε,ε2 .

Let u ∈ (s, s + δ). Then μw(u) = zη(u) for some η ∈ (ε, ε2) as above. We
claim that u = sη so that u ∈ S. This implies in turn that [s, s + δ) ⊂ S. Suppose
for a contradiction that zη �< μw on (u, t]. Then there exists v ∈ (u, t] such that
μw(v) = zη(v). In view of condition (d), v ∈ (u, s + r). By [1] Theorem 3.28 and
Theorem 9.13,

μw(v)− μw(u) = Dμw((u, v]) = Dμa
w((u, v])+ Dμs

w((u, v])
≤ Dμa

w((u, v]) =
∫ v

u
μ′w dτ ≤

∫ v

u
ω(·, μw) dτ.

On the other hand,

zη(v)− zη(u) =
∫ v

u
z′η dτ =

∫ v

u
ω(·, zη) dτ + η(v − u).
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We derive that

ε(v − u) ≤ η(v − u) ≤
∫ v

u

{
ω(·, μw)− ω(·, zη)

}
dτ

≤ k
∫ v

u
|μw − zη| dμ

using the estimate (9.7). Thus

ε ≤ k
1

v − u

∫ v

u
|μw − zη| dμ

≤ (k/s)‖μw − zη‖C([u,v])
≤ (k/s)

{
‖μw − z‖C([s,s+r ]) + ‖zη − z‖C([s,s+r ])

}

≤ (2k/s)‖zε − z‖C([s,s+r ]) < ε

by (b) and (c) giving rise to the desired contradiction.
By Theorem 9.13,μ′w ≤ ω(·, μw) forL 1-a.e. t ∈ S. Choose s ∈ S such thatμw is

differentiable at s and the latter inequality holds at s. Let ε ∈ (0, ε1) such that s = sε.
For any u ∈ (s, t),

μw(u)− μw(s) > zε(u)− zε(s).

We deduce that μ′w(s) ≥ z′ε(s). But then

μ′w(s) ≥ z′ε(s) = ω(s, zε(s))+ ε > ω(s, μw(s)).

This strict inequality holds on a set of full measure in S. This contradicts Theorem
9.13.

(ii) Use the fact that ‖w‖∞ = sup{t > 0 : μw(t) > 0}.
(iii) Assume that ρ �≡ 0 on [a, b). Let t0 ∈ (1, ‖w‖∞) be as in Lemma 9.13. Then
for t ∈ (1, t0),

μw(t)− μw(1) = Dμw((1, t]) = Dμa
w((1, t])

+ Dμs
w((1, t]) ≤ Dμa

w((1, t])
=

∫

(1,t]
μ′w ds <

∫

(1,t]
ω(s, μw) ds

≤
∫

(1,t]
ω(s, μw0) ds = μw0(t)− μw0(1)

by Theorem 9.13, Lemma 9.9 and the inequality in (i).

��
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Corollary 9.16 Let 0 < a < b < +∞ and ρ ≥ 0 be a non-decreasing bounded
function on [a, b]. Suppose that (w, λ) solves (9.6). Assume that w > 1 on (a, b). Let
0 ≤ ϕ ∈ C1((1,+∞)) be strictly decreasing with

∫ b
a ϕ(w0) dμ < +∞. Then

(i)
∫ b
a ϕ(w) dμ ≥ ∫ b

a ϕ(w0) dμ;
(ii) equality holds in (i) if and only if ρ ≡ 0 on [a, b).

In particular,

(iii)
∫ b
a

1√
w2−1 dμ ≥ π with equality if and only if ρ ≡ 0 on [a, b).

Proof (i) Let ϕ ≥ 0 be a decreasing function on (1,+∞) which is piecewise C1.
Suppose that ϕ(1+) < +∞. By Tonelli’s Theorem,

∫

[1,+∞)

ϕ′μw ds =
∫

[1,+∞)

ϕ′
{ ∫

(a,b)
χ{w>s} dμ

}
ds

=
∫

(a,b)

{ ∫

[1,+∞)

ϕ′χ{w>s} ds
}
dμ

=
∫

(a,b)

{
ϕ(w)− ϕ(1)

}
dμ

=
∫

(a,b)
ϕ(w) dμ− ϕ(1)μ((a, b))

and a similar identity holds for μw0 . By Theorem 9.15,
∫ b
a ϕ(w) dμ ≥ ∫ b

a ϕ(w0) dμ.

Now suppose that 0 ≤ ϕ ∈ C1((1,+∞)) is strictly decreasing with
∫ b
a ϕ(w0) dμ <

+∞. The inequality holds for the truncated function ϕ ∧ n for each n ∈ N. An
application of the monotone convergence theorem establishes the result for ϕ.
(ii) Suppose that equality holds in (i). For c ∈ (1,+∞) put ϕ1 := ϕ ∨ ϕ(c) − ϕ(c)
and ϕ2 := ϕ ∧ ϕ(c). By (i) we deduce

∫ b

a
ϕ2(w) dμ =

∫ b

a
ϕ2(w0) dμ;

and hence by the above that

∫

[c,+∞)

ϕ′
{
μw − μw0

}
ds = 0.

This means that μw = μw0 on (c,+∞) and hence on (1,+∞). By Theorem 9.15
we conclude that ρ ≡ 0 on [a, b). (iii) flows from (i) and (ii) noting that the function
ϕ : (1,+∞) → R; t �→ 1/

√
t2 − 1 satisfies the integral condition by Lemma 9.9. ��

The case a = 0. Let 0 < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function
on [0, b]. We study solutions to the first-order linear ordinary differential equation

u′ + (1/x + ρ)u + λ = 0 a.e. on (0, b) with u(0) = 0 and u(b) = 1 (9.12)
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where u ∈ C0,1([0, b]) and λ ∈ R. If ρ ≡ 0 on [0, b] then we write u0 instead of u.

Lemma 9.17 Let 0 < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function on
[0, b]. Then
(i) there exists a solution (u, λ) of (9.12) with u ∈ C0,1([0, b]) and λ ∈ R;
(ii) λ is given by λ = −g(b)/G(b) where G := ∫ ·

0 g ds;
(iii) the pair (u, λ) in (i) is unique;
(iv) u > 0 on (0, b].
Proof (i) The function u : [a, b] → R given by

u = g(b)

G(b)

G

g
(9.13)

on [0, b] solves (9.12) with λ as in (ii). (iii) Suppose that (u1, λ1) resp. (u2, λ2) solve
(9.12). By linearity u := u1 − u2 solves

u′ + (1/x + ρ)u + λ = 0 a.e. on (0, b) with u(0) = u(b) = 0

where λ = λ1 − λ2. An integration gives that u = (−λG + c)/g for some constant
c ∈ R and the boundary conditions entail that λ = c = 0. (iv) follows from the
formula (9.13) and unicity. ��
Lemma 9.18 Suppose −∞ < a < b < +∞ and that φ : [a, b] → R is convex.
Suppose that there exists ξ ∈ (a, b) such that

φ(ξ) = b − ξ

b − a
φ(a)+ ξ − a

b − a
φ(b).

Then

φ(c) = b − c

b − a
φ(a)+ c − a

b − a
φ(b)

for each c ∈ [a, b].
Proof Let c ∈ (ξ, b). By monotonicity of chords,

φ(ξ)− φ(a)

ξ − a
≤ φ(c)− φ(ξ)

c − ξ

so

φ(c) ≥ c − a

ξ − a
φ(ξ)− c − ξ

ξ − a
φ(a)

= c − a

ξ − a

{b − ξ

b − a
φ(a)+ ξ − a

b − a
φ(b)

}
− c − ξ

ξ − a
φ(a)
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= b − c

b − a
φ(a)+ c − a

b − a
φ(b)

and equality follows. The case c ∈ (a, ξ) is similar. ��
Lemma 9.19 Let 0 < b < +∞ and ρ ≥ 0 be a non-decreasing bounded function on
[0, b]. Let (u, λ) satisfy (9.12). Then

(i) u ≥ u0 on [0, b];
(ii) if ρ �≡ 0 on [0, b) then u > u0 on (0, b).

Proof (i) The mappingG : [0, b] → [0,G(b)] is a bijection with inverseG−1. Define
η : [0,G(b)] → R via η := (tg) ◦ G−1. Then

η′ = (tg)′

g
◦ G−1 = (2+ tρ) ◦ G−1

a.e. on (0,G(b)) so η′ is non-decreasing there. This means that η is convex on
[0,G(b)]. In particular, η(s) ≤ [η(G(b))/G(b)]s for each s ∈ [0,G(b)]. For
t ∈ [0, b] put s := G(t) to obtain tg(t) ≤ (bg(b)/G(b))G(t). A rearrange-
ment gives u ≥ u0 on [0, b] noting that u0 : [0, b] → R; t �→ t/b. (ii)
Assume ρ �≡ 0 on [0, b). Suppose that u(c) = u0(c) for some c ∈ (0, b). Then
η(G(c)) = [η(G(b))/G(b)]G(c). By Lemma 9.18, η′ = 0 on (0,G(b)). This implies
that ρ ≡ 0 on [0, b). ��

Lemma 9.20 Let 0 < b < +∞. Then
∫ b
0

u0√
1−u20

dμ = π/2.

Proof The integral is elementary as u0(t) = t/b for t ∈ [0, b]. ��

10 Proof of main results

Lemma 10.1 Let x ∈ H and v be a unit vector in R
2 such that the pair {x, v} forms

a positively oriented orthogonal basis for R2. Put b := (τ, 0) where |x | = τ and
γ := θ(x) ∈ (0, π). Let α ∈ (0, π/2) such that

〈v, x − b〉
|x − b| = cosα.

Then

(i) C(x, v, α) ∩ H ∩ C(0, e1, γ ) = ∅;
(ii) for any y ∈ C(x, v, α)∩ H\B(0, τ ) the line segment [b, y] intersects S1τ outside

the closed cone C(0, e1, γ ).

We point out that C(0, e1, γ ) is the open cone with vertex 0 and axis e1 which
contains the point x on its boundary. We note that cosα ∈ (0, 1) because
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〈v, x − b〉 = −〈v, b〉 = −〈(1/τ)Ox, b〉
= −〈Op, e1〉 = 〈x, O�e1〉 = 〈x, e2〉 > 0 (10.1)

and if |x−b| = 〈v, x−b〉 then b = x−λv for some λ ∈ R and hence x1 = 〈e1, x〉 = τ

and x2 = 0.

Proof (i) For ω ∈ S
1 define the open half-space

Hω := {y ∈ R
2 : 〈y, ω〉 > 0}.

We claim that C(x, v, α) ⊂ Hv . For given y ∈ C(x, v, α),

〈y, v〉 = 〈y − x, v〉 > |y − x | cosα > 0.

On the other hand, it holds that C(0, e1, γ ) ∩ H ⊂ H−v . This establishes (i).
(ii)By some trigonometry γ = 2α. Suppose thatω is a unit vector inC(b,−e1, π/2−
α). Then λ := 〈ω, e1〉 < cosα since upon rewriting the membership condition for
C(b,−e1, π/2− α) we obtain the quadratic inequality

λ2 − 2 cos2 αλ+ cos γ > 0.

For ω a unit vector in C(0, e1, γ ) the opposite inequality 〈ω, e1〉 ≥ cosα holds. This
shows that

C(b,−e1, π/2− α) ∩ C(0, e1, γ ) ∩ S
1
τ = ∅.

The set C(x, v, α)∩ H is contained in the open convex cone C(b,−e1, π/2− α).
Suppose y ∈ C(x, v, α) ∩ H\B(0, τ ). Then the line segment [b, y] is contained
in C(b,−e1, π/2 − α) ∪ {b}. Now the set C(b,−e1, π/2 − α) ∩ S

1
τ disconnects

C(b,−e1, π/2 − α) ∪ {b}. This entails that (b, y] ∩ C(b,−e1, π/2 − α) ∩ S
1
τ �= ∅.

The foregoing paragraph entails that (b, y] ∩ C(0, e1, γ ) ∩ S
1
τ = ∅. This establishes

the result. ��
Lemma 10.2 Let E be an open set in R

2 such that M := ∂E is a C1,1 hypersurface
in R2. Assume that E\{0} = Esc. Suppose

(i) x ∈ (M\{0}) ∩ H;
(ii) sin(σ (x)) = −1.
Then E is not convex.

Proof Let γ1 : I → M be a C1,1 parametrisation of M in a neighbourhood of x with
γ1(0) = x as above. As sin(σ (x)) = −1, n(x) and hence n1(0) point in the direction
of x . Put v := −t1(0) = −t (x). We may write

γ1(s) = γ1(0)+ st1(0)+ R1(s) = x − sv + R1(s)
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for s ∈ I where R1(s) = s
∫ 1
0 γ̇1(ts) − γ̇1(0) dt and we can find a finite positive

constant K such that |R1(s)| ≤ Ks2 on a symmetric open interval I0 about 0 with
I0 ⊂⊂ I . Then

〈γ1(s)− x, v〉
|γ1(s)− x | = 〈−sv + R1, v〉

| − sv + R1|
= 1− 〈(R1/s), v〉

|v − R1/s| → 1

as s ↑ 0. Let α be as in Lemma 10.1 with x and v as just mentioned. The above
estimate entails that γ1(s) ∈ C(x, v, α) for small s < 0. By (2.9) and Lemma 5.4
the function r1 is non-increasing on I . In particular, r1(s) ≥ r1(0) = |x | =: τ for
I � s < 0 and γ1(s) /∈ B(0, τ ).

Choose δ1 > 0 such that γ1(s) ∈ C(x, v, α) ∩ H for each s ∈ [−δ1, 0). Put
β := inf{s ∈ [−δ1, 0] : r1(s) = τ }. Suppose first that β ∈ [−δ1, 0). Then E is not
convex (see Lemma 5.2). Now suppose that β = 0. Let γ be as in Lemma 10.1. Then
the open circular arc S1τ\C(0, e1, γ ) does not intersect E : for otherwise, M intersects
S
1
τ\C(0, e1, γ ) and β < 0 bearing inmind Lemma 5.2. Choose s ∈ [−δ1, 0). Then the

points b and γ1(s) lie in E . But by Lemma 10.1 the line segment [b, γ1(s)] intersects
S
1
τ in S

1
τ\C(0, e1, γ ). Let c ∈ [b, γ1(s)] ∩ S

1
τ . Then c /∈ E . This shows that E is not

convex. But if E is convex then E is convex. Therefore E is not convex. ��
Theorem 10.3 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Given v > 0 let E be a bounded minimiser of (1.2). Assume that E
is open, M := ∂E is a C1,1 hypersurface in R

2 and E\{0} = Esc. Put

R := inf{ρ > 0} ∈ [0,+∞). (10.2)

Then Ω ∩ (R,+∞) = ∅ with Ω as in (5.2).

Proof Suppose that Ω ∩ (R,+∞) �= ∅. As Ω is open in (0,+∞) by Lemma 5.6
we may write Ω as a countable union of disjoint open intervals in (0,+∞). By a
suitable choice of one of these intervals we may assume that Ω = (a, b) for some
0 ≤ a < b < +∞ and that Ω ∩ (R,+∞) �= ∅. Let us assume for the time being that
a > 0. Note that [a, b] ⊂ π(M) and cos σ vanishes on Ma ∪ Mb.

Let u : Ω → [−1, 1] be as in (6.6). Then u has a continuous extension to [a, b]
and u = ±1 at τ = a, b. This may be seen as follows. For τ ∈ (a, b) the set Mτ ∩ H
consists of a singleton by Lemma 5.4. The limit x := limτ↓a Mτ ∩ H ∈ S

1
a ∩ H

exists as M is C1. There exists a C1,1 parametrisation γ1 : I → M with γ1(0) = x as
above. By (2.9) and Lemma 5.4, r1 is decreasing on I . So r1 > a on I ∩ {s < 0} for
otherwise the C1 property fails at x . It follows that γ1 = γ ◦ r1 and σ1 = σ ◦ γ ◦ r1 on
I ∩ {s < 0}. Thus sin(σ ◦ γ ) ◦ r1 = sin σ1 on I ∩ {s < 0}. Now the function sin σ1 is
continuous on I . So u → sin σ1(0) ∈ {±1} as τ ↓ a. Put η1 := u(a) and η2 := u(b).

Let us consider the case η = (η1, η2) = (1, 1). According to Theorem 6.5 the
generalised (mean) curvature is constantH 1-a.e. on M with value−λ, say. Note that
u < 1 on (a, b) for otherwise cos(σ ◦ γ ) vanishes at some point in (a, b) bearing in
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mind Lemma 5.4. By Theorem 6.6 the pair (u, λ) satisfies (9.4) with η = (1, 1). By
Lemma 9.2, u > 0 on [a, b]. Put w := 1/u. Then (w,−λ) satisfies (9.6) and w > 1
on (a, b). By Lemma 6.7,

θ2(b)− θ2(a) =
∫ b

a
θ ′2 dτ = −

∫ b

a

u√
1− u2

dτ

τ

= −
∫ b

a

1√
w2 − 1

dτ

τ
.

By Corollary 9.16, |θ2(b) − θ2(a)| > π . But this contradicts the definition of θ2 in
(6.4) as θ2 takes values in (0, π) on (a, b). If η = (−1,−1) then λ > 0 by Lemma
9.2; this contradicts Lemma 7.2.

Now let us consider the case η = (−1, 1). Using the same formula as above,
θ2(b) − θ2(a) < 0 by Corollary 9.7. This means that θ2(a) ∈ (0, π ]. As before the
limit x := limτ↓a Mτ ∩ H ∈ S

1
a ∩ H exists as M is C1. Using a local parametrisation

it can be seen that θ2(a) = θ(x) and sin(σ (x)) = −1. If θ2(a) ∈ (0, π) then E is
not convex by Lemma 10.2. This contradicts Theorem 7.3. Note that we may assume
that θ2(a) ∈ (0, π). For otherwise, 〈γ, e2〉 < 0 for τ > a near a, contradicting the
definition of γ (6.5). If η = (1,−1) then λ > 0 by Lemma 9.2 and this contradicts
Lemma 7.2 as before.

Suppose finally that a = 0. By Lemma 5.5, u(0) = 0 and u(b) = ±1. Suppose
u(b) = 1. Again employing the formula above, θ2(b) − θ2(0) < −π/2 by Lemma
9.19, the fact that the function φ : (0, 1) → R; t �→ t/

√
1− t2 is strictly increasing

and Lemma 9.20. This means that θ2(0) > π/2. This contradicts the C1 property at
0 ∈ M . If u(b) = −1 then then λ > 0 by Lemma 9.2 giving a contradiction. ��
Lemma 10.4 Let f be as in (1.3) where h : [0,+∞) → R is a non-decreasing
convex function. Let v > 0.

(i) Let E be a bounded minimiser of (1.2). Assume that E is open, M := ∂E is a C1,1

hypersurface inR2 and E\{0} = Esc. Then for any r > 0with r ≥ R, M\B(0, r)
consists of a finite union of disjoint centred circles.

(ii) There exists a minimiser E of (1.2) such that ∂E consists of a finite union of
disjoint centred circles.

Proof (i) First observe that

∅ �= π(M) =
[
π(M) ∩ [0, r ]

]
∪

[
π(M) ∩ (r,+∞)

]
\Ω

by Lemma 10.3. We assume that the latter member is non-empty. By definition of
Ω, cos σ = 0 on M∩ A((r,+∞)). Let τ ∈ π(M)∩(r,+∞). We claim that Mτ = S

1
τ .

Suppose for a contradiction that Mτ �= S
1
τ . By Lemma 5.2, Mτ is the union of two

closed spherical arcs in S1τ . Let x be a point on the boundary of one of these spherical
arcs relative to S

1
τ . There exists a C1,1 parametrisation γ1 : I → M of M in a

neighbourhood of x with γ1(0) = x as before. By shrinking I if necessary we may
assume that γ1(I ) ⊂ A((r,+∞)) as τ > r . By (2.9), ṙ1 = 0 on I as cos σ1 = 0 on I
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because cos σ = 0 on M ∩ A((r,+∞)); that is, r1 is constant on I . This means that
γ1(I ) ⊂ S

1
τ . As the function sin σ1 is continuous on I it takes the value ±1 there. By

(2.10), r1θ̇1 = sin σ1 = ±1 on I . This means that θ1 is either strictly decreasing or
strictly increasing on I . This entails that the point x is not a boundary point of Mτ in
S
1
τ and this proves the claim.
It follows from these considerations that M\B(0, r) consists of a finite union of

disjoint centred circles. Note that f ≥ eh(0) =: c > 0 on R
2. As a result, +∞ >

Pf (E) ≥ cP(E) and in particular the relative perimeter P(E,R2\B(0, r)) < +∞.
This explains why M\B(0, r) comprises only finitely many circles.
(ii) Let E be a bounded minimiser of (1.2) such that E is open, M := ∂E is a C1,1

hypersurface in R
2 and E\{0} = Esc as in Theorem 4.5. Assume that R > 0. By (i),

M\B(0, R) consists of a finite union of disjoint centred circles. We claim that only
one of the possibilities

MR = ∅, MR = S
1
R, MR = {Re1} or MR = {−Re1} (10.3)

holds. To prove this suppose that MR �= ∅ and MR �= S
1
R . Bearing in mind Lemma

5.2 we may choose x ∈ MR such that x lies on the boundary of MR relative to S
1
R .

Assume that x ∈ H . Let γ1 : I → M be a local parametrisation of M with γ1(0) = x
with the usual conventions. We first notice that cos(σ (x)) = 0 for otherwise we obtain
a contradiction to Theorem 10.3. As r1 is decreasing on I and x is a relative boundary
point it holds that r1 < R on I+ := I∩{s > 0}.AsM\Λ1 is open inM wemay suppose
that γ1(I+) ⊂ M\Λ1. According to Theorem 6.5 the curvature k of γ1(I+)∩ B(0, R)

is a.e. constant as ρ vanishes on (0, R). Hence γ1(I+) ∩ B(0, R) consists of a line
or circular arc. The fact that cos(σ (x)) = 0 means that γ1(I+) ∩ B(0, R) cannot be
a line. So γ1(I+) ∩ B(0, R) is an open arc of a circle C containing x in its closure
with centre on the line-segment [0, x] and radius r ∈ (0, R). By considering a local
parametrisation, it can be seen that C ∩ B(0, R) ⊂ M . But this contradicts the fact
that E\{0} = Esc. In summary, MR ⊂ {±Re1}. Finally note that if MR = {±Re1}
then MR = S

1
R by Lemma 5.2. This establishes (10.3).

Suppose that MR = ∅. As both sets M and S
1
R are compact, d(M,S1R) > 0.

Assume first that S1R ⊂ E . Put F := B(0, R)\E and suppose F �= ∅. Then F is a set
of finite perimeter, F ⊂⊂ B(0, R) and P(F) = P(E, B(0, R)). Let B be a centred
ball with |B| = |F |. By the classical isoperimetric inequality, P(B) ≤ P(F). Define
E1 := (R2\B) ∩ (B(0, R) ∪ E). Then V f (E1) = V f (E) and Pf (E1) ≤ Pf (E).
That is, E1 is a minimiser of (1.2) such that ∂E1 consists of a finite union of disjoint
centred circles. Now suppose that S1R ⊂ R

2\E . In like fashion we may redefine E
via E1 := B ∪ (E\B(0, R)) with B a centred ball in B(0, R). The remaining cases
in (10.3) can be dealt with in a similar way. The upshot of this argument is that there
exists a m inimiser of (1.2) whose boundary M consists of a finite union of disjoint
centred circles in case R > 0.

Now suppose that R = 0. By (i), M\B(0, r) consists of a finite union of disjoint
centred circles for any r ∈ (0, 1). If these accumulate at 0 then M fails to be C1 at the
origin. The assertion follows. ��
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Lemma 10.5 Suppose that the function J : [0,+∞) → [0,+∞) is continuous non-
decreasing and J (0) = 0. Let N ∈ N ∪ {+∞} and {th : h = 0, . . . , 2N + 1} a
sequence of points in [0,+∞) with

t0 > t1 > · · · > t2h > t2h+1 > · · · ≥ 0.

Then

+∞ ≥
2N+1∑
h=0

J (th) ≥ J

(
2N+1∑
h=0

(−1)hth
)

.

Proof We suppose that N = +∞. The series
∑∞

h=0(−1)hth converges by the alter-
nating series test. For each n ∈ N,

2n+1∑
h=0

(−1)hth ≤ t0

and the same inequality holds for the infinite sum. As in Step 2 in [5] Theorem 2.1,

+∞ ≥
∞∑
h=0

J (th) ≥ J (t0) ≥ J

( ∞∑
h=0

(−1)hth
)

as J is non-decreasing. ��
Proof of Theorem 1.1 There exists a minimiser E of (1.2) with the property that ∂E
consists of a finite union of disjoint centred circles according to Lemma 10.4. As such
we may write

E =
N⋃

h=0
A((a2h+1, a2h))

where N ∈ N and +∞ > a0 > a1 > · · · > a2N > a2N+1 > 0. Define

f : [0,+∞) → R; t �→ eh(t);
g : [0,+∞) → R; t �→ tf(t);
G : [0,+∞) → R; t �→

∫ t

0
g dτ.

Then G : [0,+∞) → [0,+∞) is a bijection with inverse G−1. Define the strictly
increasing function

J : [0,+∞) → R; t �→ g ◦ G−1.

Put th := G(ah) for h = 0, . . . , 2N + 1. Then +∞ > t0 > t1 > · · · > t2N >

t2N+1 >> 0. Put B := B(0, r) where r := G−1(v/2π) so that V f (B) = v. Note that
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v = V f (E) = 2π
N∑

h=0

{
G(a2h)− G(a2h+1)

}

= 2π
2N+1∑
h=0

(−1)hth .

By Lemma 10.5,

Pf (E) = 2π
2N+1∑
h=0

g(ah) = 2π
2N+1∑
h=0

J (th)

≥ 2π J

(
2N+1∑
h=0

(−1)hth
)

= 2π J (v/2π) = Pf (B).

��

Proof of Theorem 1.2 Let v > 0 and E be a minimiser for (1.2). Then E is essentially
bounded by Theorem 3.1. By Theorem 4.5 there exists anL 2-measurable set Ẽ with
the properties

(a) Ẽ is a minimiser of (1.2);
(b) L Ẽ = LE a.e. on (0,+∞);
(c) Ẽ is open, bounded and has C1,1 boundary;
(d) Ẽ\{0} = Ẽsc.

(i) Suppose that 0 < v ≤ v0 so that R > 0. Choose r ∈ (0, R] such that V (B(0, r)) =
V (E) = v. Suppose that Ẽ\B(0, R) �= ∅. By Lemma 10.4 there exists t > R such
that S1t ⊂ M . As g is strictly increasing, g(t) > g(r). So Pf (E) = Pf (Ẽ) ≥ πg(t) >

πg(r) = Pf (B(0, r)). This contradicts the fact that E is a minimiser for (1.2). So
Ẽ ⊂ B(0, R) and L Ẽ = 0 on (R,+∞). By property (b), |E\B(0, R)| = 0. By
the uniqueness property in the classical isoperimetric theorem (see for example [12]
Theorem 4.11) the set E is equivalent to a ball B in B(0, R).
(ii) With r > 0 as before, V (B(0, r)) = V (E) = v > v0 = V (B(0, R)) so r > R.
If Ẽ\B(0, r) �= ∅ we derive a contradiction in the same way as above. Consequently,
Ẽ = B := B(0, r). Thus, LE = LB a.e. on (0,+∞); in particular, |E\B| = 0. This
entails that E is equivalent to B. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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