
Ricerche mat. (2018) 67:581–595
https://doi.org/10.1007/s11587-018-0373-0

Order-theoretic properties and separability
of some sets of quasi-measures

Zbigniew Lipecki1

Received: 16 March 2017 / Revised: 5 July 2017 / Published online: 20 April 2018
© The Author(s) 2018

Abstract Let M and R be algebras of subsets of a set � with M ⊂ R. Denote by
E(μ) the set of all quasi-measure extensions of a given quasi-measure μ onM toR.
We present some results on the coincidence of the bands, in R, generated by E(μ)

and extr E(μ). Moreover, we show that if μ is atomic, then E(μ) is contained in a
principal band in R if and only if it is separable. Another sufficient condition for the
separability of E(μ) is also presented.
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1 Introduction

By a quasi-measure we mean a positive additive function on an algebra of sets. Let
M andR be algebras of subsets of a set � withM ⊂ R and let μ be a quasi-measure
on M. The ‘sets’ appearing in the title of the paper are the convex set E(μ) of all
quasi-measure extensions of μ toR and the set extr E(μ) of its extreme points. These

Communicated by P. De Lucia.

B Zbigniew Lipecki
lipecki@impan.pan.wroc.pl

1 Institute of Mathematics, Polish Academy of Sciences, Wrocław Branch, Kopernika 18,
51-617 Wrocław, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11587-018-0373-0&domain=pdf


582 Z. Lipecki

sets have been studied by the author in many earlier papers, including [8–11]. Of main
concern in those papers have been their topological and linear-topological properties
as subsets of the dual Banach lattice ba(R). A systematic presentation of most of the
results obtained is given in the memoir [12].

In contrast, [13,14] and this paper are primarily concerned with order-theoretic
properties of the sets E(μ). In [14] a property of subsets of a general linear lattice X
called ideal domination has been introduced and studied mainly in relation to E(μ)

and extr E(μ). In Sect. 2 of this paper we introduce a property weaker than ideal dom-
ination, which we call band domination. (By definition, V ⊂ X is band dominated if it
is contained in a principal band in X .) We note that every separable subset of a Banach
lattice is band dominated (Proposition 1(b)). We also show that band domination is
strictly weaker than ideal domination in every infinite-dimensional Banach lattice (see
Proposition 2).

In the Banach lattice ba(M), band domination is equivalent to domination in terms
of (ε–δ) absolute continuity with respect to an element of ba(M), due to a classical
result (see (PB) formulated betweenRemark 1 and Proposition 4 in Sect. 3). Therefore,
every relatively weakly compact subset of ba(M) is band dominated, due to another
classical result (see our comments after Lemma 5 in Sect. 4).

The main body of the paper consists of Sects. 5 and 6. The former establishes, in the
atomic case, a necessary and sufficient condition that the bands, in ba(R), generated
by E(μ) and extr E(μ) coincide (Theorem 1). As a consequence of an earlier result of
the author [11], it is shown that those bands also coincide whenR is generated, as an
algebra, byM and a superatomic subalgebra ofR, whileμ is arbitrary (Theorem 2(a)).

In Sect. 6 four conditions equivalent to band domination of E(μ) in the atomic case
are given, including the following one: extr E(μ) is separable (see Theorem 3). In the
same case, assuming thatR is generated, as an algebra, byM and another subalgebra
N of R and M, N and μ are related in a special way, we show that E(μ) is band
dominated if and only if N is countable and superatomic or μ = 0 (Corollary 2).
Finally, we show that E(μ) is separable provided μ is separable (in the metric sense)
and R is generated, as an algebra, by M and a countable family of pairwise disjoint
subsets of � (Theorem 5).

The basic measure-theoretic terminology and notation we use are mostly standard.
They are explained in Sect. 3, which also contains some auxiliary results of general
character. Section 4 introduces somemore notation and presents a number of auxiliary
results on E(μ) and extr E(μ). There and in the remaining sections the material of
[8–14] plays an essential role.

Some open questions are formulated throughout the paper; see the passage follow-
ing Proposition 3 in Sect. 2, Remark 3 and the passage following Proposition 6, both
in Sect. 3, and the passage following the proofs of Theorems 3′ and 4, both in Sect. 6.

It is a pleasure to dedicate this paper to Professor Hans Weber on his 70th birthday.
I first met Hans in Wrocław during his visit to Poland in 1980, but we had started
our mail contact a few years earlier. I have a pleasant memory of his hospitality in
Radolfzell and Potenza and of our many meetings at conferences, mainly in Italy, Ger-
many and Poland. I am grateful to him for his support during the state of emergency in
Poland in the 1980s. The reading of Hans’ papers has been instructive and inspiring for
me.
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I have also reviewed some of them forMR and Zbl. I wish Hans manymore interesting
papers in the future as well as a long and active life in good health.

2 Band domination in Banach lattices

Let X be a real linear lattice (= Riesz space in the terminology of [1]), with the order
and lattice operations denoted by � and ∧, ∨, respectively. As usual, |x | stands for
the modulus or absolute value of x ∈ X and X+ for the positive cone of X .

Let V be a subset of X . We denote by AV [resp., BV ] the ideal [resp., band] in X
generated byV . Recall that aband is, by definition, an order closed ideal (see [1, p. 30]).
An alternative name for a band is a normal linear sublattice (cf. [2, Definition 1.5.6]).
The symbols A{x} and B{x}, where x ∈ X , are abbreviated to Ax and Bx , respectively.
Ideals of the form Ax and bands of the form Bx are called principal.

We call V ideal dominated [resp., band dominated] if V ⊂ Ax [resp., V ⊂ Bx ] for
some x ∈ X . The former notion was introduced and studied in [14]. Note that X is
itself ideal dominated if and only if it has a (strong) order unit e, i.e., e ∈ X+ and for
every x ∈ X there exists n ∈ N with |x | � ne. Similarly, X is itself band dominated
if and only if it has a weak order unit e, i.e., e ∈ X+ and for every x ∈ X+ we have
x ∧ ne ↑ x (see [1, p. 36]).

The following simple lemma will be instrumental in establishing the next proposi-
tion and Proposition 7(b),(c) in Sect. 4.

Lemma 1 Let V1, V2, … be subsets of a Banach lattice X. Then
⋃∞

j=1 Vj is band
dominated if (and only if) Vj is band dominated for each j .

Proof Suppose Vj ⊂ Bx j , where x j ∈ X and j = 1, 2, …. By [14, Proposition 1],
there exists x ∈ X such that x j ∈ Ix for each j . Hence

⋃∞
j=1 Vj ⊂ Bx . 	


Part (b) of the following proposition will be applied several times below. Part (a)
thereof is a direct consequence of the assertion that bands in a Banach lattice are closed
(see [1, Theorem 11.2(3)]), and so weakly closed. We shall tacitly use this assertion
also on some other occasions.

Proposition 1 Let V be a subset of a Banach lattice X.

(a) If V is band dominated, then so is its weak closure.
(b) If V is separable, then it is band dominated.

Proof (b): Apply (a) and Lemma 1. 	

An analogue of Proposition 1(a) for subsets of a dual Banach lattice and the weak∗

topology fails; see Example 1 in Sect. 3.
There are many standard examples of Banach lattices without order unit that still

have a weak order unit. A general result to this effect is a consequence of Proposi-
tion 1(b) and the following one.

Proposition 2 Every infinite-dimensional Banach lattice X contains a separable
closed sublattice X0 without order unit.
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584 Z. Lipecki

Proof Without loss of generality, we assume that X is separable (see [1, Exercise 9 of
Section 12]).We also assume that X has an order unit. Then it is isomorphic as aBanach
lattice to a C(Z)-space, where Z is an (infinite) compact space, by a combination of
classical results (see [1, Theorems 12.20 and 12.28 and Corollary 12.4]). Let z0 be an
accumulation point of Z , and set

X0 = { f ∈ C(Z) : f (z0) = 0}.

It is easy to see that X0 is as desired. 	


We note that a special class of sets for which ideal and band dominations coincide
is described in Proposition 10 in Sect. 6.

By an application of the Krein–Milman theorem, we get the following result.

Proposition 3 Let W be a weakly compact convex subset of a Banach lattice X. Then

BW = Bextr W .

Consequently, if extr W is band dominated, then so is W .

The first assertion of Proposition 3 fails for weak∗ compact convex subsets of a dual
Banach lattice; see Remark 2 in Sect. 3 and Remark 4 in Sect. 5. The author does not
know whether the same can be said about the second assertion of Proposition 3.

3 Further notation and measure-theoretic preliminaries

Let A be a Boolean algebra. The set of nonzero {0, 1}-valued additive functions on
A is denoted by ult (A). Equipped with an appropriate topology, it can be identified
with the Stone space of A. Recall that A is said to be superatomic if every subalgebra
of A is atomic or, equivalently, every homomorphic image of A is atomic (see [7,
Proposition 17.5]; cf. also [2, Definition 5.3.4]). This notion often appears below,
especially in Sects. 5 and 6.

The algebra of open-and-closed subsets of a topological space Z is denoted by
CO(Z).

For a set � we denote by |�| the cardinality of �.
Throughout the rest of the paper, � stands for a nonempty set and M for an

algebra of subsets of �.
Given a family E of subsets of �, we denote by Eb the algebra of subsets of �

generated by E.
We denote by ba(M) the Banach lattice of all real-valued bounded additive func-

tions on M (see [2, Section 2.2]). By definition, ‖ϕ‖ = |ϕ|(�) for ϕ ∈ ba(M). In
addition to the strong topology, ba(M) is equipped with its weak and weak∗ topolo-
gies; see [2, Section 4.7] or [3, Section IV.5] for the canonical Banach-lattice predual
of ba(M).
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Order-theoretic properties and separability of some sets. . . 585

We set

pa(M) = {μ ∈ ba+(M) : μ(�) = 1},
ult (M) = {μ ∈ pa(M) : μ is two-valued}.

Withμ ∈ ba+(M)we associate the pseudometric dμ onM defined by the formula

dμ(M1, M2) = μ(M1 � M2), M1, M2 ∈ M.

We say that μ is separable if the corresponding pseudometric space is separable.
Let μ ∈ ba+(M). Adapting a general linear-lattice-theoretical terminology (see

[1, p. 13]), we say that ν ∈ ba+(M) is a component of μ if

ν ∧ (μ − ν) = 0.

We denote by Uμ the set of all components of μ which take at most two values. As
easily seen (cf. [2, Proposition 5.2.2]), for different ν1, ν2 ∈ Uμ we have ν1 ∧ ν2 = 0.
Therefore, Uμ is countable. We say that μ is (purely) atomic if μ = ∑

ν∈Uμ
ν.

Remark 1 Suppose μ ∈ ba+(M) is atomic and Uμ is finite. Then there exists an
M-partition {Mν : ν ∈ Uμ} of � such that

μ(M ∩ Mν) = ν(M) for all M ∈ M and ν ∈ Uμ.

It follows that the finite algebra

{Mν : ν ∈ Uμ}b

is dμ-dense inM, and so μ is separable. Consequently, every atomic μ ∈ ba+(M) is
separable.

For ϕ, ψ ∈ ba(M) we write ψ � ϕ if ψ is absolutely continuous with respect to
ϕ, i.e., the familiar (ε–δ) condition holds for |ϕ| and |ψ | (see [2, Definition 6.1.1]).

The following result will be frequently applied below.

(PB) For every ϕ ∈ ba(M) we have Bϕ = {ψ ∈ ba(M) : ψ � ϕ}.
This is a consequence of Theorems 1.5.12 and 6.2.2 of [2].
The next two propositions are more or less known. They will be used in Sect. 4 to

establish Lemmas 4 and 5, respectively.

Proposition 4 The following two conditions are equivalent:

(i) ba(M) = Bult (M);
(ii) M is superatomic.

This is an immediate consequence of [2, Theorem 5.3.6, (iii) ⇒ (i) and (i) ⇒ (v)].
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Remark 2 Condition (i) of Proposition 4 can be reformulated as follows:

Bpa(M) = Bult (M).

Now, pa(M) is a weak∗ compact convex subset of ba(M) and extr pa(M) = ult (M),
by well-known results (see, e.g., [12, p. 14]). Thus, Proposition 4 shows that Propo-
sition 3 does not extend to weak∗ compact convex subsets of dual Banach lattices.
Another example to the same effect is mentioned in Remark 4 in Sect. 5.

Proposition 5 The following six conditions are equivalent:

(i) ba(M) has a weak order unit;
(ii) ult (M) is band dominated;
(iii) ba(M) is separable;
(iv) ult (M) is separable;
(v) M is countable and superatomic;
(vi) ult (M) is countable.

Proof Clearly, (i) implies (ii) and (vi) implies (iv). By Proposition 1(b), (iii) implies
(i) and (iv) implies (ii). To complete the argument, we shall establish the implications
(ii) ⇒ (vi) ⇒ (v) ⇒ (iii).

Suppose (ii) holds, and let τ ∈ ba+(M) be such that π � τ for every π ∈ ult (M)

(see (PB)). According to the Lebesgue decomposition theorem [2, Theorem 6.2.4],
there exists τπ ∈ ba+(M) with

τπ � π and (τ − τπ ) ∧ π = 0, where π ∈ ult (M).

We have τπ �= 0 and τπ ∧ τπ ′ = 0 whenever π , π ′ ∈ ult (M) and π �= π ′. Therefore,
for each finite subset F of ult (M) we have τ �

∑
π∈F τπ . This implies (vi).

Suppose (vi) holds. ThenM is countable, by [7, Theorem 5.31]. Moreover,M does
not contain a tree, because otherwise we would have |ult (M)| � 2ℵ0 , by a standard
argument. Therefore, M is superatomic (see [2, Theorem 5.3.6, (ii) ⇒ (i)]), and so
(v) holds.

Suppose (v) holds. By [7, Proposition 17.10], (vi) then holds, too. Therefore, (iii)
follows, by [2, Theorem 5.3.6, (i) ⇒ (v)]. 	

Remark 3 The equivalence of conditions (iii) and (iv) in Proposition 5 suggests the
question ofwhether ba(M) and ult (M) always have the same density character. Under
Martin’s axiom, the answer is negative due to an example of Fremlin and Plebanek [4,
Theorem 3A]. They construct a (zero-dimensional) compact space Z of cardinality c
which carries 2c Radon measures. Consequently, |pa(CO(Z))| = 2c. This example
also sheds some light on a result of Haydon [5] and Kadec and Fonf [6] used in the
proof of Theorem 3′ in Sect. 6 (cf. Remark 2).

The following example was announced after the proof of Proposition 1.

Example 1 Let V be the linear span of the standard basis of the Banach lattice l1.
Then V is ideal dominated, by [14, Proposition 1]. Moreover, according to a classical
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result (see [1, Theorem 10.5]), V is weak∗ dense in l∗∗
1 . Now, l∗∗

1 can be identified
as a Banach lattice with ba(2N); cf. [2, Section 4.7] or [3, Section IV.5] for details.
Finally, in view of [16, Proposition 0.5.9] or Proposition 5, (i) ⇒ (v), above, ba(2N)

is not band dominated.

As already mentioned in the passage introducing Proposition 1, bands in Banach
lattices are weakly closed. In this connection it is worth-while recalling that the fol-
lowing two conditions are equivalent for a Banach lattice X :

(i) the norm of X is order continuous, i.e., for every net {xα} in X with xα ↓ 0 we
have ‖xα‖ → 0;

(ii) every band in X∗ is weak∗ closed;

see [1, Theorem 1.10] or [16, Theorem 1.19]. Combined with another result (see [16,
Theorem 1.4]), this yields the following corollary: ba(M) contains a band which is
not weak∗ closed providedM is infinite. We shall strengthen this corollary as follows:

Proposition 6 If M is infinite, then ba(M) contains a principal band which is not
weak∗ closed.

Proof Due to the Stone representation theorem, we may assume that � is a (zero-
dimensional) compact space and M = CO(�). By assumption, � is infinite. Fix ω0,
ωn ∈ �, n = 1, 2, … such that ωn �= ω0 for each n and ω0 is an accumulation
point of the set {ωn : n = 1, 2, . . .}. Denote by δω0 , δωn the corresponding Dirac
quasi-measures on M. Then δω0 is a weak

∗ accumulation point of the set {δωn : n =
1, 2, . . .}, but

δω0 /∈ B∑∞
n=1 2

−nδωn
.

Thus, the assertion is established. 	

It is not clear to the author to what dual Banach lattices can Proposition 6 be

generalized.
In the proof of Theorem 5 in Sect. 6 we shall apply the following two lemmas. The

first of them is well known in the case whereM is a σ -algebra and μ is σ -additive. In
fact, it can be reduced to that case, but we prefer to establish it in a more direct way.

Lemma 2 For μ ∈ ba+(M) the following two conditions are equivalent:

(i) μ is separable;
(ii) Bμ is separable.

Proof (cf. [11, proof of Lemma 1]). For every N ∈ M define μN ∈ ba+(M) by

μN (M) = μ(M ∩ N ), M ∈ M.

Clearly μN ∈ Bμ. Given N1, N2 ∈ M, we have

μN1 − μN2 = μN1\N2 − μN2\N1,
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and so

‖μN1 − μN2‖ = μ(N1 � N2).

Therefore, (ii) implies (i). On the other hand, Bμ coincides with the closed linear span
of the set {μN : N ∈ M}, by (PB) and [2, Theorem 6.3.4, (i) ⇒ (iii)]. It follows that
(i) implies (ii). 	


Lemma 3 Let M = (M1 ∪ M2)b, where M1 and M2 are subalgebras of M, and
μ ∈ ba+(M). If μ|M1 and μ|M2 are separable, then so is μ.

Proof Let Li be a countable subfamily ofMi which is dμ-dense inMi , i = 1, 2. Set

L = {L1 ∩ L2 : L1 ∈ L1 and L2 ∈ L2}.

Since

(M1 ∩ M2) � (L1 ∩ L2) ⊂ (M1 � L1) ∪ (M2 � L2),

the dμ-closure of L contains the family

{M1 ∩ M2 : M1 ∈ M1 and M2 ∈ M2}.

It follows that Lb is dμ-dense inM. 	


4 Auxiliary results on E(µ) and extr E(µ)

Throughout the rest of the paper,R stands for an algebra of subsets of � withM ⊂ R.
We shall need the following notation (see [12, p. 14]). Given μ ∈ ba+(M), we set

Jμ = {R ∈ R : there exists M ∈ M with R ⊂ M and μ(M) = 0}.

Clearly, Jμ is an ideal in R.
We also set

E(μ) = { ∈ ba+(R) : |M = μ}.

It is a classical result that E(μ) is always nonempty (see [2, Chapter 3]). Moreover,
it is, clearly, convex. In addition, it is weak∗ compact (see [12, Proposition 4.4(a)] or
[8, Proposition 1(a)]).

The following proposition will be used in the proofs of the next one as well as of
Theorem 3 and Proposition 10 in Sect. 6.

123



Order-theoretic properties and separability of some sets. . . 589

Proposition 7 Suppose μ, μ j ∈ ba+(M) are such that
∑∞

j=1 μ j = μ and μ j ∧μ j ′ =
0 whenever j �= j ′.
(a) E(μ j ) ⊂ AE(μ) and extr E(μ j ) ⊂ Aextr E(μ) for each j .
(b) BE(μ) = B⋃∞

j=1 E(μ j )
; consequently, E(μ) is band dominated if and only if E(μ j )

is band dominated for each j .
(c) Bextr E(μ) = B⋃∞

j=1 extr E(μ j )
; consequently, extr E(μ) is band dominated if and

only if extr E(μ j ) is band dominated for each j .

Proof (a): By [14, p. 202, formulas (1) and (2)] applied to μ j and μ − μ j , we get

E(μ) = E(μ j ) + E(μ − μ j ) and extr E(μ) = extr E(μ j ) + extr E(μ − μ j ).

The assertion follows.
(b): The inclusion “⊃” is a consequence of the first part of (a). To show the converse

inclusion, fix  ∈ E(μ), and take  j ∈ E(μ j ), j = 1, 2, …, such that
∑∞

j=1  j = 

(see [12, Theorem 6.1(a)] or [9, Theorem 1(a)]). We have

k∑

j=1

 j ↑ , and so  ∈ B⋃∞
j=1 E(μ j )

.

The second part of (b) now follows from Lemma 1.
The proof of (c) is similar to that of (b). The modification consists in replacing two

of the results used above by the second part of (a) and [12, Theorem 6.1(b)] or [9,
Theorem 1(b)]. 	


The next proposition will be used in establishing Theorem 1 in Sect. 5.

Proposition 8 Suppose μ, μ j ∈ ba+(M) are such that
∑∞

j=1 μ j = μ and μ j ∧μ j ′ =
0 whenever j �= j ′. Then the following two conditions are equivalent:

(i) BE(μ) = Bextr E(μ);
(ii) BE(μ j ) = Bextr E(μ j ) for each j .

Proof Suppose (i) holds, and fix j . In view of [14, pp. 202–203, (4) and (5)], we then
get

BE(μ) ⊂ Bextr E(μ j ) + Bextr E(μ−μ j ).

It follows from Proposition 7(a) that

E(μ j ) ⊂ Bextr E(μ j ) + Bextr E(μ−μ j ).

An application of [14, p. 203, (5)] now yields the nontrivial inclusion “⊂” of (ii).
Suppose (ii) holds. Using Proposition 7(c), we then get

∞⋃

j=1

E(μ j ) ⊂ B⋃∞
j=1 extr E(μ j )

= Bextr E(μ).
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This together with Proposition 7(b) implies the nontrivial inclusion “⊂” of (i). 	

The next result is a minor modification of [12, Proposition 7.1]. It will be used in

establishing Lemmas 4 and 5.

Proposition 9 Let μ ∈ ult (M) and let Z denote the Stone space of R/Jμ. Then there
exists a linear mapping T : ba(CO(Z)) → ba(R) with the following properties:

1◦ T is an isometry and a lattice homomorphism;
2◦ T (pa(CO(Z))) = E(μ);
3◦ T |pa(CO(Z)) is a homeomorphism with respect to the corresponding weak

[weak∗] topologies.

Consequently, | extr E(μ)| = |Z |.
The next two lemmas will be used in the proofs of Theorem 1 in Sect. 5 and

Theorem 3 in Sect. 6, respectively.

Lemma 4 Let μ ∈ ult (M). Then the following two conditions are equivalent:

(i) BE(μ) = Bextr E(μ).
(ii) R/Jμ is superatomic.

Proof In the notation of Proposition 9, we have

T (ba(CO(Z))) = {ϕ ∈ ba(R) : ϕ|Jμ = 0}.

This follows from 1◦ and 2◦ thereof or by an inspection of the proof [12, Proposi-
tion 7.1]. Thus, the range of T is a band in ba(R). Therefore, combining Proposition 9
and Remark 2, we see that condition (i) is equivalent to the following one:

Bpa(CO(Z)) = Bult (CO(Z)).

Therefore, the equivalence of (i) and (ii) follows from Proposition 4. 	

The implication (ii) ⇒ (vi) of the following lemma strengthens [14, Lemma 1].

Lemma 5 Let μ ∈ ult (M). Then the following six conditions are equivalent:

(i) E(μ) is band dominated;
(ii) extr E(μ) is band dominated;
(iii) E(μ) is separable;
(iv) extr E(μ) is separable;
(v) R/Jμ is countable and superatomic;
(vi) extr E(μ) is countable.

The proof is analogous to that of Lemma 4.We only need to appeal to Proposition 5
instead of Proposition 4.

We note that the equivalent conditions of Lemma 5 do not imply that E(μ) is
weakly compact, in general (see [14, Remark 1]), while this last condition implies (i)
for arbitraryμ ∈ ba+(M), by [3, Theorem IV.9.12] and (PB). The converse still holds
under an additional assumption.
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Corollary 1 Let μ ∈ ba+(M) and let R be a σ -algebra. If E(μ) is band dominated,
then it is weakly compact. Consequently, BE(μ) = Bextr E(μ).

In viewof (PB), this follows from [17, Theorem1.3, (2) ⇒ (1)], theweak∗ compact-
ness of E(μ) (see [12, Proposition 4.4(a)] or [8, Proposition 1(a)]) and Proposition 3
above.

5 Coincidence of BE(µ) and Bextr E(µ)

Theorem 1 below is related to two earlier results of the author, both concerned with
the atomic case. Namely, Theorem 7.9 of [12] gives four other conditions equivalent
to those of Theorem 1, while Theorem 8 of [14] gives a condition equivalent to the
coincidence of AE(μ) and Aextr E(μ).

Theorem 1 Let μ ∈ ba+(M) be atomic. Then the following two condition are equiv-
alent:

(i) BE(μ) = Bextr E(μ);
(ii) R/Jν is superatomic for each ν ∈ Uμ.

This is a direct consequence of Proposition 8 and Lemma 4.
Part (b) of the next result is related to [14, Proposition 5], which is concerned with

the coincidence of AE(μ) and Aextr E(μ) for atomic μ ∈ ba+(M) under condition (∗).

Theorem 2 Let N be an algebra of subsets of � with R = (M ∪ N)b and let μ ∈
ba+(M).

(a) If N is superatomic, then BE(μ) = Bextr E(μ);
(b) Suppose μ is atomic and nonzero, and

(∗) M ∩ N �= ∅ for all M ∈ M with μ(M) > 0 and nonempty N ∈ N.
If BE(μ) = Bextr E(μ), then N is superatomic.

Proof (a): Fix  ∈ E(μ). By assumption and [2, Theorem 5.3.6, (i) ⇒ (v)], |N is
atomic. In view of [11, Theorem 4(b)],

 ∈ conv extr E(μ), and so  ∈ Bextr E(μ).

This yields the nontrivial inclusion of (a).
(b): Choose ν ∈ Uμ with ν �= 0. By assumption and Theorem 1, R/Jν is super-

atomic. Consequently, so is N, by [14, Lemma 5]. 	


Remark 4 We note that condition (∗) or even the stronger condition that M ∩ N �= ∅

whenever M ∈ M, N ∈ N and M , N �= ∅ (cf. [15, p. 220]) does not imply the coin-
cidence of BE(μ) and Bextr E(μ), in general; see [12, Example 8.8] or [8, Example 4].
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6 Band domination and separability of E(µ) and extr E(µ)

The next result is related to [14, Theorem 3], which is also concerned with the atomic
case and gives two conditions equivalent to the ideal domination of extr E(μ). In this
connection, we recall that condition (v) below can be restated as follows:

(v)′ ult (R/Jν) is countable for each ν ∈ Uμ

(see Proposition 5, (v) ⇔ (vi)).

Theorem 3 Let μ ∈ ba+(M) be atomic. Then the following five conditions are equiv-
alent:

(i) E(μ) is band dominated;
(ii) extr E(μ) is band dominated;
(iii) E(μ) is separable;
(iv) extr E(μ) is separable;
(v) R/Jν is countable and superatomic for each ν ∈ Uμ.

Under these conditions, BE(μ) = Bextr E(μ).

Proof By [12, Corollary 6.4], condition (iii) is equivalent to the following one:

E(ν) is separable for each ν ∈ Uμ.

By the same result, condition (iv) is equivalent to the following one:

extr E(ν) is separable for each ν ∈ Uμ.

Therefore, Lemma 5 combinedwith Proposition 7 yields the equivalence of conditions
(i)–(v). In view of Theorem 1, (v) implies the additional assertion. 	


The additional assertion of Theorem 3 does not imply its equivalence of conditions
(i)–(v), even for μ ∈ ult (M). This is seen by setting M = {∅,�}, where � is
uncountable, and taking forR an arbitrary uncountable superatomic algebra of subsets
of � (cf. Proposition 4 and Remark 2).

A part of Theorem 3 holds, in fact, for arbitraryμ ∈ ba+(M), but a different, much
less elementary argument is required.

Theorem 3′ For μ ∈ ba+(M) the following two conditions are equivalent:

(iii) E(μ) is separable;
(iv) extr E(μ) is separable.

Under these conditions, BE(μ) = Bextr E(μ).

Proof Recall that, in view of [12, Proposition 4.4(a)] or [8, Proposition 1(a)], E(μ)

is weak∗ compact. Suppose (iv) holds. According to a general result of Haydon [5,
Theorem 3.3] and Kadec and Fonf [6, Theorem 1], we then have

E(μ) = conv extr E(μ).

This implies (iii) and the addition assertion. 	
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Also some other implications between conditions (i)–(v) of Theorem 3 hold for
arbitrary μ ∈ ba+(M), either by Proposition 1(b) or for obvious reasons. However,
(i), and the more so (ii), does not imply (iv), and the more so (iii), in general. Indeed,
ifR = (M∪{E})b, where E ⊂ �, then E(μ) is order bounded, by [8, Theorem 1(a)]
or [13, Corollary 4]. On the other hand, extr E(μ) can be of arbitrary cardinality
mℵ0 , where m is a cardinality � 1 (see [12, Example 12.7] or [10, Example 3]). The
author does not know whether (ii) implies (i) and BE(μ) = Bextr E(μ) for arbitrary
μ ∈ ba+(M) (cf. Remark 4).

The next result complements [14, Proposition 3].

Proposition 10 Let μ ∈ ba+(M) have finite range. Then the following three condi-
tions are equivalent:

(i) extr E(μ) is band dominated;
(ii) extr E(μ) is ideal dominated;
(iii) extr E(μ) is countable.

Proof The assumption implies thatμ is atomic andUμ is finite (see [2, Lemma 11.1.3]
and [12, Lemma 3.2]). Suppose (i) holds. By Proposition 7(c) and Lemma 5, (ii) ⇒
(vi), extr E(ν) is then countable for each ν ∈ Uμ. Using [14, p. 202, formula (2)], we
see that (iii) holds.

According to [14, Proposition 1], (iii) implies (ii). Clearly, (ii) implies (i). 	

Remark 5 The implication (i) ⇒ (ii) of Proposition 10 does not hold for arbitrary
atomic μ ∈ ba+(M); see [14, Example 2], and apply Theorem 3, (v) ⇒ (ii).

Theorem 4 Let N be an algebra of subsets of � with R = (M ∪ N)b and let μ ∈
ba+(M).

(a) If N is countable and superatomic and μ is atomic, then E(μ) is band dominated.
(b) Suppose

(∗) M ∩ N �= ∅ for all M ∈ M with μ(M) > 0 and nonempty N ∈ N.
If extr E(μ) is band dominated, then N is countable and superatomic or μ = 0.
Consequently,

BE(μ) = Bextr E(μ).

Proof (a): By [14, Lemma 5], R/Jν is a homomorphic image of N for each ν ∈ Uμ

with ν �= 0. Thus, the assertion follows from Theorem 3, (v) ⇒ (i).
(b): Without loss of generality, we assume that μ(�) = 1. Define the mapping

R : ba(R) → ba(N) by R(ϕ) = ϕ|N for ϕ ∈ ba(R).

We then have

ult (N) ⊂ R(extr E(μ)),

according to [12, Proposition 12.4] or [10, Proposition 2]. By assumption,
extr E(μ) is contained in Bτ for some τ ∈ ba+(R). Therefore, ult (N) is contained
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in BR(τ ), by (PB). Proposition 5, (ii) ⇒ (v), now implies that N is countable and
superatomic. The final part of (b) is, therefore, a consequence of Theorem 2(a). 	


The author does not know whether Theorem 4(a) holds for arbitrary separable
μ ∈ ba+(M) (cf. Remark 1). For N generated by a countable family of pairwise
disjoint subsets of � this is the case, even without the separability assumption (see [8,
Theorem 1(b)] and (PB)).

The next result is a direct consequence of Theorem 4. It is worth-while to compare it
with [13,Corollary 2] and [14, Theorem7],which both also assume condition (∗). They
are concerned with order boundedness of E(μ) and ideal domination of extr E(μ),
respectively.

Corollary 2 Let μ ∈ ba+(M) be atomic. In the setting of Theorem 4, with (∗)
assumed, the following two conditions are equivalent:

(i) E(μ) is band dominated;
(ii) N is countable and superatomic or μ = 0.

Finally, we shall present a sufficient condition that E(μ) be separable.

Theorem 5 Let μ ∈ ba+(M) be separable and let R = (M ∪ E)b, where E is
a countable family of pairwise disjoint subsets of �. Then E(μ) is separable.

Proof By [8, Theorem 1(b)] and (PB), there exists τ ∈ E(μ) such that E(μ) ⊂ Bτ .
Clearly, τ satisfies the assumptions of Lemma 3, and so is separable. Therefore, E(μ)

is separable, by Lemma 2. 	

Needless to say, the countability assumption on E is essential for the validity of

Theorem 5 (cf. Proposition 5). This is also the case of the separability assumption
on μ, even if E consists of only one set (see the passage following Theorem 3′). Also
the disjointness assumption on E is essential, as Example 3 of [8] combined with
Proposition 1(b) and (PB) shows. Here is a simpler example to the same effect.

Example 2 (cf. Proposition 5). Let � be the Cantor set, and set M = {∅,�} and
R = CO(�). Denote by δω, whereω ∈ �, the Dirac quasi-measure onR concentrated
at ω. Clearly, the set {δω : ω ∈ �} is (uniformly) discrete, and is contained in E(μ),
where μ ∈ ult (M).

Postscript. More results on the separability of E(μ) will be presented in another
paper by the author (in preparation).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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