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Abstract In the present paper we consider for a< x < b, 0 < t < T , the system
of partial differential equations

ρ(x)
∂v
∂ t
− ∂

∂x

(
µ(x,θ)

∂v
∂x

)
= f ,

c(x,θ)
∂θ
∂ t
= µ(x,θ)

(
∂v
∂x

)2

,

completed by boundary conditions on v and by initial conditions on v and θ . The
unknowns are the velocity v and the temperature θ , while the coefficients ρ , µ and
c are Carathéodory functions which satisfy

0< c1 ≤ µ(x, s)≤ c2,
∂ µ
∂ s
(x, s)≤ 0,

0< c3 ≤ c(x, s)≤ c4, 0< c5 ≤ ρ(x)≤ c6.
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This one dimensional system is a model for the behaviour of nonhomogeneous,
stratified, thermoviscoplastic materials exhibiting thermal softening and tempera-
ture dependent rate of plastic work converted into heat. Under the above hypothe-
ses we prove the existence of a solution by proving the convergence of a finite
element approximation. Assuming further that µ is Lipschitz continuous in s, we
prove the uniqueness of the solution, as well as its continuous dependence with re-
spect to the data. We also prove its regularity when suitable hypotheses are made
on the data. These results ensure the existence and uniqueness of one solution
of the system in a class where the velocity v, the temperature θ and the stress

σ = µ(x,θ)
∂v
∂x

belong to L∞((0,T )× (a,b)).
Keywords Thermoviscoplastic materials · nonhomogeneous materials · thermal
softening · existence · uniqueness · Galerkin’s method
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1 Introduction

The present paper deals with a system of two partial differential equations describ-
ing the shearing of a nonhomogeneous, stratified, thermoviscoplastic material ex-
hibiting thermal softening.

After the pioneering paper of Dafermos and Hsiao [4] studying the adiabatic
shearing of a newtonian fluid with temperature dependent viscosity, many papers
have been devoted to the study of the existence and asymptotic stability in time of
the solutions of this problem for various classes of materials (see, for instance, the
paper [1] of one of us and the papers [9] and [10] of Tzavaras). The problem of
shear stability is related to the understanding of the emergence and development of
shear bands, and recent references on physical and engineering aspects of it can be
found, for example, in the book of Wright [11]. However, in all these papers, the
material is supposed to be homogeneous, in the sense that the viscosity function,
the heat coefficient and the referential density are supposed to depend only on the
temperature.

Here, the material is supposed to be nonhomogeneous in the sense that the
viscosity function, the heat coefficient and the referential density depend (not nec-
essarily smoothly) on the space variable. Indeed the material under consideration
is stratified in the sense that it is made of layers perpendicular to a given direction
of space, say the x direction. Assuming that the material is sheared uniformly in a
direction perpendicular to x between two parallel planes located at say x = a and
x = b, and disregarding the effect of the other boundary conditions, this allows
one to reduce to one dimensional (in space) partial differential equations.

Assuming that the elastic strain is equal to zero, the balance laws of the pro-
cess which relate the three unknows of the problem, namely the velocity v(t,x)
in the direction of the shearing, the shear stress σ (t,x) in the same direction and
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the temperature θ(t,x), lead to the following system of two partial differential
equations

ρ(x)
∂v
∂ t
=

∂σ
∂x
+ f (t,x) in (0,T )× (a,b),

c(x,θ)
∂θ
∂ t
= σ

∂v
∂x

in (0,T )× (a,b),
where T > 0 is given. In this system, f (t,x), ρ(x) and c(x,θ) are given: f (t,x)
denotes the external (body) forces acting on the material, ρ(x) the referential den-
sity, which is supposed to depend only on x, and c(x,θ) the heat coefficient, which
is given by

c(x,θ) =
1

β(x,θ)
ρ(x)h(x,θ),

where h(x,θ), the specific heat, and β(x,θ), the rate of plastic work converted into
heat, are given functions which can depend both on x and on the temperature. In
almost all works concerned with this problem under adiabatic conditions, β is sup-
posed to be a constant which is equal to 0.9. However recent experimental work
of Hodowany et al. [5] based on a Kolski bar technique, and theoretical studies
by Rosakis et al. [8] suggest that β can depend, among others, on the tempera-
ture. We actually prove in our paper [3] that homogenization of nonhomogeneous,
stratified, thermoviscoplastic materials where c depends only on x produces an
homogenized material where c in general does depend on the temperature.

In the present paper, the shear stress σ (t,x) is supposed to be given by the
constitutive law

σ = µ(x,θ)
∂v
∂x

in (0,T )× (a,b),
where the viscosity function µ is a given function of x and of the temperature
which satisfies

∂ µ
∂ s
(x, s)≤ 0;

this inequality expresses the thermal softening of the material. This law is a limit
case of the rheological constitutive law (see the paper [7] of Molinari and Clifton)

σ = µ(x,θ , γ)
∣∣∣∣∂v
∂x

∣∣∣∣
n−1 ∂v

∂x
,

(where 0< n< 1) which describes a thermoviscoplastic material exhibiting strain
dependence, thermal softening and strain rate sensitivity. In the present limit case,
the strain rate sensitivity n is equal to 1. On the other hand, the strain γ acts as a

hidden variable driven by the compatibility equation
∂v
∂x
=

∂γ
∂ t

; but under slowly

varying shear stress, it was observed that the strain γ is quasi proportional to the
temperature θ . It was also observed in experiments at different temperature levels
that the linear law is justified between certain values of the stress (see the book
of Lemaitre and Chaboche [6]). The fact that we will prove in the present paper
that the stress is bounded therefore justifies in part the use of the limit case n= 1.
However, from the mathematical point of view, the method used in the present
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paper should be modified in the general case where n < 1 and where the strain γ
is taken into consideration.

The shearing is caused by time dependent imposed boundary velocities at x= a
and x= b, namely

v(t,a) = va(t), v(t,b) = vb(t) in (0,T ),

where va and vb are given. We will also consider the case where the shearing is
caused by time dependent shears imposed at x= a and x= b, namely

σ (t,a) = σa(t), σ (t,b) = σb(t) in (0,T ),

where σa and σb are given, and the case where the velocity is imposed on one
boundary, say x = a, and the shear on the other one, namely

v(t,a) = va(t), σ (t,b) = σb(t) in (0,T ).

Finally the system is complemented by initial conditions on the velocity and
temperature, namely

v(0,x) = v0(x), θ(0,x) = θ0(x) in (a,b).

In short, when the shearing is caused by imposed boundary velocities, the
thermomecanical process under consideration is described by the following initial
boundary value system

ρ(x)
∂v
∂ t
− ∂

∂x

(
µ(x,θ)

∂v
∂x

)
= f (t,x) in (0,T )× (a,b), (1.1)

c(x,θ)
∂θ
∂ t
= µ(x,θ)

(
∂v
∂x

)2

in (0,T )× (a,b), (1.2)

v(t,a) = va(t), v(t,b) = vb(t) in (0,T ), (1.3)

v(0,x) = v0(x) in (a,b), (1.4)

θ(0,x) = θ0(x) in (a,b), (1.5)

where v(t,x) and θ(t,x) are unknown, while ρ , µ , c, f , va, vb, v0 and θ0 are given;
as said above, the stress σ (t,x) is given by

σ = µ(x,θ)
∂v
∂x

in (0,T )× (a,b). (1.6)

The goal of the present paper is to prove the existence and uniqueness of the so-
lution of this system, as well as its continuous dependence with respect to the data
and some regularity properties. Using Schauder’s fixed point theorem, we proved
in [2] an existence result for (1.1)–(1.5) under homogeneous boundary conditions.
In Section 2 of the present paper, we will prove the existence of solutions by us-
ing a P1 (in v) and P0 (in θ ) finite elements approximation of this problem. This
method has the avantage to be more constructive and to prove the convergence of
an approximating scheme (see Subsection 2.4). Actually, before of proving this
existence result, we will first perform a transformation of the problem by intro-
ducing new unknown functions (see Subsection 2.2). This transformation will be
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used in the whole of the present paper. In Section 3 we will prove the uniqueness
of the solution of (1.1)–(1.5), as well as its local Lipschitz continuous dependence
with respect to the data and some regularity results. Combining all those results
ensures the existence and uniqueness of the solution of (1.1)–(1.5) in a class where
velocity, temperature and stress belong to L∞((0,T )× (a,b)) (see Theorem 3.3).

These existence, uniqueness, continuity with respect to the data and regularity
results continue to hold, with the same proofs, in the case where the boundary
conditions (1.3) are replaced by Neumann boundary conditions

σ (t,a) = σa(t), σ (t,b) = σb(t) in (0,T ), (1.3bis)

or by mixed boundary conditions

v(t,a) = va(t), σ (t,b) = σb(t) in (0,T ), (1.3ter)

(see Subsection 2.1bis and the comments after Theorems 3.1, 3.2 and 3.3).
In our paper [3], we investigate the asymptotic behaviour of a thermoviscoplas-

tic material made of numerous layers of different phases of the type considered
here, each of those layers having a small thickness, i.e. the homogenization of
such materials, and we prove that system (1.1)–(1.5) is stable by homogenization.

Finally, we have to stress the importance in the proofs of the one dimensional-
ity in space of the partial differential equations; in several dimensions most of the
results given here should be very different and are beyond our reach.

2 Approximation by finite elements and existence of a solution

This Section presents an existence result for the initial boundary value system
(1.1)–(1.5). The proof which is given here uses Galerkin’s method for P1/P0 finite
elements approximation. Another proof using Schauder’s fixed point theorem was
given in our paper [2]. The proof presented here, even if technically a little bit more
complicated, has the advantage to provide the convergence of an approximating
scheme of system (1.1)–(1.5).

We state this existence result in Subsection 2.1. Its proof will follow from a
change of unknowns functions that we will perform in Subsection 2.2, passing
from the unknowns (v,θ) to the equivalent unknowns (u,τ). This transformation
will be used in the whole of the present paper. The existence result for the un-
knowns (u,τ) and the convergence of the Galerkin’s method will be proved in
Subsection 2.4.

2.1 Statement of the existence result

In the whole of the present paper, we consider a, b and T in R with a< b and
T > 0 and we set

(a,b) = Ω , (0,T )× (a,b) = Q.

We assume that the fonctions µ : Ω×R→R and c : Ω×R→R are Carathéo-
dory functions which are uniformly (in x) continuous in s, i.e.


x→ µ(x, s) is measurable ∀s ∈ R,
|µ(x, s)−µ(x, s′)| ≤ ω(s, |s− s′|) a.e. x ∈Ω , ∀s, s′ ∈ R,

(2.1)
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


x→ c(x, s) is measurable ∀s ∈ R,
|c(x, s)− c(x, s′)| ≤ ω(s, |s− s′|) a.e. x ∈ Ω , ∀s, s′ ∈ R,

(2.2)

where ω(s, ŝ) is a modulus of continuity, i.e.

ω(s, ŝ)→ 0 when ŝ→ 0, ∀s ∈R,
and that

ρ ∈ L∞(Ω ). (2.3)

We also assume that the functions µ , c and ρ satisfy

c1 ≤ µ(x, s)≤ c2 a.e. x ∈Ω , ∀s ∈R, (2.4)

c3 ≤ c(x, s)≤ c4 a.e. x ∈Ω , ∀s ∈R, (2.5)

c5 ≤ ρ(x)≤ c6 a.e. x ∈Ω , (2.6)

where 0 < c1 ≤ c2 < +∞, 0 < c3 ≤ c4 < +∞ and 0 < c5 ≤ c6 < +∞ are con-
stants. Moreover we assume in this Section (this hypothesis will not be made in
Subsections 3.1–3.4 below) that µ is nonincreasing in s, i.e.

∂ µ
∂ s
(x, s)≤ 0 inD ′(Ω ×R). (2.7)

For what concerns the external forces and the initial and boundary conditions,
we assume in this Section that

f ∈ L2(0,T ;L2(Ω )), (2.8)

va ∈ H1(0,T ), vb ∈H1(0,T ), (2.9)

v0 ∈H1(Ω ), (2.10)

θ0 ∈ L1(Ω ), (2.11)

and that the following compatibility condition holds true

v0(a) = va(0), v0(b) = vb(0). (2.12)

We then have the following existence result.

Theorem 2.1 (Existence) Assume that hypotheses (2.1)–(2.12) hold true. Then
there exists at least one couple (v,θ) which satisfies (1.1)–(1.5) in the following
sense

v ∈ L∞(0,T ;H1(Ω ))∩H1(0,T ;L2(Ω )), (2.13)

θ ∈W 1,1(0,T ;L1(Ω )), (2.14)

ρ(x)
∂v
∂ t
− ∂

∂x

(
µ(x,θ)

∂v
∂x

)
= f inD ′(Q), (2.15)

c(x,θ)
∂θ
∂ t
= µ(x,θ)

(
∂v
∂x

)2

inD ′(Q), (2.16)

v(t,a) = va(t), v(t,b) = vb(t) a.e. t ∈ (0,T ), (2.17)
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v(0,x) = v0(x) a.e. x ∈ Ω , (2.18)

θ(0,x) = θ0(x) a.e. x ∈Ω . (2.19)

Moreover the stress σ defined by (1.6), namely

σ = µ(x,θ)
∂v
∂x
, (2.20)

satisfies
σ ∈ L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )). (2.21)

Finally for this solution, the following a priori estimates hold true

‖v‖L∞(0,T;H1(Ω )) +‖
∂v
∂ t
‖L2(0,T ;L2(Ω )) ≤C�, (2.22)

‖θ‖L∞(0,T ;L1(Ω )) +‖
∂θ
∂ t
‖L1(0,T ;L1(Ω )) ≤C�, (2.23)

‖σ‖L∞(0,T ;L2(Ω )) +‖σ‖L2(0,T ;H1(Ω )) ≤C�, (2.24)

where C� denotes a constant which depends only on c1, c2, c3, c4, c5, c6, (b−a)
and K, when the data satisfy


‖ f‖L2(0,T ;L2(Ω )) +‖va‖H1(0,T) +‖vb‖H1(0,T) +

+‖v0‖H1(Ω ) +‖θ0‖L1(Ω ) ≤ K.
(2.25)

Note that every term of equations (2.15) and (2.16) has a meaning in the
sense of distributions, since µ(x,θ) belongs to L∞(Q). Similarly the boundary
conditions (2.17) have a meaning, since v belongs to L∞(0,T ;H1(Ω )) and since
H1(Ω )⊂C0(Ω ) when Ω is one dimensional. Finally the initial conditions (2.18)
and (2.19) have a meaning since v belongs to H1(0,T ;L2(Ω )) ⊂
⊂C0([0,T ];L2(Ω )) while θ belongs to W 1,1(0,T ;L1(Ω ))⊂C0([0,T ];L1(Ω )).

The regularity (2.21) on the stress σ is very specific to the one dimensionality
of the problem. Indeed it immediately follows on one hand from (2.4), (2.13) and
from the definition (2.20) of σ , and on the other hand from equation (2.15), which

reads as
∂σ
∂x
= ρ

∂v
∂ t
− f , and from (2.6), (2.13) and (2.8).

The a priori estimates (2.22)–(2.24) on v, θ and σ of Theorem 2.1 are stated
here only for the solution built in the proof below. Actually by the uniqueness
Theorem 3.1, these a priori estimates hold true for every (actually for the unique)
solution of (2.13)–(2.19) whenever hypothesis (3.1) is made.

2.1bis Existence results for Neumann and mixed boundary conditions

As said in the Introduction, the boundary conditions (1.3) on v can be replaced
by Neumann boundary conditions (1.3bis) on σ or by mixed boundary conditions
(1.3ter) on v and σ .
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In the case of Neumann boundary conditions we assume that

σa ∈ L2(0,T ), σb ∈ L2(0,T ), (2.26)

and, in the case of mixed boundary conditions, that

va ∈ H1(0,T ), σb ∈ L2(0,T ), (2.27)

and that the compatibility condition

v0(a) = va(0), (2.28)

holds true.
We then have the two following existence results, which can be proved along

the lines of the proof of Theorem 2.1.

Theorem 2.1bis (Existence for Neumann boundary conditions) Assume that
hypotheses (2.1)–(2.8), (2.26), (2.10) and (2.11) hold true. Then there exists at
least one couple (v,θ) which satisfies (1.1), (1.2), (1.3bis), (1.4) and (1.5) in the
following sense

v ∈ L∞(0,T ;H1(Ω ))∩H1(0,T ;L2(Ω )), (2.29)

θ ∈W 1,1(0,T ;L1(Ω )), (2.30)


∫
Ω

ρ(x)
∂v
∂ t

wdx+
∫

Ω
µ(x,θ)

∂v
∂x

∂w
∂x

dx =

=

∫
Ω

f wdx+σb(t)w(b)−σa(t)w(a) inD ′(0,T ),

∀w ∈ H1(Ω ),

(2.31)

c(x,θ)
∂θ
∂ t
= µ(x,θ)

(
∂v
∂x

)2

inD ′(Q), (2.32)

v(0,x) = v0(x) a.e. x ∈ Ω , (2.33)

θ(0,x) = θ0(x) a.e. x ∈ Ω . (2.34)

Moreover the stress σ defined by (1.6), namely σ = µ(x,θ)
∂v
∂x
, satisfies

σ ∈ L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )). (2.35)

Finally for this solution, the following a priori estimates hold true

‖v‖L∞(0,T ;H1(Ω )) +‖
∂v
∂ t
‖L2(0,T ;L2(Ω )) ≤C�bis, (2.36)

‖θ‖L∞(0,T ;L1(Ω )) +‖
∂θ
∂ t
‖L1(0,T ;L1(Ω )) ≤C�bis, (2.37)

‖σ‖L∞(0,T ;L2(Ω )) +‖σ‖L2(0,T ;H1(Ω )) ≤C�bis, (2.38)
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where C�bis denotes a constant which depends only on c1, c2, c3, c4, c5, c6, (b−a)
and Kbis, when the data satisfy


‖ f‖L2(0,T ;L2(Ω )) +‖σa‖L2(0,T) +‖σb‖L2(0,T) +

+‖v0‖H1(Ω ) +‖θ0‖L1(Ω ) ≤ Kbis.
(2.39)

As usual in Neumann’s problem, both the equation (1.1) (in the sense of
D ′(Q)) and the boundary conditions (1.3bis) (which here have a meaning since
σ belongs to L2(0,T ;H1(Ω )) and H1(Ω )⊂ C0(Ω)), are contained in the varia-
tional formulation (2.31).

Theorem 2.1ter (Existence for mixed boundary conditions) Assume that hy-
potheses (2.1)–(2.8), (2.27), (2.28), (2.10) and (2.11) hold true. Then there exists
at least one couple (v,θ) which satisfies (1.1), (1.2), (1.3ter), (1.4) and (1.5), in
the sense that (2.29), (2.30),




∫
Ω

ρ(x)
∂v
∂ t

wdx+
∫

Ω
µ(x,θ)

∂v
∂x

∂w
∂x

dx =

=

∫
Ω

f wdx+σb(t)w(b) inD ′(0,T ),

∀w ∈ H1(Ω ) with w(a) = 0,

(2.40)

v(a, t) = va(t) a.e. t ∈ (0,T ), (2.41)

(2.32), (2.33) and (2.34) hold true.

Moreover the stress σ defined by (1.6), namely σ = µ(x,θ)
∂v
∂x

, satisfies

(2.35).
Finally for this solution the a priori estimates (2.36)–(2.38) hold true with C�bis

replaced by C�ter, where C�ter denotes a constant which depends only on c1, c2, c3,
c4, c5, c6, (b−a) and Kter, when the data satisfy


‖ f‖L2(0,T;L2(Ω )) +‖va‖H1(0,T) +‖σb‖L2(0,T) +

+‖v0‖H1(Ω ) +‖θ0‖L1(Ω ) ≤ Kter.
(2.42)

2.2 Transformation of the problem by a change of unknown functions

Actually it is more convenient to write the system (1.1)–(1.5) in an equivalent
but different way. Let us describe formally this equivalent formulation.

We begin by a translation which reduces the problem to homogeneous bound-
ary conditions. (Such a translation has not to be done when Neumann bound-
ary conditions are concerned, and it has to be conveniently modified when mixed
boundary conditions are concerned.) Define

v(t,x) =
(x−a)vb(t)+(b− x)va(t)

b−a
, (2.43)
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u0(x) = v0(x)− v(0,x), (2.44)

u(t,x) = v(t,x)− v(t,x). (2.45)

Note that
u0 ∈H1

0 (Ω ) (2.46)

when v0, va and vb satisfy hypotheses (2.9), (2.10) and (2.12).
Then (v,θ) is a solution of (1.1)–(1.5) if and only if (u,θ) is a solution of

ρ(x)
∂u
∂ t
− ∂

∂x

(
µ(x,θ)

(
∂u
∂x
+

∂v
∂x

))
= f −ρ(x)

∂v
∂ t

in (0,T )× (a,b), (2.47)

c(x,θ)
∂θ
∂ t
= µ(x,θ)

(
∂u
∂x
+

∂v
∂x

)2

in (0,T )× (a,b), (2.48)

u(t,a) = 0, u(t,b) = 0 in (0,T ), (2.49)

u(0,x) = u0(x) in (a,b), (2.50)

θ(0,x) = θ0(x) in (a,b). (2.51)

We will now perform a change of unknown function by replacing θ(t,x) by a
new unknown τ(t,x). Define the function M : Ω ×R→ R by

M(x, s) =
∫ s

θ0(x)
c(x, s′)µ(x, s′)ds′ a.e. x ∈ Ω , ∀s ∈R. (2.52)

Since 0 < c3c1 ≤ c(x, s′)µ(x, s′) ≤ c4c2 < +∞, the function s→ M(x, s) is one-
to-one from R into R for almost every x ∈ Ω . Let N(x, r) denote its reciprocal
function, defined by

M(x, s) = r ⇐⇒ N(x, r) = s a.e. x ∈ Ω . (2.53)

Note that the functions M : Ω×R→R and N : Ω×R→R are Carathéodory func-
tions, and that the functions s→ M(x, s) and r→ N(x, r) are strictly increasing,
Lipschitz continuous functions which satisfy




c3c1(s− s′)≤M(x, s)−M(x, s′)≤ c4c2(s− s′)

a.e. x ∈Ω , ∀s, s′ ∈R, s≥ s′,
(2.54)




1
c4c2
(r− r′)≤ N(x, r)−N(x, r′)≤ 1

c3c1
(r− r′)

a.e. x ∈ Ω , ∀r, r′ ∈ R, r ≥ r′,
(2.55)

M(x,θ0(x)) = 0, (2.56)

N(x,0) = θ0(x). (2.57)

Define now the new unknown τ(t,x) by

τ(t,x) =M(x,θ(t,x)). (2.58)
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The reason for this definition is that multiplying equation (2.48) on θ by µ(x,θ)
(which is always finite and strictly positive), we see that (2.48) is equivalent to

∂τ
∂ t
=

∣∣∣∣µ(x,θ)
(

∂u
∂x
+

∂v
∂x

)∣∣∣∣
2

in (0,T )× (a,b),

while the initial condition (2.51) is equivalent to

τ(0,x) = 0 in (a,b).

We finally define the function λ : Ω ×R→ R by

λ(x, r) = µ(x,N(x, r)) a.e. x ∈Ω , ∀r ∈R. (2.59)

Then λ is a Carathéodory function which satisfies (2.1) (for some new modulus
of continuity) and (2.4), i.e.

c1 ≤ λ(x, r) ≤ c2 a.e. x ∈ Ω , ∀r ∈ R, (2.60)

and which is nonincreasing in r when µ satisfies (2.7), i.e.

∂λ
∂ r
(x, r) ≤ 0 in D ′(Ω ×R);

(note that this is the only place where hypothesis (2.7) is used in the present Sub-
section.)

Then we have
µ(x,θ(t,x)) = λ(x,τ(t,x)),

σ (t,x) = µ(x,θ(t,x))
∂v
∂x
(t,x) = λ(x,τ(t,x))

(
∂u
∂x
(t,x)+

∂v
∂x
(t,x)

)
.

It is now straightforward to prove the following equivalence result.

Theorem 2.2 (Equivalence) Assume that hypotheses (2.1)–(2.6) and
(2.8)–(2.12) hold true, and define v, u0, M, N and λ by (2.43), (2.44), (2.52),
(2.53) and (2.59). Then (v,θ) is a solution of (2.13)–(2.19) if and only if u and τ
defined by (2.45) and (2.58), namely

u(t,x) = v(t,x)− v(t,x), τ(t,x) =M(x,θ(t,x)),

satisfy
u ∈ L∞(0,T ;H1

0 (Ω ))∩H1(0,T ;L2(Ω )), (2.61)

τ ∈W 1,1(0,T ;L1(Ω )), (2.62)

ρ(x)
∂u
∂ t
− ∂

∂x

(
λ(x,τ)

(
∂u
∂x
+

∂v
∂x

))
= f −ρ(x)

∂v
∂ t

inD ′(Q), (2.63)

∂τ
∂ t
=

∣∣∣∣λ(x,τ)
(

∂u
∂x
+

∂v
∂x

)∣∣∣∣
2

inD ′(Q), (2.64)

u(0,x) = u0(x) a.e. x ∈Ω , (2.65)

τ(0,x) = 0 a.e. x ∈ Ω . (2.66)
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Moreover the stress σ defined by (2.20), namely

σ = µ(x,θ)
∂v
∂x
= λ(x,τ)

(
∂u
∂x
+

∂v
∂x

)
, (2.67)

satisfies
σ ∈ L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )). (2.68)

Finally the norms of v and θ in the spaces L∞(0,T ;H1(Ω ))∩
∩H1(0,T ;L2(Ω )) and W 1,1(0,T ;L1(Ω )) and the norms of u and τ in the spaces
L∞(0,T ;H1

0 (Ω ))∩ H1(0,T ;L2(Ω )) and W 1,1(0,T ;L1(Ω )) are equivalent, with
constants in the equivalences which depend only on c1, c2, c3, c4, (b− a) and J,
when the data satisfy

‖va‖H1(0,T) +‖vb‖H1(0,T) +‖θ0‖L1(Ω ) ≤ J. (2.69)

Note that the initial conditions (2.65) and (2.66) have a meaning since
H1(0,T ;L2(Ω )) ⊂ C0([0,T ];L2(Ω )) and since W 1,1(0,T ;L1(Ω )) ⊂
⊂C0([0,T ];L1(Ω )).

Theorem 2.1 then results from the equivalence Theorem 2.2 and from the fol-
lowing existence Theorem, that we will prove in Subsection 2.4.

Theorem 2.3 (Existence for the transformed system) Assume that the hypothe-
ses of Theorem 2.1 hold true, and define v, u0, M, N and λ by (2.43), (2.44),
(2.52), (2.53) and (2.59). Then there exists at least one couple (u,τ) which satisfy
(2.61)–(2.66).

Moreover the stress σ defined by (2.67) satisfies (2.68).
Finally for this solution, the following a priori estimates hold true

‖u‖L∞(0,T ;H1
0 (Ω ))

+‖∂u
∂ t
‖L2(0,T ;L2(Ω )) ≤ D�, (2.70)

‖τ‖L∞(0,T ;L1(Ω )) +‖
∂τ
∂ t
‖L1(0,T ;L1(Ω )) ≤D�, (2.71)

‖σ‖L∞(0,T ;L2(Ω )) +‖σ‖L2(0,T ;H1(Ω )) ≤D�, (2.72)

where D� denotes a constant which depends only on c1, c2, c5, c6, (b−a) and L,
when the data satisfy

‖ f‖L2(0,T ;L2(Ω )) +‖va‖H1(0,T) +‖vb‖H1(0,T) +‖u0‖H1
0 (Ω )
≤ L. (2.73)

2.3 Definition of the approximating problem

The proof of Theorem 2.3 that we will present is based on Galerkin’s approx-
imation by P1 (in u) and P0 (in τ ) finite elements.

We divide Ω = (a,b) into n intervals Ik
n of length

b−a
n

defined by

Ik
n =

[
a+

k
n
(b−a),a+

(k+1)
n
(b−a)

]
, k= 0,1, ...,n−1,
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whose characteristic functions χk
n are given by

χk
n (x) =




1 if x ∈
[

a+
k
n
(b−a),a+

(k+1)
n
(b−a)

]
,

0 otherwise, k = 0,1, ...,n−1,

and we denote by w j
n the “hat” functions which are the elements of the P1 basis,

i.e.

w j
n(x) =




1− n
b−a

∣∣x− (a+ j
n
(b−a)

∣∣

if x ∈
[

a+
( j−1)

n
(b−a),a+

( j+1)
n
(b−a)

]
,

0 otherwise, j = 1, ...,n−1.

2.3.1 Definition of λn and Un

Let us define an approximation λn(x, r) of the function λ(x, r) and an approx-
imation Un(x) of the initial condition u0(x).

Since λ(x, r) = µ(x,N(x, r)), and since µ is continuous and non increasing in
s while N is continuous and strictly increasing in r, the function λ(x, r) is contin-
uous and non increasing in s. We first define a regularization λ̃n(x, r) which is C1

and non increasing in r for each fixed n, which satisfies the bound

c1 ≤ λ̃n(x, r)≤ c2 a.e. x ∈Ω , ∀r ∈R,
and which is such that




x→ λ̃n(x, r) is measurable ∀r ∈ R,

|λ̃n(x, r)− λ̃n(x, r′)| ≤ ω̃(r, |r− r′ |), a.e. x ∈ R, ∀r, r′ ∈ R,

where ω̃(r, r̂)→ 0 when r̂→ 0,

as n→ ∞, λ̃n(x, r)→ λ(x, r) a.e. x ∈ Ω , ∀r ∈ R;

such a regularization can be obtained e.g. by convolution of λ(x, r) with respect
to r; it is superfluous when µ (and thus λ ) is C1 in s; this regularization will make
licit the derivation of the first a priori estimate below.

We then define λn(x, r) as the mean value (in x) of λ̃n(x, r) over the intervals

Ik
n of length

b−a
n

, i.e.

λn(x, r) =
n−1

∑
k=0

χk
n (x)

[
n

b−a

∫
Ω

χk
n(x
′)λ̃n(x

′, r)dx′
]
. (2.74)
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It is easy to prove that the function λn : Ω ×R→R satisfies for each n the follow-
ing properties

λn is constant in x on each interval Ik
n , and is C1 and non increasing in r, (2.75)

c1 ≤ λn(x, r)≤ c2 a.e. x ∈Ω , ∀r ∈R, (2.76)

as n→ ∞, λn(x, rn)→ λ(x, r) if rn→ r, a.e. x ∈Ω . (2.77)

On the other hand we define Un as the projection in H1
0 (Ω ) of u0 on the space

generated by the functions w j
n, j = 1, ...,n−1, i.e.

Un(x) =
n−1

∑
j=1

U j
n w j

n, (2.78)

where the coefficients U j
n ∈ R are defined by the system of equations

n−1

∑
j=1

U j
n < w j

n,w
i
n >=< u0,w

i
n >, i= 1, ...,n−1,

in which< , > denotes the scalar product of H1
0 (Ω ), i.e.

< ϕ ,ψ >=
∫

Ω

dϕ
dx

dψ
dx

dx ∀ϕ ,ψ ∈ H1
0 (Ω ).

Therefore
‖Un‖H1

0 (Ω )
≤C‖u0‖H1

0 (Ω )
, (2.79)

Un→ u0 in H1
0 (Ω ) strong. (2.80)

2.3.2 Approximating problem

We now define the approximating problem in the following way. We look for
functions (un,τn) (or more exactly for their coefficients u j

n(t) ∈ H1(0,T ), j =
= 1, ...,n− 1, and τ k

n(t) ∈W 1,1(0,T ), k = 0,1, ...,n− 1), which are solutions of
the approximating system

un(t,x) =
n−1

∑
j=1

u j
n(t)w

j
n(x), (2.81)

τn(t,x) =
n−1

∑
k=0

τ k
n(t)χ

k
n (x), (2.82)




∫
Ω

ρ(x)
∂un

∂ t
wi

ndx+
∫

Ω
λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)
∂wi

n

∂x
dx=

=
∫

Ω
f wi

ndx−
∫

Ω
ρ(x)

∂v
∂ t

wi
n dx, i = 1, ...,n−1, t ∈ (0,T),

(2.83)
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∂τn

∂ t
=

∣∣∣∣λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)∣∣∣∣
2

, (t,x) ∈ (0,T )×Ω , (2.84)

un(0,x) =Un(x), x ∈Ω , (2.85)

τn(0,x) = 0, x ∈Ω , (2.86)

where λn and Un are defined by (2.74) and (2.78). Observe that since τn(t),

λn(x, r),
∂un

∂x
and

∂v
∂x

are constant (in x) on each interval Ik
n , equation (2.84) is

equivalent to n ordinary differential equations or to

∫
Ω

∂τn

∂ t
χk

n dx=
∫

Ω

∣∣∣∣λn(x,τn)

(
∂un

∂x
+

∂vn

∂x

)∣∣∣∣
2

χk
ndx,

k = 0,1, ...,n−1, t ∈ (0,T ).

2.3.3 Local existence of the approximating solution

The approximating system (2.81)–(2.86) is nothing but the ordinary differen-
tial equation 


dZ(t)

dt
= Fn(t,Z(t)), t ∈ (0,T ),

Z(0) = Z0,

(2.87)

where Z : [0,T ]→R
n−1+n is defined by

Z(t) =
(

u1
n(t), ...,u

n−1
n (t), τ0

n (t), ...,τ
n−1
n (t)

)
,

and where Fn(t, z) is C1 in z and L2 in t . Thus there exists a solution Z of (2.87)
(and therefore of the approximating system) which belongs to H1(0,T �;Rn−1+n)
on the interval (0,T �) for some T � with 0< T� ≤ T . The a priori estimates that
we will obtain in the next Subsection will imply that actually T � = T .

2.4 Convergence of the approximating solution

In this Subsection we prove that the approximating solution (un,τn) of (2.81)–
(2.86) converges to a solution (u,τ) of (2.61)–(2.66) (see Theorem 2.4 below).

This will prove the existence Theorem 2.3 for the transformed system.

Theorem 2.4 (Convergence of Galerkin’s approximation) The solution (un,τn)
of the approximating system (2.81)–(2.86) exists on (0,T ) and a subsequence, still
denoted by the index n, satisfies

un⇀ u in L∞(0,T ;H1
0 (Ω )) weak �, (2.88)

∂un

∂x
→ ∂u

∂x
in L2(0,T ;L2(Ω )) strong, (2.89)
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∂un

∂ t
⇀

∂u
∂ t

in L2(0,T ;L2(Ω )) weak, (2.90)

τn→ τ in W 1,1(0,T ;L1(Ω )) strong, (2.91)

where (u,τ) is a solution of (2.61)–(2.66).

Proof The proof of this Theorem will be done in five steps.

First step: a priori estimates

Multiplication of (2.83) by
dui

n

dt
(t) and addition from i= 1 to i= n−1 yields




∫
Ω

ρ(x)
∣∣∣∣∂un

∂ t

∣∣∣∣
2

+

∫
Ω

λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)(
∂ 2un

∂x∂ t
+

∂ 2v
∂x∂ t

)
dx=

=

∫
Ω

f
∂un

∂ t
dx−

∫
Ω

ρ(x)
∂v
∂ t

∂un

∂ t
dx+

+

∫
Ω

λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)
∂ 2v

∂x∂ t
dx.

(2.92)

For what concerns the second term of (2.92), using the fact that λn is C1 in r,

the fact that
∂
∂ t

(
λn(x,τn)

)
=

∂λn

∂ r
(x,τn)

∂τn

∂ t
and equation (2.84), we have

d
dt

[
1
2

∫
Ω

λn(x,τn)

∣∣∣∣∂un

∂x
+

∂v
∂x

∣∣∣∣
2

dx

]
=

=

∫
Ω

λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)(
∂ 2un

∂x∂ t
+

∂ 2v
∂x∂ t

)
dx+

+
1
2

∫
Ω

∂λn

∂ r
(x,τn)|λn(x,τn)|2

∣∣∣∣∂un

∂x
+

∂v
∂x

∣∣∣∣
4

dx.

Since
∂λn

∂ r
(x, r)≤ 0, we have

d
dt

[
1
2

∫
Ω

λn(x,τn)

∣∣∣∣∂un

∂x
+

∂v
∂x

∣∣∣∣
2

dx

]
≤

≤
∫

Ω
λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)(
∂ 2un

∂x∂ t
+

∂ 2v
∂x∂ t

)
dx.
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Therefore integrating (2.92) in time from 0 to t we obtain

∫ t

0

∫
Ω

ρ(x)
∣∣∣∣∂un

∂ t

∣∣∣∣
2

dxdt ′+
1
2

∫
Ω

λn(x,τn(t,x))

∣∣∣∣∂un

∂x
(t,x)+

∂v
∂x
(t,x)

∣∣∣∣
2

dx ≤

≤ 1
2

∫
Ω

λn(x,0)

∣∣∣∣∂Un

∂x
+

∂v
∂x
(0,x)

∣∣∣∣
2

dx+

+

∫ t

0

∫
Ω

f
∂un

∂ t
dxdt ′ −

∫ t

0

∫
Ω

ρ(x)
∂v
∂ t

∂un

∂ t
dxdt ′+

+

∫ t

0

∫
Ω

λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)
∂ 2v

∂x∂ t
dxdt ′.

Using the bounds (2.6) and (2.76) on ρ and λn as well as Young’s inequality
we get

c5

∫ t

0

∫
Ω

∣∣∣∣∂un

∂ t

∣∣∣∣
2

dxdt ′+
1
2

c1

∫
Ω

∣∣∣∣∂un

∂x
(t,x)+

∂v
∂x
(t,x)

∣∣∣∣
2

dx≤

≤ 1
2

c2

∫
Ω

∣∣∣∣∂Un

∂x
+

∂v
∂x
(0,x)

∣∣∣∣
2

dx +
c5

4

∫ t

0

∫
Ω

∣∣∣∣∂un

∂ t

∣∣∣∣
2

dxdt ′+
1
c5

∫ t

0

∫
Ω
| f |2dxdt ′+

+
c5

4

∫ t

0

∫
Ω

∣∣∣∣∂un

∂ t

∣∣∣∣
2

dxdt ′+
c2

6

c5

∫ t

0

∫
Ω

∣∣∣∣∂v
∂ t

∣∣∣∣
2

dxdt ′+

+
c1

4

∫ t

0

∫
Ω

∣∣∣∣∂un

∂x
+

∂v
∂x

∣∣∣∣
2

dxdt ′+
c2

2

c1

∫ t

0

∫
Ω

∣∣∣∣ ∂ 2v
∂x∂ t

∣∣∣∣
2

dxdt ′.

From Gronwall’s inequality, from the definition (2.43) of v and from the estimate
(2.79) on Un, we obtain

∫ T �

0

∫
Ω

∣∣∣∣∂un

∂ t

∣∣∣∣
2

dxdt ′+ sup
0<t<T �

∫
Ω

∣∣∣∣∂un

∂x
(t,x)+

∂v
∂x
(t,x)

∣∣∣∣
2

dx≤ D�, (2.93)

where the constant D� depends only on c1, c2, c5, c6, ‖ f‖L2(0,T ;L2(Ω )),‖va‖H1(0,T),
‖vb‖H1(0,T) and ‖u0‖H1

0 (Ω )
.

From (2.84) and (2.86), we immediately deduce from (2.93) that∥∥∥∥∂τn

∂ t

∥∥∥∥
L∞(0,T�;L1(Ω ))

≤D�, (2.94)

where D� is a constant, possibly different of the constant which appears in (2.93),
but which depends only on the same quantities.

For n fixed, the estimates (2.93) and (2.94) provide in particular an a priori
estimate (independent of T �) in L∞(0,T �;Rn−1+n) for the solution Z(t) of the
ordinary differential equation (2.87). This implies the global existence of Z on
(0,T ), i.e. T � = T .
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In view of (2.93) and (2.94), we can extract a subsequence, still denoted by the
index n, such that

un⇀ u in L∞(0,T ;H1
0 (Ω )) weak �, (2.95)

∂un

∂ t
⇀

∂u
∂ t

in L2(0,T ;L2(Ω )) weak, (2.96)

for some u which satisfies

u ∈ L∞(0,T ;H1
0(Ω )),

∂u
∂ t
∈ L2(0,T ;L2(Ω )), (2.97)

and which thus meets the regularity requirement (2.61). Convergences (2.88) and
(2.90) of Theorem 2.4 (which are nothing but convergences (2.95) and (2.96))
are also proved, and estimate (2.70) follows from (2.93) and from weak lower
semicontinuity.

Since (2.95) and (2.96) imply that

un→ u in C0([0,T ];L2(Ω )) strong,

passing to the limit in the initial condition (2.85) with the help of (2.80) yields

u(0,x) = u0(x) a.e. x ∈Ω . (2.98)

Therefore u satisfies the initial condition (2.65).

Second step: study of the approximating stress
We define σn, the natural approximation of the stress, by

σn(t,x) = λn(x,τn(t,x))

(
∂un

∂x
(t,x)+

∂v
∂x
(t,x)

)
. (2.99)

In view of the bound (2.76) on λn and of the estimate (2.93) on un, σn satisfies

‖σn‖L∞(0,T ;L2(Ω )) ≤D�, (2.100)

where D� is a constant possibly different of the constants which appear in (2.93)
and in (2.94), but which depends only on the same quantities. We can thus extract
a new subsequence, still denoted by the index n, such that

σn⇀ σ in L∞(0,T ;L2(Ω )) weak �, (2.101)

for some σ ∈ L∞(0,T ;L2(Ω )).
We also define a function sn by

∂ sn

∂x
= ρ(x)

∂un

∂ t
− f +ρ(x)

∂v
∂ t

inD ′(Q), (2.102)

∫
Ω

sn(t,x)dx=
∫

Ω
σn(t,x)dx. (2.103)
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Since the right hand side of (2.102) belongs to L2(0,T ;L2(Ω )), conditions (2.102)
and (2.103) define a function sn in L2(0,T ;H1(Ω )). We then define sn as the mean

value (in x) of sn on the intervals Ik
n of length

b−a
n

, i.e.

sn(t,x) =
n−1

∑
k=0

χk
n (x)

[
n

b−a

∫
Ω

χk
n(x
′)sn(x

′, t)dx′
]
. (2.104)

Actually we have the following surprising result

σn = sn, (2.105)

that we will now prove.
Using the approximating equation (2.83), the definition (2.99) of σn and then

the definition (2.102) of
∂ sn

∂x
, we have, since w j

n ∈ H1
0 (Ω ),

∫
Ω

σn
∂wi

n

∂x
dx =−

∫
Ω

ρ(x)
∂un

∂ t
wi

ndx+
∫

Ω
f wi

n dx−
∫

Ω
ρ(x)

∂v
∂ t

wi
ndx =

=−
∫

Ω

∂ sn

∂x
wi

ndx =
∫

Ω
sn

∂wi
n

∂x
dx, i= 1, ...,n−1.

Since
∂wi

n

∂x
is constant on each interval Ik

n , we have

∫
Ω

sn
∂wi

n

∂x
dx=

∫
Ω

sn
∂wi

n

∂x
dx, i= 1, ...,n−1,

and thus ∫
Ω
(σn− sn)

∂wi
n

∂x
dx = 0, i = 1, ...,n−1. (2.106)

But by their very definitions, σn and sn are constant (in x) on each interval Ik
n ,

and therefore there exist functions hk
n(t), k = 0,1, ...,n−1, such that

σn− sn =
n−1

∑
k=0

hk
n(t)χ

k
n(x).

Then (2.106) and the explicit form of
∂wi

n

∂x
, i.e.

∂wi
n

∂x
(x) =

n
b−a

(χ i−1
n (x)− χ i

n(x)), i= 1, ...,n−1,

imply that hk
n(t) does not depend on k, i.e.

hk
n(t) = hn(t), k = 0, ...,n−1,

for some function hn(t), from which we deduce that

σn− sn = hn(t) on Q,
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and by (2.103) that

(b−a)hn(t) =
∫

Ω
(σn− sn)dx = 0,

i.e. that σn = sn as required.

Since
∂un

∂ t
is bounded in L2(0,T ;L2(Ω )) (see (2.93)), and since

∫
Ω

σn(t,x)dx

is bounded in L∞(0,T ) because σn is bounded in L∞(0,T ;L2(Ω )) (see (2.100)),
we deduce from the definition (2.102)–(2.103) of sn that

‖sn‖L2(0,T ;H1(Ω )) ≤ D�. (2.107)

We now claim that

‖sn− sn‖2
L2(0,T ;L2(Ω )) ≤

(
b−a

n

)2

‖sn‖2
L2(0,T;H1(Ω )). (2.108)

Indeed, for every function ψ ∈ H1(Ω ), denoting by ψn the mean value of ψ on

the intervals Ik
n of lenght

b−a
n

, i.e.

ψn(x) =
n−1

∑
k=0

χk
n (x)

[
n

b−a

∫
Ω

χk
n(x
′)ψ(x′)dx′

]
,

one has

‖ψ −ψn‖2
L2(Ω ) ≤

(
b−a

n

)2

‖ψ‖2
H1(Ω );

this assertion follows by addition from k= 0 to k= n−1 of the following inequal-

ity, in which ones takes α = a+
k
n
(b−a) and β = a+

(k+1)
n
(b−a)

∥∥∥∥ψ − 1
β −α

∫ β

α
ψ(x′)dx′

∥∥∥∥
2

L2(α ,β )
≤ (β −α)2

∥∥∥∥∂ψ
∂x

∥∥∥∥
2

L2(α ,β )
;

the latest inequality is nothing but the one dimensional Poincaré-Wirtinger in-
equality and can be proved in an elementary way.

In conclusion, we deduce from (2.105), (2.108) and (2.107) that

‖σn− sn‖2
L2(0,T ;L2(Ω )) = ‖sn− sn‖2

L2(0,T ;L2(Ω )) ≤
(

b−a
n

)2

D�, (2.109)

which combined with (2.101) implies that sn tends to σ in L2(0,T ;L2(Ω )) weak.
Then (2.107) implies that σ ∈ L2(0,T ;H1(Ω )).

This result and (2.101) prove the regularity (2.68) on σ , while (2.100), (2.101)
and (2.107) prove the a priori estimate (2.72).
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Third step: strong convergence of τn in L1(Q)

Using the definition (2.99) of σn in (2.84) and recalling (2.86), we have

∂τn

∂ t
= |σn|2 inD ′(Q), τn(0,x) = 0,

which we rewrite as



τn = ζn+ ζ̂n,

∂ζn

∂ t
= |sn|2, ζn(0,x) = 0,

∂ ζ̂n

∂ t
= |σn|2−|sn|2, ζ̂n(0,x) = 0.

(2.110)

From (2.100) and (2.109) we deduce that

|σn|2−|sn|2 = 2σn(σn− sn)− (σn− sn)
2→ 0 in L1(0,T ;L1(Ω )) strong,

and thus that ζ̂n(t,x) =
∫ t

0

∂ ζ̂n

∂ t
(t ′,x)dt ′ satisfies

‖ζ̂n‖L∞(0,T ;L1(Ω ))→ 0. (2.111)

Let us now study ζn. Since sn is bounded in L2(0,T ;H1(Ω )) (see (2.107)),
∂ζn

∂ t
is bounded in L1(0,T ;L1(Ω ), and ζn(t,x) =

∫ t

0

∂ζn

∂ t
(t ′,x)dt ′ is bounded in

L∞(0,T ;L1(Ω )). On the other hand, 2sn
∂ sn

∂x
is bounded in L1(0,T ;L1(Ω )), still

because of (2.107). Since

∂
∂ t

(
∂ζn

∂x

)
= 2sn

∂ sn

∂x
,

∂ζn

∂x
(0,x) = 0,

we obtain that
∂ζn

∂x
is bounded in L∞(0,T ;L1(Ω )). Therefore ζn is bounded in

W 1,1(Q), and extracting if necessary a new subsequence, still denoted by the index
n, we have

ζn→ τ in L1(Q) strong and a.e. in Q, (2.112)

for some τ ∈ L1(Q). From (2.110), (2.111) and (2.112) we deduce that

τn→ τ in L1(Q) strong and a.e. in Q. (2.113)

The strong convergence (2.113) of τn, the bound (2.76) on λn, the convergence
(2.77) on λn(x, rn) and Lebesgue’s dominated convergence theorem imply that

λn(x,τn)→ λ(x,τ) in Lp(Q) strong ∀p<+∞ and a.e. in Q. (2.114)
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Using now (2.114) and the weak convergence (2.95) of
∂un

∂x
, we deduce from the

definitions (2.99) and (2.101) of σn and σ that

σ = λ(x,τ)
(

∂u
∂x
+

∂v
∂x

)
. (2.115)

This proves (2.67). On the other hand, using the weak convergence (2.96) of
∂un

∂ t
implies that

ρ(x)
∂un

∂ t
⇀ ρ(x)

∂u
∂ t

in L2(Q) weak.

Fix now any w in H1
0 (Ω ) and define wn as its projection on the space generated

by the functions w j
n, j = 1, ...,n−1, i.e.

wn =
n−1

∑
j=1

W j
n w j

n.

Multiplying the approximating equation (2.83) by W i
n, taking the sum from i = 1

to i= n−1 and using the fact that

wn→ w in H1
0 (Ω ) strong,

one obtains


∫
Ω

ρ(x)
∂u
∂ t

wdx+
∫

Ω
λ(x,τ)

(
∂u
∂x
+

∂v
∂x

)
∂w
∂x

dx=

=

∫
Ω

f wdx−
∫

Ω
ρ(x)

∂v
∂ t

wdx in L2(0,T ), ∀w ∈ H1
0 (Ω ).

(2.116)

Equation (2.63) is therefore satisfied.

Fourth step: strong convergence of
∂un

∂x
in L2(Q)

The previous convergences do not allow us to pass to the limit in the right hand
side of the approximating equation (2.84). But in the present step we will prove
the strong convergence

∂un

∂x
→ ∂u

∂x
in L2(Q) strongly, (2.117)

which is nothing but convergence (2.89) of Theorem 2.4.
Multiplication of the approximating equation (2.83) by ui

n(t) and addition from
i= 1 to i= n−1 yields after integration in time from 0 to t

1
2

∫
Ω

ρ(x)|un(t)|2dx+
∫ t

0

∫
Ω

λn(x,τn)

∣∣∣∣∂un

∂x
+

∂v
∂x

∣∣∣∣
2

dxdt ′ =

=
1
2

∫
Ω

ρ(x)|Un|2dx+
∫ t

0

∫
Ω

λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)
∂v
∂x

dxdt ′+

+

∫ t

0

∫
Ω

f undxdt ′ −
∫ t

0

∫
Ω

ρ(x)
∂v
∂ t

un dxdt ′,
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which after another integration in time from 0 to T yields




1
2

∫ T

0

∫
Ω

ρ(x)|un(t)|2dxdt+

+

∫ T

0

∫
Ω
(T − t)λn(x,τn)

∣∣∣∣∂un

∂x
+

∂v
dx

∣∣∣∣
2

dxdt =

=
1
2

T
∫

Ω
ρ(x)|Un|2dx+

+

∫ T

0

∫
Ω
(T − t)λn(x,τn)

(
∂un

∂x
+

∂v
dx

)
∂v
∂x

dxdt+

+

∫ T

0

∫
Ω
(T − t) f un dxdt−

∫ T

0

∫
Ω
(T − t)ρ(x)

∂v
∂ t

un dxdt.

(2.118)

The strong convergence (2.80) of Un, the weak convergence (2.95) of un and
the strong convergence (2.114) of λn(x,τn) imply that the right hand side of
(2.118) converges to

1
2

T
∫

Ω
ρ(x)|u0|2dx+

∫ T

0

∫
Ω
(T − t)λ(x,τ)

(
∂u
∂x
+

∂v
∂x

)
∂v
∂x

dxdt+

+

∫ T

0

∫
Ω
(T − t) f udxdt −

∫ T

0

∫
Ω
(T − t)ρ(x)

∂v
∂ t

udxdt.

On the other hand, the function u belongs to L∞(0,T ;H1
0(Ω )) with

∂u
∂ t

in

L2(0,T ;L2(Ω )) (see (2.97)) and satisfies the initial condition (2.98). Using u as
test function in equation (2.116) is therefore licit and yields, after integrating twice
in time from 0 to T



1
2

∫ T

0

∫
Ω

ρ(x)|u|2dxdt+
∫ T

0

∫
Ω
(T − t)λ(x,τ)

∣∣∣∣∂u
∂x
+

∂v
dx

∣∣∣∣
2

dxdt =

=
1
2

T
∫

Ω
ρ(x)|u0|2dx+

∫ T

0

∫
Ω
(T − t)λ(x,τ)

(
∂u
∂x
+

∂v
∂x

)
∂v
∂x

dxdt+

+

∫ T

0

∫
Ω
(T − t) f udxdt −

∫ T

0

∫
Ω
(T − t)ρ(x)

∂v
∂ t

udxdt.

(2.119)

Since the right hand side of (2.119) is nothing but the limit of the right hand
side of (2.118), and since un converges to u in H1(Q) weak and therefore in L2(Q)
strong (see (2.95) and (2.96)), we have proved that

∥∥∥∥
√
(T − t)λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)∥∥∥∥
2

L2(Q)
→
∥∥∥∥
√
(T − t)λ(x,τ)

(
∂u
∂x
+

∂v
∂x

)∥∥∥∥
2

L2(Q)
.
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But the weak convergence (2.95) of un, combined with the strong convergence
(2.114) of λn(x,τn) implies that

√
(T − t)λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)
⇀
√
(T − t)λ(x,τ)

(
∂u
∂x
+

∂v
∂x

)
in L2(Q) weak.

Since the norms converge, the latest convergence is actually strong in L2(Q). Di-
viding by

√
λn(x,τn) and using the almost everywhere convergence (2.114) of

λn(x,τn) and the lower bound (2.76) on λn implies with the help of Vitali’s theo-
rem that √

(T − t)
∂un

∂x
→
√
(T − t)

∂u
∂x

in L2(Q) strong.

Repeating this proof for some T ′ > T proves the strong convergence (2.117).

Fifth step: end of the proof of Theorem 2.4
In order to complete the proofs of Theorems 2.3 and 2.4 it only remains to

prove that (2.62), (2.64), (2.66), (2.71) and (2.91) hold true.

In the previous step we proved that
∂un

∂x
converges to

∂u
∂x

in L2(Q) strong.

With the help of the almost everywhere convergence (2.114) of λn(x,τn), of the
upper bound (2.76) on λn and of Vitali’s theorem, this implies that

∣∣∣∣λn(x,τn)

(
∂un

∂x
+

∂v
∂x

)∣∣∣∣
2

→
∣∣∣∣λ(x,τ)

(
∂u
∂x
+

∂v
∂x

)∣∣∣∣
2

in L1(Q) strong.

The desired results follow from this convergence combined with (2.84), (2.86),
(2.100) and (2.113).

Final remark
The above proof strongly uses the fact that Ω = (a,b) is one dimensional. This

fact was in particular used in a crucial way when studying the approximating stress
σn and when proving the strong convergence of τn in L1(Q) (second and third
steps). The multidimensional case Ω ⊂Rd seems therefore to be out of reach. �


3 Uniqueness, continuity with respect to the data and regularity of the
solution

In this Section, we prove the uniqueness and the local Lipschitz continuity with
respect to the data of the solution of (1.1)–(1.5), the existence of which has been
proved in Section 2. Under additional hypotheses on the data, we also prove some
regularity results, which ensure that the velocity v, the temperature θ and the stress
σ belong to L∞((0,T )×Ω ).

To obtain these results, we make in this Section the same hypotheses as in
Section 2, except that we do not assume hypothesis (2.7), namely the fact that µ is
nonincreasing in s; in contrast we assume that µ is Lipschitz continuous in s, i.e.
that

|µ(x, s)−µ(x, s′)| ≤ c7|s− s′| a.e. x ∈Ω , ∀s, s′ ∈R, (3.1)
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where 0 ≤ c7 < +∞; this hypothesis is stronger than the continuity hypothesis
made in (2.1).

3.1 Statement of the uniqueness and continuity result

Theorem 3.1 (Uniqueness and continuity with respect to the data) Assume
that hypotheses (2.1)–(2.6), (3.1), and (2.8)–(2.12) hold true. Then there exists at
most one couple (v,θ) which satisfies (2.13)–(2.19).

Moreover, if (v,θ) and (v�,θ �) are the (unique) solutions of (2.13)–(2.19) for
the data ( f ,va,vb,v0,θ0) and ( f �,v�a,v

�
b,v
�
0,θ
�
0 ), their difference satisfies




‖v− v�‖L∞(0;T ;L2(Ω )) +‖v− v�‖L2(0,T ;H1(Ω )) +‖θ −θ �‖L∞(0,T ;L1(Ω )) ≤

≤C��
(
‖ f − f �‖L2(0,T ;L2(Ω )) +‖va− v�a‖H1(0,T) +‖vb− v�b‖H1(0,T) +

+‖v0− v�0‖L2(Ω ) +‖θ0−θ �0 ‖L1(Ω )

)
,

(3.2)

where C�� denotes a constant which depends only on c1, c2, c3, c4, c5, c6, c7,
(b−a), T and K�, when the data satisfy




‖ f‖L2(0,T;L2(Ω )) +‖ f �‖L2(0,T ;L2(Ω )) +

+‖va‖H1(0,T) +‖v�a‖H1(0,T) +‖vb‖H1(0,T) +‖v�b‖H1(0,T) +

+‖v0‖H1(Ω ) +‖v�0‖H1(Ω ) +‖θ0‖L1(Ω ) +‖θ �0‖L1(Ω ) ≤ K�.

(3.3)

Estimate (3.2) expresses the local Lipschitz continuity of the solution (v,θ) of
(2.13)–(2.19) with respect to the data ( f , va, vb, v0, θ0). Observe that the constant
C�� depends on the norms of the data in the spaces where these data have to be
choosen for the existence Theorem 2.1 to hold true, while the Lipschitz continu-
ity takes place in spaces which are slightly different from the spaces where the
existence Theorem 2.1 takes place.

As already said after the statement of the existence Theorem 2.1, this unique-
ness result implies that the estimates (2.22)–(2.24) on v, θ and σ hold true for
every (actually for the unique) solution of (2.13)–(2.19) whenever both hypothe-
ses (3.1) and (2.7) are made.

As far as Neumann’s and mixed boundary conditions are concerned, unique-
ness and continuity results similar to Theorem 3.1 hold true in the frameworks of
Theorems 2.1bis and 2.1ter. We leave their statements and proofs to the reader.

3.2 A straightforward regularity result for τ

Before of proving Theorem 3.1, we state and prove a straightforward regularity
result on the transformed temperature τ defined by (2.58). This result will be used
in the proof of the uniqueness and continuity Theorem 3.1.
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Proposition 3.1 (Straightforward regularity for τ ) Assume that hypotheses
(2.1)–(2.6) and (2.8)–(2.12) hold true. For every (u,τ ,σ ) which satisfy (2.61)–
(2.67), one has

τ ∈W 1,∞(0,T ;L1(Ω ))∩W 1,1(0,T ;H1(Ω ))∩H1(0,T ;W 1,1(Ω )). (3.4)

Moreover the following a priori estimates hold true

‖τ‖W 1,∞(0,T ;L1(Ω )) +‖τ‖W1,1(0,T ;H1(Ω )) +‖τ‖H1(0,T ;W 1,1(Ω )) ≤ E�, (3.5)

where E� denotes a constant which depends only on c1, c2, c5, c6 and on R, when
the data satisfy

‖ f‖L2(0,T ;L2(Ω )) +‖va‖H1(0,T) +‖vb‖H1(0,T) +‖u0‖H1
0 (Ω )
≤ R. (3.6)

Since W 1,1(0,T ;H1(Ω ))⊂C0(Q)when Ω is one dimensional, regularity (3.4)
is particular implies that

τ ∈C0(Q)⊂ L∞(Q), (3.7)

and estimates (3.5) imply an estimate on τ in L∞(Q).
On the other hand, the original temperature θ is not as regular as the trans-

formed temperature τ , as far as regularity in x is concerned. Indeed since θ is
defined from τ by

θ(t,x) = N(x,τ(t,x)),
(see (2.58) and (2.53)), and since the function N(x, r) is Lipschitz continuous in r
(see (2.55)), we have

∂θ
∂ t
(t,x) =

∂N
∂ r
(x,τ(t,x))

∂τ
∂ t
(t,x),

and therefore, using (3.4)

∂θ
∂ t
∈ L∞(0,T ;L1(Ω ))∩L2(0,T ;L∞(Ω )); (3.8)

indeed, since
∂N
∂ r
(x, r) only belongs to L∞(Ω ), we are forced to use the one dimen-

sional embedding W 1,1(Ω )⊂ L∞(Ω ), and we obtain only (3.8). By integration in
time this implies that

θ −θ0 ∈W 1,∞(0,T ;L1(Ω ))∩H1(0,T ;L∞(Ω )), (3.9)

which implies
θ −θ0 ∈C0([0,T ];L∞(Ω ))⊂ L∞(Q). (3.10)

Since θ0 is only assumed to belong to L1(Ω ), assertion (3.9) implies that
θ ∈W 1,∞(0,T ;L1(Ω )), but does not imply that θ ∈ H1(0,T ;L∞(Ω )), and asser-
tion (3.10) does not imply that θ ∈ L∞(Q).

Proof of Proposition 3.1 In view of the regularity (2.68), namely

σ ∈ L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )), (3.11)
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the equation (2.64) and the initial condition (2.66) on τ , namely

∂τ
∂ t
= σ 2 inD ′(Q), τ(0,x) = 0 a.e. x ∈Ω , (3.12)

immediately imply that

∂τ
∂ t
∈ L∞(0,T ;L1(Ω ))∩L1(0,T ;H1(Ω )),

where the latest result follows from the fact that w ∈ H1(Ω ) implies that
|w|2 ∈ H1(Ω ) when Ω is one dimensional. This proves the two first assertions
of (3.4).

The third assertion of (3.4) (as well as the second one) follows from the dif-
ferentiation of (3.12) with respect to x, which yields

∂
∂ t

(
∂τ
∂x

)
= 2σ

∂σ
∂x

inD ′(Q),
∂τ
∂x
(0,x) = 0 a.e. x ∈Ω ,

and from the regularity (3.11) of σ , which using H1(Ω )⊂ L∞(Ω ) implies that

∂
∂ t

(
∂τ
∂x

)
∈ L2(0,T ;L1(Ω ))∩L1(0,T ;L2(Ω )).

Actually differentiation of (3.12) with respect to x is a little bit formal, but the
proof can be made rigourous by writing the equation satisfied by the differential

quotient
τ(t,x+h)− τ(t,x)

h
and by passing to the limit in h. �


3.3 Proof of the uniqueness and continuity Theorem 3.1

By the equivalence Theorem 2.2, the uniqueness of the couple (v,θ) solution
of (2.13)–(2.19) is equivalent to the uniqueness of the couple (u,τ) solution of
(2.61)–(2.66). We will therefore prove the uniqueness of the couple (u,τ).

Observe that in view of the definition (2.59) of λ(x, r), of the Lipschitz conti-
nuity hypothesis (3.1) on µ and of the Lipschitz continuity (2.55) of N(x, r), one
has

|λ(x, r)−λ(x, r′)| ≤ c7

c3c1
|r− r′| a.e. x ∈Ω , ∀r, r′ ∈R. (3.13)

Let (u,τ) and (u�,τ�) be two solutions of (2.61)–(2.66) for the data ( f ,v,u0)
and ( f �,v�,u0). Taking (u− u�) as test function in the equations (2.63) satisfied
by u and by u� (this is licit in view of the regularity of u and u�), making the
difference and using the fact that

∫
Ω

ρ(x)
∂w
∂ t

wdx=
1
2

d
dt

∫
Ω

ρ(x)|w|2dx
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for every w ∈H1(0,T ;L2(Ω )), we obtain after integration in time from 0 to t


1
2

∫
Ω

ρ(x)|u(t,x)−u�(t,x)|2dx +

+

∫ t

0

∫
Ω

λ(x,τ(t ′,x))
∣∣∣∣∂u
∂x
(t ′,x)− ∂u�

∂x
(t ′,x)

∣∣∣∣
2

dxdt ′ =

=
1
2

∫
Ω

ρ(x)|u0(x)−u�0(x)|2dx−

−
∫ t

0

∫
Ω
(λ(x,τ(t ′,x))−λ(x,τ�(t ′,x))

(
∂u�

∂x
(t ′,x)+

∂v�

∂x
(t ′,x)

)

(
∂u
∂x
(t ′,x)− ∂u�

∂x
(t ′,x)

)
dxdt ′−

−
∫ t

0

∫
Ω

λ(x,τ(t ′(x))
(

∂v
∂x
(t ′,x)− ∂v�

∂x
(t ′,x)

)

(
∂u
∂x
(t ′,x)− ∂u�

∂x
(t ′,x))

)
dxdt ′+

+

∫ t

0

∫
Ω
( f (t ′,x)− f �(t ′,x))(u(t ′,x)−u�(t ′,x))dxdt ′−

−
∫ t

0

∫
Ω

ρ(x)
(

∂v
∂ t
(t ′,x)− ∂v�

∂ t
(t ′,x)

)
(u(t ′,x)−u�(t ′,x))dxdt ′.

(3.14)

Define the function ψ� : (0,T )→ R
+ by

ψ�(t) = sup
x∈Ω

∣∣∣∣∂u�

∂x
(t,x)+

∂v�

∂x
(t,x)

∣∣∣∣ . (3.15)

From the definition (2.67) of σ �, namely

σ � = λ(x,τ�)
(

∂u�

∂x
+

∂v�

∂x

)
,

and from the lower bound (2.60) on λ , we deduce that

ψ�(t)≤ 1
c1

sup
x∈Ω
|σ �(t,x)|. (3.16)

The regularity (2.68) of σ �, namely

σ � ∈ L2(0,T ;H1(Ω ))⊂ L2(0,T ;L∞(Ω )),

then implies that
ψ� ∈ L2(0,T ). (3.17)

Here we have used in a crucial way the fact that Ω is one dimensional.
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Using in the left-hand side of (3.14) the lower bounds (2.6) and (2.60) on ρ
and λ , and in the right-hand side of (3.14) the upper bounds (2.6) and (2.60) on
ρ and λ , the Lipschitz continuity (3.13) of λ in r, the definition (3.15) of ψ� and
Young’s inequality, we obtain for every t , 0≤ t ≤ T




c5

2

∫
Ω
|(u−u�)(t,x)|2dx+ c1

∫ t

0

∫
Ω

∣∣∣∣∂u
∂x
− ∂u�

∂x

∣∣∣∣
2

dxdt ′ ≤

≤ c6

2

∫
Ω
|u0(x)−u�0(x)|2dx+

+

∫ t

0

∫
Ω

c7

c3c1
|τ− τ�|

∣∣∣∣∂u�

∂x
+

∂v�

∂x

∣∣∣∣
∣∣∣∣∂u
∂x
− ∂u�

∂x

∣∣∣∣dxdt ′+

+

∫ t

0

∫
Ω

c2

∣∣∣∣∂v
∂x
− ∂v�

∂x

∣∣∣∣
∣∣∣∣∂u
∂x
− ∂u�

∂x

∣∣∣∣dxdt ′+

+

∫ t

0

∫
Ω
| f − f �| |u−u�|dxdt ′+

+

∫ t

0

∫
Ω

c6

∣∣∣∣∂v
∂ t
− ∂v�

∂ t

∣∣∣∣ |u−u�|dxdt ′ ≤

≤ c6

2

∫
Ω
|u0(x)−u�0(x)|2dx+

+
c1

4

∫ t

0

∫
Ω

∣∣∣∣∂u
∂x
− ∂u�

∂x

∣∣∣∣
2

dxdt ′+

+
1
c1

(
c7

c3c1

)2 ∫ t

0

∫
Ω
|ψ�(t ′)|2 |τ− τ�|2dxdt ′+

+
c1

4

∫ t

0

∫
Ω

∣∣∣∣∂u
∂x
− ∂u�

∂x

∣∣∣∣
2

dxdt ′+

+
1
c1

c2
2

∫ t

0

∫
Ω

∣∣∣∣∂v
∂x
− ∂v�

∂x

∣∣∣∣
2

dxdt ′+

+
c5

4

∫ t

0

∫
Ω
|u−u�|2dxdt ′+

1
c5

∫ t

0

∫
Ω
| f − f �|2dxdt ′+

+
c5

4

∫ t

0

∫
Ω
|u−u�|2dxdt ′+

+
1
c5

c2
6

∫ t

0

∫
Ω

∣∣∣∣∂v
∂ t
− ∂v�

∂ t

∣∣∣∣dxdt ′.

(3.18)
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Similarly using the definition (2.67) of σ and σ �, multiplying by (τ − τ�) the
equations (2.64) satisfied by τ and by τ�, integrating in space on Ω (this is licit
since τ and τ� belong to L∞(Q) by the regularity result (3.7)) and making the
difference, we obtain after integration in time from 0 to t




1
2

∫
Ω
|τ(t,x)− τ�(t,x)|2dx =

=

∫ t

0

∫
Ω

(
|σ (t ′,x)|2−|σ �(t ′,x)|2

)(
τ(t ′,x)− τ�(t ′,x)

)
dxdt ′ =

=

∫ t

0

∫
Ω

(
σ (t ′,x)−σ �(t ′,x)

)

(
σ (t ′,x)+σ �(t ′,x)

) (
τ(t ′,x)− τ�(t ′,x)

)
dxdt ′ =

=

∫ t

0

∫
Ω

(
λ(x,τ(t ′,x))

(
∂u
∂x
(t ′,x)− ∂u�

∂x
(t ′,x)

)
+

+ λ(x,τ(t ′,x))
(

∂v
∂x
(t ′,x)− ∂v�

∂x
(t ′,x)

)
+

+
(

λ(x,τ(t ′,x))−λ(x,τ�(t ′,x))
)(∂u�

∂x
(t ′,x)+

∂v�

∂x
(t ′,x)

))

(
σ (t ′,x)+σ �(t ′,x)

)(
τ(t ′,x)− τ�(t ′,x)

)
dxdt ′.

(3.19)

Define the function ψ : (0,T )→R
+ by

ψ(t) = sup
x∈Ω
|σ (t,x)+σ �(t,x)|. (3.20)

Since σ and σ � belong to L2(0,T ;H1(Ω ))⊂ L2(0,T ;L∞(Ω )) (see(2.68)), we ob-
tain

ψ ∈ L2(0,T ). (3.21)

Here we have again used in a crucial way the fact that Ω is one dimensional.

Using in (3.19) the upper bound (2.60) on λ , the Lipschitz continuity (3.13) of
λ in r, the definitions (3.15) and (3.20) of ψ� and ψ and Young’s inequality, we
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obtain for every t , 0≤ t ≤ T




1
2

∫
Ω
|(τ− τ�)(t,x)|2dx ≤

≤
∫ t

0

∫
Ω

(
c2

∣∣∣∣∂u
∂x
− ∂u�

∂x

∣∣∣∣+ c2

∣∣∣∣∂v
∂x
− ∂v�

∂x

∣∣∣∣+

+
c7

c3c1
|τ− τ�|

∣∣∣∣∂u�

∂x
+

∂v�

∂x

∣∣∣∣
)

ψ(t ′) |τ− τ�|dxdt ′ ≤

≤ c1

4

∫ t

0

∫
Ω

∣∣∣∣∂u
∂x
− ∂u�

∂x

∣∣∣∣
2

dxdt ′+
c2

2

c1

∫ t

0

∫
Ω
|ψ(t ′)|2 |τ− τ�|2dxdt ′+

+
c2

2

∫ t

0

∫
Ω

∣∣∣∣∂v
∂x
− ∂v�

∂x

∣∣∣∣
2

dxdt ′+
c2

2

∫ t

0

∫
Ω
|ψ(t ′)|2 |τ− τ�|2dxdt ′+

+
c7

c3c1

∫ t

0

∫
Ω

ψ�(t ′)ψ(t ′)|τ− τ�|2dxdt ′.

(3.22)

Adding (3.18) and (3.22) yields for every t , 0≤ t ≤ T




c5

2

∫
Ω
|(u−u�)(t,x)|2dx+

c1

4

∫ t

0

∫
Ω

∣∣∣∣∂u
∂x
− ∂u�

∂x

∣∣∣∣
2

dxdt ′+

+
1
2

∫
Ω
|(τ− τ�)(t,x)|2dx≤

≤ c6

2

∫
Ω
|u0(x)−u�0(x)|2dx+

+

(
c2

2

c1
+

c2
6

c5
+

c2

2

)∫ t

0

∫
Ω

∣∣∣∣∂v
∂x
− ∂v�

∂x

∣∣∣∣
2

dxdt ′+

+
1
c5

∫ t

0

∫
Ω
| f − f �|2dxdt ′+

+
c5

2

∫ t

0

∫
Ω
|u−u�|2dxdt ′+

+

∫ t

0

(
c2

7

c2
3c3

1

|ψ�(t ′)|2+
(

c2
2

c1
+

c2

2

)
|ψ2(t ′)|2+ c7

c3c1
ψ�(t ′) ψ(t ′)

)

∫
Ω
|τ− τ�|2dxdt ′.

(3.23)
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Define the functions ϕ : (0,T )→ R
+, δ : (0,T )→ R

+ and γ : (0,T )→ R
+ by

ϕ(t) =
c5

2

∫
Ω
|(u−u�)(t,x)|2dx+

c1

4

∫ t

0

∫
Ω

∣∣∣∣
(

∂u
∂x
− ∂u�

∂x

)
(t ′,x)

∣∣∣∣
2

dxdt ′+

+
1
2

∫
Ω
|(τ− τ�)(t,x)|2dx,

δ (t) =
c6

2

∫
Ω
|u0(x)−u�0(x)|2dx+

+

(
c2

2

c1
+

c2
6

c5
+

c2

2

)∫ t

0

∫
Ω

∣∣∣∣
(

∂v
∂x
− ∂v�

∂x

)
(t ′,x)

∣∣∣∣
2

dxdt ′+

+
1
c5

∫ t

0

∫
Ω
|( f − f �)(t ′,x)|2dxdt ′,

γ(t) = 1+2
(

c2
7

c2
3c3

1

|ψ�(t)|2+
(

c2
2

c1
+

c2

2

)
|ψ2(t)|2+ c7

c3c1
ψ�(t)ψ(t)

)
.

Note that the function ϕ belongs to L∞(0,T ) in view of (2.61) and (3.7), that the
function δ belongs to L∞(0,T ) in view of (2.8), (2.9), (2.10), (2.43) and (2.44),
and that the function γ belongs to L1(0,T ) in view of (3.17) and (3.21).

Since
c5

2

∫
Ω
|(u−u�)(t ′,x)|2dx ≤ ϕ(t ′) and since

∫
Ω
|(τ − τ�)(t ′,x)|2dx≤

≤ 2ϕ(t ′), inequality (3.23) implies that for every t , 0≤ t ≤ T

ϕ(t)≤ δ (t)+
∫ t

0
γ(t ′)ϕ(t ′)dt ′. (3.24)

Setting φ(t)=
∫ t

0
γ(t ′)ϕ(t ′)dt ′ and observing that φ(0) = 0 and that φ ′= γϕ ≤

≤ γδ + γφ , an easy computation shows that every solution ϕ of inequality (3.24)
satisfies for every t , 0≤ t ≤ T

ϕ(t)≤ δ (t)+
∫ t

0
δ (t ′)γ(t ′)

(
exp

∫ t

t ′
γ(s)ds

)
dt ′. (3.25)

When the data coincide, i.e. when ( f ,v,u0) = ( f �,v�,u�0), then δ (t) = 0 for
every t , 0 ≤ t ≤ T , and (3.25) implies that ϕ(t) = 0 for every t , 0≤ t ≤ T . This
proves the uniqueness of the solution (u,τ) of (2.61)–(2.66), and therefore the
uniqueness of the solution (v,θ) of (2.13)–(2.19).

But (3.25) also proves the local Lipschitz continuity of the solution (u,τ) of
(2.61)–(2.66) with respect to the data. Indeed using the definitions of ϕ , δ , the
definition (2.43) of v and v� and the fact that for every t , 0≤ t ≤ T

δ (t)+
∫ t

0
δ (t ′)γ(t ′)

(
exp

∫ t

t ′
γ(s)ds

)
dt ′ ≤

≤ ‖δ‖L∞(0,T)
(
1+‖γ‖L1(0,T) exp(‖γ‖L1(0,T))

)
,
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inequality (3.25) implies that




‖u−u�‖2
L∞(0,T ;L2(Ω )) +‖u−u�‖2

L2(0,T ;H1
0 (Ω ))

+‖τ− τ�‖2
L∞(0,T ;L2(Ω )) ≤

≤C���
(
‖ f − f �‖2

L2(0,T ;L2(Ω )) +‖va− v�a‖2
L2(0,T) +‖vb− v�b‖L2(0,T)+

+‖u0−u�0‖2
L2(Ω )

)
,

(3.26)

where the constant C��� depends only on c1, c2, c3, c5, c6, c7, (b−a) and on the
norms of ψ� and ψ in L2(0,T ) ; by the definitions (3.15) and (3.20) of ψ� and ψ ,
the property (3.16) and the a priori estimate (2.72), these norms depend only on
c1, c2, c5, c6 and L, where L is defined by (2.73).

Estimate (3.26) expresses the local Lipschitz continuity of the solution (u,τ)
of (2.61)–(2.66) with respect to the data ( f ,va,vb,u0). Observe that the constant
C��� depends on the norms of the data in the spaces where these data have to be
choosen for the existence Theorem 2.3 of a solution of the transformed system to
hold true, while the Lipschitz continuity takes place in spaces which are slightly
different from the spaces where the existence Theorem 2.3 takes place.

Let us now pass to the local Lipschitz continuity of (v,θ) with respect to the
data. In view of the definition (2.45) of u and u�, namely

v= u+ v, v� = u�+ v�,

we have, since H1(0,T )⊂ L∞(0,T )




‖v− v�‖L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )) ≤

≤ ‖u−u�‖L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω ))+

+‖v− v�‖L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )) ≤

≤ ‖u−u�‖L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )) +

+

(
C(T )

√
b−a+

1
b−a

)(
‖va− v�a‖H1(0,T) +‖vb− v�b‖H1(0,T)

)
,

(3.27)

where the constant C(T ) depends only on T .
On the other hand, the definition (2.52) of M and M� implies that

M(x, s)−M�(x, s) =
∫ θ�0 (x)

θ0(x)
c(x, s′)µ(x, s′)ds′ a.e. x ∈Ω , ∀s ∈R,
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and therefore


M(x,θ(t,x))−M�(x,θ �(t,x)) =

=M(x,θ(t,x))−M(x,θ �(t,x))+

+M(x,θ �(t,x))−M�(x,θ �(t,x)) =

=M(x,θ(t,x))−M(x,θ �(t,x))+
∫ θ�0 (x)

θ0(x)
c(x, s′)µ(x, s′)ds′.

(3.28)

Using the first inequality of (2.54), namely

|s− s′| ≤ 1
c3c1
|M(x, s)−M(x, s′)| a.e. x ∈ Ω , ∀s, s′ ∈R,

equality (3.28) and the definition (2.58) of τ and τ�, namely

M(x,θ(t,x))−M�(x,θ �(t,x)) = τ(t,x)− τ�(t,x),

and finally the lower bounds (2.4) and (2.5) on µ and c, we obtain


|θ(t,x)−θ �(t,x)| ≤ 1

c3c1
(|τ(t,x)− τ�(t,x)|+ c4c2|θ0(x)−θ �0 (x)|)

a.e. x ∈Ω , t ∈ (0,T ),
(3.29)

which implies that


‖θ −θ �‖L∞(0,T ;L1(Ω )) ≤

≤ 1
c3c1
‖τ− τ�‖L∞(0,T ;L1(Ω )) +

c4c2

c3c1
‖θ0−θ �0‖L1(Ω ).

(3.30)

Combining estimates (3.27) and (3.30) with the local Lipschitz continuity
(3.26) of (u,τ) with respect to the data and with the definition (2.44) of u0 and
u�0 completes the proof of estimate (3.2) and of Theorem 3.1. �


3.4 Regularity of
∂v
∂ t

The goal of this Subsection is to prove the L2(0,T ;H1(Ω ))∩L∞(0,T ;L2(Ω ))

regularity of
∂v
∂ t

, a result which has important consequences on the regularity of

the solution of (2.13)–(2.19). We will make these consequences explicit in Theo-
rem 3.3 below (see Subsection 3.5 below).

Theorem 3.2 (Regularity of
∂v
∂ t

) Assume that hypotheses (2.1)–(2.6), (3.1) and

(2.8)–(2.12) hold true, and further that the data f , va, vb and θ0 satisfy

∂ f
∂ t
∈ L2(0,T ;H−1(Ω )), (3.31)
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va ∈ H2(0,T ), vb ∈H2(0,T ), (3.32)

f (0,x)+
∂
∂x

(
µ(x,θ0(x))

∂v0

∂x

)
∈ L2(Ω ). (3.33)

Then every solution (v,θ) of (2.13)–(2.19) satisfies

∂v
∂ t
∈ L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )), (3.34)

and the following a priori estimates hold true∥∥∥∥∂v
∂ t

∥∥∥∥
L∞(0,T ;L2(Ω ))

+

∥∥∥∥∂v
∂ t

∥∥∥∥
L2(0,T ;H1(Ω ))

≤ F�, (3.35)

where F� denotes a constant which depends only on c1, c2, c3, c4, c5, c6, c7, (b−a)
and S, when the data satisfy




‖ f‖L2(0,T ;L2(Ω )) +‖
∂ f
∂ t
‖L2(0,T ;H−1(Ω ))+

+‖va‖H2(0,T) +‖vb‖H2(0,T) +‖v0‖H1(Ω ) +‖θ0‖L1(Ω )+

+

∥∥∥∥ f (0)+
∂
∂x

(
µ(x,θ0)

∂v0

∂x

)∥∥∥∥
L2(Ω )

≤ S.

(3.36)

Note that the compatibility condition (3.33) makes sense: indeed f satisfies

f ∈ L2(0,T ;L2(Ω )) with
∂ f
∂ t
∈ L2(0,T ;H−1(Ω )), and therefore f belongs to

C0([0,T ]),H−1(Ω )), which allows one to define f (0) as an element of H−1(Ω );

on the other hand
∂
∂x

(
µ(x,θ0)

∂v0

∂x

)
belongs to H−1(Ω ). Therefore hypothe-

sis (3.33) asserts that the sum of those two terms of H−1(Ω ) actually belongs to
L2(Ω ).

Note also that under hypotheses of Theorem 3.2, which are more restrictive
than those of the uniqueness Theorem 3.1, the solution (v,θ) of (2.13)–(2.19), if
it exists, is unique. Therefore the assertion “Then every solution (v,θ) of (2.13)–
(2.19) satisfies (3.34)” can as well be written as “Then the unique solution (v,θ)
of (2.13)–(2.19), if it exists, satisfies (3.34)”.

As far as Neumann’s and mixed boundary conditions are concerned, regularity
results similar to Theorem 3.2 hold true in the frameworks of Theorem 2.1bis and
2.1ter. We leave their statements and proofs to the reader. Let us just mention that
the statement (3.32) has to be replaced by

σa ∈ H1(0,T ), σb ∈ H1(0,T ),

in the case where Neumann’s boundary conditions are concerned, or by

va ∈ H2(0,T ), σb ∈ H1(0,T ),
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in the case where mixed boundary conditions are concerned, and that in both cases
that the statement (3.31) has to be replaced by

∂ f
∂ t
∈ L2(0,T ;L2(Ω )),

while the statement (3.33) has to be kept.

Proof of Theorem 3.2 Since u and v are linked by the relation (2.45), namely

u= v− v, where v(t,x) =
(x−a)vb(t)+(b− x)va(x)

b−a
,

(see (2.43) for the definition of v), it is equivalent to prove Theorem 3.2 or to prove
that the solution (u,τ) of (2.61)–(2.66) satisfies

∂u
∂ t
∈ L2(0,T ;H1

0(Ω ))∩L∞(0,T ;L2(Ω )), (3.37)

and the corresponding a priori estimate.

First step: a formal proof
We begin with a formal proof of (3.37) which gives the idea of the proof.
Define

w=
∂u
∂ t
. (3.38)

Differentiating equation (2.63) on u with respect to t , we formally obtain



ρ(x)
∂w
∂ t
− ∂

∂x

(
λ(x,τ)

∂w
∂x

)
=

=
∂
∂x

(
λ(x,τ)

∂ 2v
∂ t ∂x

)
+

∂
∂x

(
∂λ
∂ r
(x,τ)

∂τ
∂ t

(
∂u
∂x
+

∂v
∂x

))
+

+
∂ f
∂ t
−ρ(x)

∂ 2v
∂ t2 in Q.

(3.39)

In view of equation (2.64) on τ and of the definition (2.67) of σ one has

∂λ
∂ r
(x,τ)

dτ
dt

(
∂u
∂x
+

∂v
∂x

)
=

∂λ
∂ r
(x,τ)

1
λ(x,τ)

σ 3,

which belongs to L2(Q) in view of the Lipschitz continuity (3.13) of λ in r, of
the lower bound (2.60) on λ and of the regularity (2.68) of σ combined with the
result (3.69) of Lemma 3.1 below, which implies that σ belongs to L6(Q). On the
other hand, by hypotheses (3.31) and (3.32) on f , va and vb, the three other terms
of the right hand side of (3.39) belong to L2(0,T ;H−1(Ω )). Therefore w satisfies

ρ(x)
∂w
∂ t
− ∂

∂x

(
λ(x,τ)

∂w
∂x

)
= g in Q, (3.40)
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where g ∈ L2(0,T ;H−1(Ω )). Moreover, since u(t,a) = u(t,b) = 0 for every

t ∈ (0,T ), w=
∂u
∂ t

satisfies the same homogeneous boundary conditions, i.e.

w(t,a) = w(t,b) = 0 ∀t ∈ (0,T ). (3.41)

Finally equation (2.63) taken for t = 0 formally implies that

ρ(x)w(0,x) = ρ(x)
∂u
∂ t
(0,x) =

=
∂
∂x

(
λ(x,τ(0,x))

(
∂u
∂x
+

∂v
∂x

)
(0,x)

)
+ f (0,x)−ρ(x)

∂v
∂ t
(0,x),

whose right-hand side belongs to L2(Ω ) in view of the fact that
∂v
∂ t
(0,x) belongs

to L2(Ω ), of the compatibility condition (3.33), of the initial conditions (2.65) and
(2.66) on u and τ , of the definitions (2.44) and (2.59) of u0 and λ and of property
(2.57).

Therefore equation (3.40) on w and its boundary conditions (3.41) have to be
completed by the initial condition

w(0,x) = w0(x),

where w0 belongs to L2(Ω ). This formally implies the desired regularity (3.37) on
∂u
∂ t
= w.

Second step: an abstract result
To make the above proof correct, we can for example proceed as in the two

following steps. Note that the proof of the present step is not restricted to the case
where Ω is one dimensional.

If (u,τ) is any solution of (2.61)–(2.66), one deduces from (2.61), (2.63) and
(2.65) that u is the (unique) solution of the problem




u ∈ L2(0,T ;H1
0 (Ω ))∩H1(0,T ;L2(Ω )),

ρ(x)
∂u
∂ t
− ∂

∂x

(
a(t,x)

∂u
∂x

)
= h inD ′(Q),

u(0,x) = u0(x) a.e. x ∈Ω ,

(3.42)

where a and h are defined by

a(t,x) = λ(x,τ(t,x)), (3.43)

h(t,x) = f (t,x)−ρ(x)
∂v
∂ t
(t,x)+

∂
∂x

(
a(t,x)

∂v
∂x
(t,x)

)
. (3.44)

Since a belongs to L∞(Q) with a(t,x) ≥ c1 > 0, since h belongs to
L2(0,T ;H−1(Ω )), since ρ belongs to L∞(Ω ) with ρ(x) ≥ c5 > 0 and since u0
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belongs to L2(Ω ), the solution of (3.42) is unique. Moreover if one considers a
Galerkin’s basis y1, y2, ... of H1

0 (Ω ), the solution un of the approximating problem

un(t,x) =
n

∑
j=1

u j
n(t)y

j(x),




un ∈H1(0,T ;H1
0(Ω )),

∫
Ω

ρ
∂un

∂ t
yi dx+

∫
Ω

a(t,x)
∂un

∂x
∂yi

∂x
dx= H−1(Ω )

〈
h(t), yi〉

H1
0 (Ω )
,

∫
Ω

un(0,x)y
i dx=

∫
Ω

u0(x)y
i dx,

i = 1,2, ...,n,

(3.45)

(where the functions u j
n ∈ H1(0,T ), j = 1,2, ...,n, are the very unknowns of the

approximating problem (3.45)) satisfies

un→ u in L2(0,T ;H1
0(Ω )) strong. (3.46)

Define wn by

wn =
∂un

∂ t
=

n

∑
j=1

∂u j
n

∂ t
(t) y j(x). (3.47)

If we assume that
∂h
∂ t
∈ L2(0,T ;H−1(Ω )), (3.48)

∂a
∂ t
∈ L2(0,T ;L∞(Ω )), (3.49)

it is now licit to differentiate with respect to t the equation in (3.45). We obtain
that wn satisfies



∫
Ω

ρ
∂wn

∂ t
yi dx+

∫
Ω

a(t,x)
∂wn

∂x
∂yi

∂x
dx =

= H−1(Ω )
〈∂h

∂ t
(t),yi〉

H1
0 (Ω )
−
∫

Ω

∂a
∂ t
(t,x)

∂un

∂x
∂yi

∂x
dx,

i= 1,2, ...,n,

(3.50)

which implies that wn belongs to H1(0,T ;H1
0 (Ω )).

For t = 0 the equation in (3.45) yields


∫
Ω

ρ wn(0)yi dx = H−1(Ω )< h(0),yi >H1
0 (Ω )
−
∫

Ω
a(0,x)

∂u0

∂x
∂yi

∂x
dx=

= H−1(Ω )< h(0)+
∂
∂x

(
a(0,x)

∂u0

∂x

)
,yi >H1

0 (Ω )
,

i = 1,2, ...,n.

(3.51)
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Multiplication of (3.51) by
dui

n

dt
(0) and addition from i = 1 to i= n yields

∫
Ω

ρ |wn(0)|2dx =H−1(Ω )
〈
h(0)+

∂
∂x

(
a(0,x)

∂u0

∂x

)
,wn(0)

〉
H1

0 (Ω )
.

If we assume that

h(0)+
∂
∂x

(
a(0,x)

∂u0

∂x

)
∈ L2(Ω ), (3.52)

this implies with the help of the lower bound (2.6) on ρ that

‖wn(0)‖L2(Ω ) ≤
1
c5

∥∥∥∥h(0)+
∂
∂x

(
a(0,x)

∂u0

∂x

)∥∥∥∥
L2(Ω )

. (3.53)

Multiplication of (3.50) by
dui

n

dt
(t), addition from i= 1 to i = n, integration in

time from 0 to t , then use of the lower bound (2.6) on ρ , of the coerciveness of a,
of the bound (3.53) and of Young’s inequality yields for every t , 0< t ≤ T

1
2

c5

∫
Ω
|wn(t,x)|2dx+ c1

∫ t

0

∫
Ω

∣∣∣∣∂wn

∂x
(t ′,x)

∣∣∣∣
2

dxdt ′ ≤

≤ 1
2

∫
Ω

ρ |wn(0,x)|2dx+
∫ t

0

∥∥∥∥∂h
∂ t
(t ′)
∥∥∥∥

H−1(Ω )
‖wn(t

′)‖H1
0 (Ω )

dt ′+

+

∫ t

0

∥∥∥∥∂a
∂ t
(t ′)
∥∥∥∥

L∞(Ω )

∥∥∥∥∂un

∂x
(t ′)
∥∥∥∥

L2(Ω )

∥∥∥∥∂wn

∂x
(t ′)
∥∥∥∥

L2(Ω )
dt ′ ≤

≤ 1
2

c6

c2
5

∥∥∥∥h(0)+
∂
∂x

(
a(0,x)

∂u0

∂x

)∥∥∥∥
2

L2(Ω )
+

+
c1

4

∫ t

0
‖wn(t ′)‖2

H1
0 (Ω )

dt ′+
1
c1

∥∥∥∥∂h
∂ t

∥∥∥∥
2

L2(0,T ;H−1(Ω ))
+

+
c1

4

∫ t

0

∥∥∥∥∂wn

∂x
(t ′)
∥∥∥∥

2

L2(Ω )
dt ′+

1
c1

∫ t

0

∥∥∥∥∂a
∂ t
(t ′)
∥∥∥∥

2

L∞(Ω )
‖un(t ′)‖2

H1
0 (Ω )

dt ′.

From now on, we will use in this proof the norm of H1
0 (Ω ) defined by

‖w‖2
H1

0 (Ω )
=

∫
Ω

∣∣∣∣∂w
∂x

∣∣∣∣
2

dx.

We now assume that the Galerkin’s basis y1,y2, ... of H1
0 (Ω ) is orthogonal in

L2(Ω ) and is such that y1 = u0, which is possible when

u0 ∈H1
0 (Ω ). (3.54)
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Then un(0) = u0 for every n and for every t ′, 0≤ t ′ ≤ T

un(t
′) = un(0)+

∫ t ′

0

∂un

∂ t
(t ′′)dt ′′ = u0+

∫ t ′

0
wn(t

′′)dt ′′.

Therefore for every t ′, 0≤ t ′ ≤ T

‖un(t ′)‖2
H1

0 (Ω )
≤ 2‖u0‖2

H1
0 (Ω )
+2T

∫ t ′

0
‖wn(t ′′)‖2

H1
0 (Ω )

dt ′′,

which implies that for every t , 0≤ t ≤ T



c5

2

∫
Ω
|(wn(t,x))|2dx+

c1

2

∫ t

0
‖wn(t ′)‖2

H1
0 (Ω )

dt ′ ≤

≤ c6

2c2
5

∥∥∥∥h(0)+
∂
∂x

(
a(0,x)

∂u0

∂x

)∥∥∥∥
2

L2(Ω )
+

+
1
c1

∥∥∥∥∂h
∂ t

∥∥∥∥
2

L2(0,T ;H−1(Ω ))
+

2
c1
‖u0‖2

H1
0 (Ω )

∥∥∥∥∂a
∂ t

∥∥∥∥
2

L2(0,T ;L∞(Ω ))
+

+
2T
c1

∫ t

0

∥∥∥∥∂a
∂ t
(t ′)
∥∥∥∥

2

L∞(Ω )

(∫ t ′

0
‖wn(t

′′)‖2
H1

0 (Ω )
dt ′′
)

dt ′.

(3.55)

Let Z be the constant defined by

Z =
c6

2c2
5

∥∥∥∥h(0)+
∂
∂x

(
a(0,x)

∂u0

∂x

)∥∥∥∥
2

L2(Ω )
+

+
1
c1

∥∥∥∥∂h
∂ t

∥∥∥∥
2

L2(0,T ;H−1(Ω ))
+

2
c1
‖u0‖2

H1
0 (Ω )

∥∥∥∥∂a
∂ t

∥∥∥∥
2

L2(0,T ;L∞(Ω ))
,

and let ϕn : (0,T)→ R
+ be the function defined by

ϕn(t) = Z+
2T
c1

∫ t

0

∥∥∥∥∂a
∂ t
(t ′)
∥∥∥∥

2

L∞(Ω )

(∫ t ′

0
‖wn(t ′′)‖2

H1
0 (Ω )

dt ′′
)

dt ′.

In view of (3.55), the function ϕn satisfies for every t , 0≤ t ≤ T



0≤ ϕ ′n(t) =
2T
c1

∥∥∥∥∂a
∂ t
(t)

∥∥∥∥
2

L∞(Ω )

∫ t

0
‖wn(t

′)‖2
H1

0 (Ω )
dt ′ ≤

≤ 2T
c1

∥∥∥∥∂a
∂ t
(t)

∥∥∥∥
2

L∞(Ω )

2
c1

ϕn(t),

ϕn(0) = Z.
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In view of (3.49), Gronwall’s inequality then implies that ϕn is bounded in
L∞(0,T ), which in turn implies using (3.55) that wn is bounded in
L∞(0,T ;L2(Ω ))∩L2(0,T ;H1

0 (Ω )) by a constant which depends only on c1, c5,

Z and on

∥∥∥∥∂a
∂ t

∥∥∥∥
L2(0,T ;L∞(Ω ))

.

Since wn =
∂un

∂ t
(see (3.47)), and since un tends to u inD ′(Q) (see (3.46)), this

proof implies that when (3.48), (3.49), (3.52) and (3.54) hold true, the solution u
of (3.42) satisfies

∂u
∂ t
∈ L∞(0,T ;L2(Ω ))∩L2(0,T ;H1

0 (Ω )),

with ∥∥∥∥∂u
∂ t

∥∥∥∥
L∞(0,T;L2(Ω ))

+

∥∥∥∥∂u
∂ t

∥∥∥∥
L2(0,T ;H1

0 (Ω ))
≤ F��,

where F�� depends only on c1, c5, Z and on

∥∥∥∥∂a
∂ t

∥∥∥∥
L2(0,T ;L∞(Ω ))

.

Third step: end of the proof

We now apply the previous abstract result to every function u such that (u,τ)
satisfies (2.61)–(2.66). We have to check that (3.48), (3.49), (3.52) and (3.54) hold
true.

Condition (3.48) follows from the definition (3.44) of h, from hypotheses

(3.31) and (3.32) on f , va and vb, from
∂v

∂x∂ t
∈ L2(Ω ) (which follows from (2.43)

and (2.9)), and finally from
∂v
∂x
∈ L∞(Q) (which again follows from (2.43) and

(2.9)) and from the regularity

∂a
∂ t
∈ L2(Q), (3.56)

where the latest regularity, which is by no means straightforward, is obtained in
the following way. By the definition (3.43) of a, the equation (2.64) on τ and the
definition (2.67) of σ , one has

∂a
∂ t
=

∂λ
∂ r
(x,τ)

∂τ
∂ t
=

∂λ
∂ r
(x,τ)σ 2. (3.57)

But when (u,τ) is a solution of (2.61)–(2.66), then the stress σ satisfies (2.68), i.e.

σ ∈ L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )), (3.58)

and therefore the result (3.70) of Lemma 3.1 below implies that

σ ∈ L4(0,T ;L∞(Ω )), (3.59)
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which combined with (3.57) and the Lipschitz continuity (3.13) of λ implies that
∂a
∂ t

belongs to L2(0,T ;L∞(Ω )), hence in particular that (3.56) holds true. Here we

have used in a crucial way the fact that Ω is one dimensional.
Condition (3.49) is stronger than (3.56), but has just been proved above.
Condition (3.52) follows from the definitions (3.44), (3.43), (2.43) and (2.44)

of h, a, v and u0, from the compatibility condition (3.33) and from the fact that

ρ(x)
∂v
∂ t
(0,x) ∈ L2(Ω ), which follows from (2.43), (2.6) and (3.32).

Finally condition (3.54) is nothing but (2.46), which immediately follows from
(2.44), (2.9), (2.10) and (2.12).

This completes the proof of Theorem 3.2, since the a priori estimate (3.35)
then follows from the a priori estimate obtained in the above (abstract) step. �


Observe that in the (correct) proof made above in the second and third steps,
we used the L4(0,T ;L∞(Ω )) regularity of σ , while in the formal proof made above
in the first step, we used the L6(Q) regularity of σ . These regularities, which
follow from the interpolation results (3.70) and (3.69) of Lemma 3.1, are both
specific to the case where Ω is one dimensional.

3.5 Final result

From the existence Theorem 2.1, the uniqueness Theorem 3.1 and the regular-
ity Theorem 3.2, we deduce in particular the following result.

Theorem 3.3 (Existence, uniqueness and regularity) Assume that

f ∈ L∞(0,T ;L2(Ω )), (3.60)

θ0 ∈ L∞(Ω ), (3.61)

and that hypotheses (2.1)–(2.12), (3.1) and (3.31)–(3.33) hold true. Then there
exists a unique couple (v,θ) which satisfies (2.13)–(2.19). This couple depends on
the data in a locally Lipschitz continuous way (see (3.2)). Moreover v, θ and σ
defined by (2.20) enjoy in particular the following regularities

v ∈ L∞(Q)∩H1(Q), (3.62)

θ ∈ L∞(Q), (3.63)

σ ∈ L∞(Q)∩H1(Q), (3.64)

∂v
∂x
∈ L∞(Q). (3.65)

As far as Neumann’s and mixed boundary conditions are concerned, results
similar to Theorem 3.3 hold true in the frameworks of Theorems 2.1bis and 2.1ter.
We leave their statements and proofs to the reader.

As announced in the Introduction, Theorem 3.3 ensures the existence and
uniqueness of a solution of (1.1)–(1.5) with v, θ and σ in L∞(Q).
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Actually v, θ , σ ,
∂v
∂x

and
∂v
∂ t

enjoy additional regularity properties which we

did not list in Theorem 3.3 for the sake of simplicity, but which can be deduced
from the results of Theorem 3.2, Proposition 3.1, Lemma 3.1 and straightforward

consequences of them. In particular under hypotheses of Theorem 3.3,
∂v
∂ t

satisfies




∂v
∂ t
∈ L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω ))∩

∩L4(0,T ;L∞(Ω ))∩L6(0,T ;L6(Ω )),
(3.66)

since this regularity immediately follows from (3.34) and from Lemma 3.1 below
because Ω is one dimensional.

Moreover under the hypotheses of Theorem 3.3, the transformed temperature
τ defined by (2.58) enjoys additional regularity properties. In particular if one
further assumes that

f ∈ L2(0,T ;L∞(Ω )), (3.67)

one obtains that

τ ∈W 1,∞(Q). (3.68)

Indeed this regularity easily follows from the problem (3.12) satisfied by τ , i.e.

∂τ
∂ t
= σ 2 inD ′(Q), τ(0,x) = 0 a.e. x ∈Ω ,

which combined with L∞(Q) regularity (3.64) of σ imply that
∂τ
∂ t

and τ belong to

L∞(Q). On the other hand, differentiation of (3.12) with respect to x yields

∂
∂ t

(
∂τ
∂x

)
= 2σ

∂σ
∂x

inD ′(Q),
∂τ
∂x
(0,x) = 0 a.e. in Ω .

The L∞(Q) regularity (3.64) of σ and the L2(0,T ;L∞(Ω )) regularity of
∂σ
∂x

, which

follows from the equation

∂σ
∂x
= f −ρ

∂v
∂ t

inD ′(Q),

from hypotheses (3.67) on f (this is the only point where this new hypothesis is

used) and from the regularity L2(0,T ;L∞(Ω )) of
∂v
∂ t

(which follows from (3.34)

and from H1(Ω ) ⊂ L∞(Ω )), then imply that
∂
∂ t

(
∂τ
∂x

)
belongs to

L2(0,T ;L∞(Ω )), which with the initial condition
∂τ
∂x
(0,x) = 0 yields

∂τ
∂x
∈ L∞(Q)

and completes the proof of (3.68).
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Observe however, similarly to the comment made after the statement of Propo-
sition 3.1 (straightforward regularity of τ ), that regularity (3.68) cannot be ob-
tained on θ as far as regularity in x is concerned. Consider indeed for example the
simple case where

c(x, s)µ(x, s) =




ma(s) if a≤ x<
a+b

2
,

mb(s) if
a+b

2
< x≤ b,

and where θ0 = 0. Then the relation (2.58) between τ and θ reads as

τ(t,x) =




Ma(θ(t,x)) if a≤ x <
a+b

2
,

Mb(θ(t,x)) if
a+b

2
< x≤ b,

where in view of (2.52) the functions Ma and Mb are given by

Ma(s) =
∫ s

0
ma(s′)ds′, Mb(s) =

∫ s

0
mb(s

′)ds′.

This prevents θ to be continuous (and a fortiori Lipschitz continuous) in x on the

line x=
a+b

2
when τ is Lipschitz continuous on Q.

Proof of Theorem 3.3 The proof is easy and follows from the results obtained in
Theorems 2.1, 3.1 and 3.2.

Existence and uniqueness have already been proved in Theorems 2.1 and 3.1.
The regularity (3.62) of v follows from (2.13) since H1(Ω ) ⊂ L∞(Ω ) in the one
dimensional case.

For what concerns the regularity of σ , we already know from (2.21) that σ and
∂σ
∂x

belongs to L2(Q). On the other hand

∂σ
∂ t
= µ(x,θ)

∂ 2v
∂x∂ t

+
∂ µ
∂ s
(x,θ)

∂θ
∂ t

∂v
∂x
=

= µ(x,θ)
∂ 2v

∂x∂ t
+

∂ µ
∂ s
(x,θ)

1
c(x,θ)µ(x,θ)

σ 2 1
µ(x,θ)

σ .

Since
∂ 2v

∂x∂ t
∈ L2(Q) by (3.34), and since

∂ µ
∂ s

is bounded by hypothesis (3.1),

while σ ∈ L6(Q) by (2.21) and the interpolation result (3.69) of Lemma 3.1 below,

we have
∂σ
∂ t
∈L2(Q). This completes the proof of the fact that σ ∈H1(Q). Finally

equation (2.15), which reads as

∂σ
∂x
= ρ(x)

∂v
∂ t
− f inD ′(Q),
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together with hypothesis (3.60) on f (this is the only point where this hypothesis is

used) and the regularity (3.34) on
∂v
∂ t

, implies that
∂σ
∂x

belongs to

L∞(0,T ;L2(Ω )). But σ also belongs to L∞(0,T ;L2(Ω )) (see (2.21)), and there-
fore σ belongs to L∞(0,T ;H1(Ω ))⊂ L∞(0,T ;L∞(Ω )). This completes the proof
of the regularity (3.64) of σ , and immediately implies the L∞(Q) regularity (3.65)

of
∂v
∂x

since
∂v
∂x
=

1
µ(x,θ)

σ .

The L∞(Q) regularity (3.63) of θ finally follows from the fact that σ belongs
to L2(0,T ;H1(Ω ))⊂ L2(0,T ;L∞(Ω )) (see (2.21)) and from the equation

∂θ
∂ t
=

1
c(x,θ)µ(x,θ)

σ 2,

which together imply that
∂θ
∂ t
∈ L1(0,T ;L∞(Ω )), and from the L∞(Ω ) hypothesis

(3.61) on θ0 (this is the only point where this hypothesis is used).
This completes the proof of Theorem 3.3. �


3.6 A one dimensional interpolation lemma

This short Subsection is devoted to the statement and proof of two interpola-
tion results, which are valid only in the case where Ω is one dimensional.

Lemma 3.1 (Interpolation) When Ω = (a,b)⊂ R, one has

L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω ))⊂ L6(0,T ;L6(Ω )), (3.69)

L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω ))⊂ L4(0,T ;L∞(Ω )). (3.70)

Proof By interpolation, one has

‖ψ‖H1/3(Ω ) ≤C‖ψ‖2/3
L2(Ω )‖ψ‖

1/3
H1(Ω ) ∀ψ ∈ H1(Ω ),

for a constant C which depends on (b−a). On the other hand, Sobolev’s embed-

ding theorem H1/3(Ω )⊂ L6(Ω ), which holds since
1
6
=

1
2
−

1
3

1
, asserts that

‖ψ‖L6(Ω ) ≤ K‖ψ‖H1/3(Ω ) ∀ψ ∈H1/3(Ω ),

for an absolute constant K. Note that the latest result is specific to the one dimen-
sional case.

Therefore for every σ ∈ L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )), one has

‖σ‖6
L6(0,T ;L6(Ω )) =

∫ T

0
‖σ (t)‖6

L6(Ω )dt ≤ K6
∫ T

0
‖σ (t)‖6

H1/3(Ω )dt ≤

≤ K6
∫ T

0
C6‖σ (t)‖4

L2(Ω )‖σ (t)‖2
H1(Ω )dt ≤

≤ K6C6‖σ‖4
L∞(0,T ;L2(Ω ))‖σ‖2

L2(0,T ;H1(Ω )),

which proves (3.69).
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Let us now prove (3.70). Since Ω is one dimensional, the interpolation result
(H1(Ω ),L2(Ω )) 1

2 ,1
⊂ L∞(Ω ) implies that

‖ψ‖L∞(Ω ) ≤C‖ψ‖1/2
L2(Ω )‖ψ‖

1/2
H1(Ω ) ∀ψ ∈ H1(Ω ), (3.71)

for a constant C which depends on (b− a). This result is specific to the one di-
mensional case and can be proved in an elementary way as follows. For every x
and y with a< x< y< b, one has using Cauchy-Schwartz’s inequality

ψ2(y) = ψ2(x)+
∫ y

x
2ψ(x)

dψ
dx
(s)ds ≤

≤ ψ2(x)+2
∫ b

a
|ψ(s)|

∣∣∣∣dψ
dx
(s)

∣∣∣∣ds≤

≤ ψ2(x)+2‖ψ‖L2(Ω )

∥∥∥∥dψ
dx

∥∥∥∥
L2(Ω )

.

Integrating in x on Ω yields

ψ2(y) ≤ 1
b−a

‖ψ‖2
L2(Ω ) +2‖ψ‖L2(Ω )

∥∥∥∥dψ
dx

∥∥∥∥
L2(Ω )

=

= ‖ψ‖L2(Ω )

(
1

b−a
‖ψ‖L2(Ω ) +2

∥∥∥∥dψ
dx

∥∥∥∥
L2(Ω )

)
,

which immediately implies (3.71).
Therefore for every σ ∈ L∞(0,T ;L2(Ω ))∩L2(0,T ;H1(Ω )), one has

‖σ‖4
L4(0,T ;L∞(Ω )) =

∫ T

0
‖σ (t)‖4

L∞(Ω )dt ≤

≤C4
∫ T

0
‖σ (t)‖2

L2(Ω )‖σ (t)‖2
H1(Ω )dt ≤

≤C4‖σ‖2
L∞(0,T ;L2(Ω ))‖σ‖2

L2(0,T;H1(Ω )),

which proves (3.70).
This completes the proof of Lemma 3.1. �
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