Skip to main content
Log in

Double-layered SnO2@NC hollow spheres as anode materials for high-performance lithium-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Tin dioxide-based high-performance anode materials for lithium-ion batteries have been a hot research topic in recent years. In this study, nitrogen-doped and double-layered SnO2@NC hollow spheres were prepared via simple and convenient method using carbon spheres as template. A series of products were obtained by varying additive amount of dopamine. When tested in the current density of 400 mA g−1, SnO2@NC-3 can provide a robust reversible capacity of 697.7 mAh g−1 after 270 cycles. The discharge capacity can remain 640.8 mAh g−1 after 800 cycles at 1000 mA g−1. Above excellent electrochemical properties were attributed to the synergistic effect between nitrogen-doped carbon and nanosized-SnO2 particles. The hollow structure can not only effectively buffer the structure crushing of the electrode in the process of charge and discharge, but also facilitate the electron diffusion by improving the electronic conductivity. Therefore, the unique nitrogen-doped and double-layered tin dioxide is a promising anode material for lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data presented in this paper are available on request from the corresponding author.

References

  1. Liu X, Zhang S, Zhang P, Zheng ZM, Bai F, Li Q (2023) Integrated structure design and synthesis of a pitaya-like SnO2/N doped carbon composite for high-rate lithium storage capability. Nanoscale 15:1669–1675

    Article  CAS  PubMed  Google Scholar 

  2. Tu Z-Y, Choudhury S, Zachman M-J, Wei S-Y, Zhang K-H, Kourkoutis L-F, Archer L-A (2018) Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nat Energy 3:310–316

    Article  CAS  Google Scholar 

  3. Kim H, Kim H, Ding Z, Lee M-H, Lim K, Yoon G, Kang K (2016) Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 16:943–981

    Google Scholar 

  4. Benedek P, Forslund O, Nocerino E, Yazdani N, Matsubara N (2020) Quantifying diffusion through interfaces of lithium ion batteries active materials. ACS Appl Mater Interfaces 12:16243–16249

    Article  CAS  PubMed  Google Scholar 

  5. Yin S-J, Zhang X-Q, Liu D-D, Huang X-X, Wang Y-S, Wen G-W (2024) Synthesis of heterointerfaces in NiO/SnO2 coated nitrogen-doped graphene for efficient lithium storage. Phys Chem Chem Phys 26:3415–3423

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y-W, Sun S-W, Han J, Gao C, Fan L, Guo R (2021) Multi-yolk–shell MnO@Carbon nanopomegranates with internal buffer space as a lithium ion battery anode. Langmuir 37:2195–2204

    Article  CAS  PubMed  Google Scholar 

  7. Tian W-H, Bai P, Wang Z-H, Ling G-Q, Ren J, Ren R-P, Lv Y-K (2023) CdS@C nanowires with rich sulfur vacancies for high-performance lithium storage anodes. Ionics. https://doi.org/10.1007/s11581-023-05345-9

    Article  Google Scholar 

  8. Cui Z-P, Sun M, Liu H-Q, Li S-J, Zhang Q-Y (2020) Double-shell SnO2@Fe2O3 hollow spheres as a high-performance anode material for lithium-ion batteries. CrystEngComm 22:1197–1208

    Article  CAS  Google Scholar 

  9. Zhang X-Q, Huang X-X, Zhang X-D, Xia L, Zhong B, Zhang T, Wen G-W (2016) Flexible carbonized cotton covered by graphene/Co-doped SnO2 as free-standing and binder-free anode material for lithium-ions batteries. Electrochim Acta 222:518–527

    Article  CAS  Google Scholar 

  10. Hu R-Z, Ouyang Y-P, Chen D-C, Wang H, Chen Y, Zhu M, Liu M-L (2016) Inhibiting Sn coarsening to enhance the reversibility of conversion reaction in lithiated SnO2 anodes by application of super-elastic NiTi films. Acta Mater 109:248–258

    Article  CAS  Google Scholar 

  11. Zhan L, Zhou X, Luo J, Ning X (2019) Binder-free multilayered SnO2/graphene on Ni foam as a high-performance lithium ion batteries anode. Ceram Int 45:6931–6936

    Article  CAS  Google Scholar 

  12. Wu C-H, Zhu G-J, Wang-Q W-H, Zhang H-J (2021) A novel route to prepare N-graphene/SnO2 composite as a high-performance anode for lithium batteries. Energy Storage Mater 43:430–462

    Article  Google Scholar 

  13. Etacheri V, Seisenbaeva G-A, Caruthers J, Daniel G, Nedelec J-M, Kessler V-G, Pol V-G (2015) Ordered network of interconnected SnO2 nanoparticles for excellent lithium-ion storage. Adv Energy Mater 5:1401289

    Article  Google Scholar 

  14. Dai Y, Li F, Fu Y-X, Mo D-C, Lyu S-S (2021) Carbon-coated SnO2 riveted on a reduced graphene oxide composite (C@SnO2/RGO) as an anode material for lithium-ion batteries. RSC Adv 11:8521–8529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang M-K, Chen T-R, Liao T-H, Zhang X-L, Zhu B, Tang H, Dai C-S (2021) Tin dioxide-based nanomaterials as anodes for lithium-ion batteries. RSC Adv 11:1200–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao K, Zhang L, Xia R, Dong Y, Xu W, Niu C, He L, Yan M, Qu L, Mai L (2016) SnO2 quantum dots@ graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 12:588–594

    Article  CAS  PubMed  Google Scholar 

  17. Tong Y-L, Dang L-Y, Wang Z-R, Zhang H, Gao F, Lu Q-Y (2019) Tube-in-tube tin dioxide superstructures with enhanced lithium storage performance. Chem Commun 55:2222

    Article  CAS  Google Scholar 

  18. Xie F-R, Zhao S-Q, Bo X-X, Li G-H, Fei J-M (2023) A robust solvothermal-driven solid-to-solid transition route from micron SnC2O4 to tartaric acid-capped nano-SnO2 anchored on graphene for superior lithium and sodium storage. J Mater Chem A 11:53–67

    Article  CAS  Google Scholar 

  19. Abe J, Takahashi K, Kawase K, Kobayashi Y, Shiratori S (2018) Self-standing carbon nanofiber and SnO2 nanorod composite as a high-capacity and high-rate-capability anode for lithium-ion batteries. ACS Appl Nano Mater 1:2982–2989

    Article  CAS  Google Scholar 

  20. Boya V, Parakandy MP, Khasim SB, Pavan SV, Mantripragada RK, Bulusu VS (2022) Oxygen vacancies enable excellent electrochemical kinetics of carbon coated mesoporous SnO2 nanoparticles in lithium ion batteries. Mater Adv 3:1617–1628

    Article  Google Scholar 

  21. Hiroo N, Koki U, Isamu M (2023) Direct evidence of reversible SnO2−Li reactions in carbon nanospaces. ACS Appl Mater Interfaces 15:30600–30605

    Article  Google Scholar 

  22. Du F-X, Liu S-L, Li Y, Wang J-K, Zhang P (2023) Facile synthesis of MoS2/N-doped carbon as an anode for enhanced sodium-ion storage performance. Ionics 29:5183–5193

    Article  CAS  Google Scholar 

  23. Liang K, Zhao Z-W, Zhou X, Xu A-W (2018) A novel route to prepare N-graphene/SnO2 composite as a high-performance anode for lithium batteries. Dalton Trans 47:10206–10212

    Article  CAS  PubMed  Google Scholar 

  24. Kang Y-R, Li Z, Xu K, He X-J, Wei S-X, Cao Y-M (2019) Hollow SnO2 nanospheres with single-shelled structure and the application for supercapacitors. J Alloy Compd 779:728–734

    Article  CAS  Google Scholar 

  25. Han M-S, Mu Y-B, Yu J (2020) Nanoscopically and uniformly distributed SnO2@TiO2/C composite with highly mesoporous structure and bichemical bonds for enhanced lithium ion storage performances. Mater Adv 1:421–429

    Article  CAS  Google Scholar 

  26. Korusenko P-M, Nesov S-N, Bolotov V-V et al (2019) Structure and electrochemical characterization of SnOx/Sn@MWCNT composites formed by pulsed ion beam irradiation [J]. J Alloy Compd 793:723–731

    Article  CAS  Google Scholar 

  27. Chen W-H, Song K-N, Mi L-W, Feng X-M, Zhang J-M, Cui S-Z, Liu C-T (2017) Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. J Mater Chem A 5:10027–10038

    Article  CAS  Google Scholar 

  28. Hu R-Z, Ouyang Y-P, Liang T, Wang H, Liu J, Chen J, Yang C-H, Yang L-C, Zhu M (2017) Stabilizing the nanostructure of SnO2 anodes by transition metals-a route to achieve high initial Coulombic efficiency and stable capacities for lithium storage. Adv Mater 29:1605006

    Article  Google Scholar 

  29. Xiao X-W, Wang Z-Q, Yao W-L, Rao X-F, Zhang Q (2023) Nano Sn-SnOx embedded in multichannel hollow carbon nanofibers: microstructure, reversible lithium storage property and mechanism. Appl Surf Sci 635:157739

    Article  CAS  Google Scholar 

  30. Eng A-Y, Wang Y, Nguyen D-T, Tee S-Y, Lim C-Y-J et al (2021) Tunable nitrogen-doping of sulfur host nanostructures for stable and shuttle-free room-temperature sodium−sulfur batteries [J]. Nano Lett 21:5401–5408

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Zhu Y-H, Zhang C, Kong F-J, Tao S, Qian B, Jiang X-F (2019) Bimetal phosphide Ni1.4Co0.6P nanoparticle/carbon@nitrogendoped graphene network as high-performance anode materials for lithium-ion batteries. Appl Surf Sci 485:412–422

    Article  Google Scholar 

  32. Xiao X-W, Yao W-L, Yan T-T, Zhang W-Y, Zhang Q (2023) Hybrid CuSn nanosphere-functionalized Cu/Sn co-doped hollow carbon nanofibers as anode materials for sodium-ion batteries. Nanoscale 156:15405–15414

    Article  Google Scholar 

  33. Huang Z-Q, Gao H-Y, Ju J, Yu J-G, Zhao Y (2020) Sycamore-fruit-like SnO2@C nanocomposites: rational fabrication, highly reversible capacity and superior rate capability anode material for Li storage. Electrochim Acta 331:135297

    Article  CAS  Google Scholar 

  34. Korusenko P-M, Nesov S-N, Bolotov V-V, Povoroznyuk S-N, Sten’kin Y-A, Pushkarev A-I, Fedorovskaya E-O, Smirnov D-A (2019) Structure and electrochemical characterization of SnOx/Sn@MWCNT composites formed by pulsed ion beam irradiation. J Alloy Compd 15:723–731

    Article  Google Scholar 

  35. Lu H, Wan Y, Wang T, Jin R, Ding P, Wang R, Wang Y, Teng C, Li L, Wang X, Zhou D, Xue G (2019) A high performance SnO2/C nanocomposite cathode for aluminum-ion batteries. Mater Chem A 7:7213–7220

    Article  CAS  Google Scholar 

  36. Notohara H, Urita K, Moriguchi I (2023) Direct evidence of reversible SnO2–Li reactions in carbon nanospaces [J]. ACS Appl Mater Interfaces 15:30600–30605

    Article  CAS  PubMed  Google Scholar 

  37. Ke J, Feng Y-F, Yang B-W, Wu K-D, Deng X-Q, He M (2020) A sheet-like SnO2@SiO2/graphite composite as anode material with excellent performance for lithium-ion batteries. Int J Electrochem Sci 15:10173–10183

    Article  Google Scholar 

  38. Zhang L, Wu H-B, Liu B, Lou X-W (2014) Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy Environ Sci 7:1013–1017

    Article  Google Scholar 

  39. Feng Y-F, Bai C, Wu K-D, Dong H-F, Ke J, Huang X-P, Xiong D-P, He M (2020) Fluorine-doped porous SnO2@C nanosheets as a high performance anode material for lithium ion batteries. J Alloy Compd 843:156085

    Article  CAS  Google Scholar 

  40. Ma Q, Chen M-N, Fang Z (2024) Tunable composition of Sn/SnO2@C composites for lithium-ion batteries. Mater Lett 357:135716

    Article  CAS  Google Scholar 

  41. Zheng Y, Zhou T-F, Zhang C-F, Mao J-F, Liu H-K, Guo Z-P (2016) Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew Chem Int Edit 10:3408–3413

    Article  Google Scholar 

  42. Cheng J-P, Xiong D-P, Jiang W-Q, Ye W-B, Song P (2024) SnO2-MoO2 nanoparticles coated on graphene oxide as a high-capacity, high-speed, long-life lithium-ion battery anode. Chem Phys Lett 835:140994

    Article  CAS  Google Scholar 

  43. Zhou Y, Zhang M, Wang Q, Yang J, Luo X, Li Y, Du R, Yan X, Sun X, Dong C, Zhang X, Jiang F (2020) Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res 13:691–700

    Article  CAS  Google Scholar 

  44. Lin X-T, Li P, Shao L-Y, Shui M, Wang D-J, Long N-B, Ren Y-L, Shu J (2015) Lithium barium titanate: a stable lithium storage material for lithium ion batteries. J Power Sources 278:546–554

    Article  CAS  Google Scholar 

  45. Fang G-Z, Wu Z-X, Zhou J, Zhu C-Y, Cao X-X, Cao T-Q, Chen Y-M, Wang C, Pan A-Q, Liang S-Q (2018) Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv Energy Mater 8:1703155

    Article  Google Scholar 

  46. Zhang S-G, Zhao H-P, Ma W-Y, Mi J, Zhu J-F, Liu J-L (2022) Insight to Se-doping effects on Fe7S8/carbon nanotubes composite as anode for sodium-ion batteries. J of Power Sources 536:231458

    Article  CAS  Google Scholar 

  47. Sun R-M, Liu S-J, Wei Q-L, Sheng J-Z, Zhu S-H, An Q-Y, Mai L-Q (2017) Mesoporous NiS2 nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small 13:1701744–1701748

    Article  Google Scholar 

  48. Cook J-B, Kim H-S, Yan Y, Ko J-S, Robbennolt S, Dunn B, Tolbert S-H (2016) Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-Ion charge storage. Adv Energy Mater 6:1501937

    Article  Google Scholar 

  49. Ge P, Hou H, Li S, Yang L, Ji X (2018) Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv Funct Mater 28:1801765–1801712

    Article  Google Scholar 

Download references

Funding

This study was funded by College students’ innovation and entrepreneurship training (202311765015), Henan Key Science and Technology Research (242102230104), and Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2023JD65).

Author information

Authors and Affiliations

Authors

Contributions

Jin'an Zhao: Methodology, Software, Investigation, Writing-original draft. Liyun Dang: Conceptualization, Supervision. Jiyong Hu: Resources, Validation, Formal analysis. Yan Guo: Software, Methodology.

Corresponding authors

Correspondence to Jin’an Zhao or Liyun Dang.

Ethics declarations

Ethics approval

This work did not include any studies involving humans or animals.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 901 KB)

Supplementary file1 (DOCX 26.9 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Dang, L., Hu, J. et al. Double-layered SnO2@NC hollow spheres as anode materials for high-performance lithium-ion batteries. Ionics (2024). https://doi.org/10.1007/s11581-024-05530-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05530-4

Keywords

Navigation