Skip to main content
Log in

Polyethylene glycol intercalation for MoS2 enables fast zinc-ion storage via pseudocapacitance

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) has significant potential in aqueous zinc-ion batteries (AZIBs) due to its unique layered structure and adjustable layer spacing. However, the electrochemical performance remains unsatisfactory primarily due to the limited interlayer spacing. Here, a composite material consisting of MoS2 nanosheets with expanded interlayer spacing and intercalated surfactant polyethylene glycol (PEG) is proposed as a cathode material for AZIBs. The results indicate that PEG is intercalated into the layered structure of MoS2, resulting in a significant expansion of the MoS2 layer spacing (from 0.62 to 0.95 nm). The PEG effectively mitigates the agglomeration during MoS2 growth, promotes the 2H to 1T phase conversion in MoS2 (about 60% of 1T phase content), provides more active sites for electrochemical reactions, reduces electron transfer resistance, and shortens diffusion distance of zinc ions. During the process of charging and discharging, the intercalated PEG molecules serve as “pillars” to provide structural support for MoS2 layers, thereby enhancing their stability. The pseudocapacitive behavior of the MoS2-PEG is promoted by the combination of these aforementioned advantages. Consequently, the MoS2-PEG composite electrode exhibited a discharge capacity of 123.4 mAh·g−1 at a current density of 1.0 A g−1 and maintained a capacity retention of 83.5% after 200 cycles, while pure MoS2 only displayed a reversible capacity of 71.5 mAh·g−1 under identical conditions. This study provides a reference for the development of MoS2 as a cathode material for AZIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chayambuka K, Mulder G, Danilov DL, Notten PHL (2020) From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv Energy Mater 10:2001310. https://doi.org/10.1002/aenm.202001310

    Article  CAS  Google Scholar 

  2. Tian Y, Zeng G, Rutt A, Shi T, Kim H, Wang J, Koettgen J, Sun Y, Ouyang B, Chen T, Lun Z, Rong Z, Persson K, Ceder G (2021) Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem Rev 121:1623–1669. https://doi.org/10.1021/acs.chemrev.0c00767

    Article  CAS  PubMed  Google Scholar 

  3. Yadav P, Kumari N, Rai AK (2023) A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries. J Power Sources 555:232385. https://doi.org/10.1016/j.jpowsour.2022.232385

    Article  CAS  Google Scholar 

  4. Deng W, Phung J, Li G, Wang X (2021) Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy 82:105761. https://doi.org/10.1016/j.nanoen.2021.105761

    Article  CAS  Google Scholar 

  5. Zhang Z, Xi B, Ma X, Chen W, Feng J, Xiong S (2022) Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zinc-ion batteries. SusMat 2:114–141. https://doi.org/10.1002/sus2.53

    Article  CAS  Google Scholar 

  6. Liu S, Kang L, Kim JM, Chun YT, Zhang J, Jun SC (2020) Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv Energy Mater 10:2000477. https://doi.org/10.1002/aenm.202000477

    Article  CAS  Google Scholar 

  7. Blanc LE, Kundu D, Nazar LF (2020) Scientific challenges for the implementation of Zn-ion batteries. Joule 4:771–799. https://doi.org/10.1016/j.joule.2020.03.002

    Article  CAS  Google Scholar 

  8. Shen C, Li X, Li N, Xie K, Wang J, Liu X, Wei B (2018) Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl Mater Interfaces 10:25446–25453. https://doi.org/10.1021/acsami.8b07781

    Article  CAS  PubMed  Google Scholar 

  9. Xu L, Xu N, Yan C, He W, Wu X, Diao G, Chen M (2021) Storage mechanisms and improved strategies for manganese-based aqueous zinc-ion batteries. J Electroanal Chem 888:115196. https://doi.org/10.1016/j.jelechem.2021.115196

    Article  CAS  Google Scholar 

  10. Lv T, Peng Y, Zhang G, Jiang S, Yang Z, Yang S, Pang H (2023) How about vanadium-based compounds as cathode materials for aqueous zinc ion batteries? Adv Sci 10:2206907. https://doi.org/10.1002/advs.202206907

    Article  CAS  Google Scholar 

  11. Deng X, Sarpong JK, Zhang G, Hao J, Zhao X, Li L, Li H, Han C, Li B (2023) Proton storage chemistry in aqueous zinc-organic batteries: a review. InfoMat 5:e12382. https://doi.org/10.1002/inf2.12382

    Article  CAS  Google Scholar 

  12. Li T, Li H, Yuan J, Xia Y, Liu Y, Sun A (2022) Recent advance and modification strategies of transition metal dichalcogenides (TMDs) in aqueous zinc ion batteries. Materials 15:2654. https://doi.org/10.3390/ma15072654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu A, Wu F, Zhang Y, Zhou J, Zhou Y, Xie M (2022) Insight on cathodes chemistry for aqueous zinc-ion batteries: from reaction mechanisms, structural engineering, and modification strategies. Small 18:2201011. https://doi.org/10.1002/smll.202201011

    Article  CAS  Google Scholar 

  14. Tie Z, Niu Z (2020) Design strategies for high-performance aqueous Zn/organic batteries. Angew Chem Int Ed 59:21293–21303. https://doi.org/10.1002/anie.202008960

    Article  CAS  Google Scholar 

  15. Shuai H, Liu R, Li W, Yang X, Lu H, Gao Y, Xu J, Huang K (2023) Recent advances of transition metal sulfides/selenides cathodes for aqueous zinc-ion batteries. Adv Energy Mater 13:2202992. https://doi.org/10.1002/aenm.202202992

    Article  CAS  Google Scholar 

  16. Zhang H, Wang Y, Guo S, Hui Y, Wei H, Song J, Zhao X (2023) Advances in MoS2 based hollow structural materials for high-performance metal-ion batteries. Batteries Supercaps 6:e202200482. https://doi.org/10.1002/batt.202200482

    Article  CAS  Google Scholar 

  17. Li J, Zhang W, Zheng W (2022) Spreading the full spectrum of layer-structured compounds for kinetics-enhanced aqueous multivalent metal-ion batteries. Energy Storage Materials 53:646–683. https://doi.org/10.1016/j.ensm.2022.09.017

    Article  Google Scholar 

  18. Xu J, Dong Z, Li Y, Huang K-J, Liu K, Cao C (2023) Freestanding wide layer spacing MoS2@WS2@CC ternary structure with fast diffusion path for a highly activity zinc-ion batteries. Appl Surf Sci 613:156146. https://doi.org/10.1016/j.apsusc.2022.156146

    Article  CAS  Google Scholar 

  19. Zhou M, Cheng L, Han B, Zhang H, Chen J, Xie F, Wang N, Jin Y, Meng H (2022) Cobalt-doped molybdenum disulfide with rich defects and extended layered structure for rechargeable zinc-ion batteries. J Alloys Compd 916:165487. https://doi.org/10.1016/j.jallcom.2022.165487

    Article  CAS  Google Scholar 

  20. Sun R, Dong S, Yang J, Xiong J, Wang C, Lu S, Zhang Y, Fan H (2023) Defect engineering of molybdenum disulfide nanosheets boosting super Zn2+ storage from polyaniline intercalation. Chem Commun 59:1845–1848. https://doi.org/10.1039/d2cc05888j

    Article  CAS  Google Scholar 

  21. Geng X, Jiao Y, Han Y, Mukhopadhyay A, Yang L, Zhu H (2017) Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries. Adv Funct Mater 27:1702998. https://doi.org/10.1002/adfm.201702998

    Article  CAS  Google Scholar 

  22. Shao F, Huang Y, Wang X, Li Z, Huang X, Huang W, Dong L, Kang F, Liu W, Xu C (2022) MoS2 with high 1T phase content enables fast reversible zinc-ion storage via pseudocapacitance. Chem Eng J 448:137688. https://doi.org/10.1016/j.cej.2022.137688

    Article  CAS  Google Scholar 

  23. Sun J, Zhang Z, Lian G, Li Y, Jing L, Zhao M, Cui D, Wang Q, Yu H, Wong C-P (2022) Electron-injection and atomic-interface engineering toward stabilized defected 1T-rich MoS2 as high rate anode for sodium storage. ACS Nano 16:12425–12436. https://doi.org/10.1021/acsnano.2c03623

    Article  CAS  PubMed  Google Scholar 

  24. Niu F, Mao Y, Wang N, Feng Z, Chen J, Ye L, Zhang S, Bai Z, Dou S (2024) Regulating interfacial ion migration with pillar effect in layer-by-layer inter-embedded MoS2/Ti3C2 for high-performance zinc-ion batteries. J Colloid Interface Sci 655:760–770. https://doi.org/10.1016/j.jcis.2023.11.073

    Article  CAS  PubMed  Google Scholar 

  25. Cao P, Chen N, Tang W, Liu Y, Xia Y, Wu Z, Li F, Liu Y, Sun A (2022) Template-assisted hydrothermal synthesized hydrophilic spherical 1T-MoS2 with excellent zinc storage performance. J Alloys Compd 898:162854. https://doi.org/10.1016/j.jallcom.2021.162854

    Article  CAS  Google Scholar 

  26. Chen J, Xu Z, Hu Y, Yi M (2020) PEG-assisted solvothermal synthesis of MoS2 nanosheets with enhanced tribological property. Lubr Sci 32:273–282. https://doi.org/10.1002/ls.1501

    Article  CAS  Google Scholar 

  27. Xue Y, Zhang Q, Wang W, Cao H, Yang Q, Fu L (2017) Opening two-dimensional materials for energy conversion and storage: a concept. Adv Energy Mater 7:1602684. https://doi.org/10.1002/aenm.201602684

    Article  CAS  Google Scholar 

  28. Huang M, Mai Y, Zhao L, Liang X, Fang Z, Jie X (2021) Tuning the kinetics of zinc ion in MoS2 by polyaniline intercalation. Electrochim Acta 388:138624. https://doi.org/10.1016/j.electacta.2021.138624

    Article  CAS  Google Scholar 

  29. Cheng Y, Pang K, Wu X, Zhang Z, Xu X, Ren J, Huang W, Song R (2018) In situ hydrothermal synthesis MoS2/guar gum carbon nanoflowers as advanced electrocatalysts for electrocatalytic hydrogen evolution. ACS Sustain Chem Eng 6:8688–8696. https://doi.org/10.1021/acssuschemeng.8b00994

    Article  CAS  Google Scholar 

  30. Nishioka N, Hamabe S, Murakami T, Kitagawa T (1998) Thermal decomposition behavior of miscible cellulose/synthetic polymer blends. J Appl Polym Sci 69:2133–2137. https://doi.org/10.1002/(SICI)1097-4628(19980912)69:11

    Article  CAS  Google Scholar 

  31. Wu C, Zhao G, Gong S, Zhang N, Sun K (2019) PVP incorporated MoS2 as a Mg ion host with enhanced capacity and durability. Journal of Materials Chemistry A 7:4426–4430. https://doi.org/10.1039/C8TA12288A

    Article  CAS  Google Scholar 

  32. Li C, Liu C, Wang Y, Lu Y, Zhu L, Sun T (2022) Drastically-enlarged interlayer-spacing MoS2 nanocages by inserted carbon motifs as high performance cathodes for aqueous zinc-ion batteries. Energy Storage Materials 49:144–152. https://doi.org/10.1016/j.ensm.2022.03.048

    Article  Google Scholar 

  33. Zhu X, Xia F, Liu D, Xiang X, Wu J, Lei J, Li J, Qu D, Liu J (2023) Crumpling carbon-pillared atomic-thin dichalcogenides and CNTs into elastic balls as superior anodes for sodium/potassium-ion batteries. Adv Funct Mater 33:2207548. https://doi.org/10.1002/adfm.202207548

    Article  CAS  Google Scholar 

  34. Wang D, Liu C, Zhang Y, Wang Y, Wang Z, Ding D, Cui Y, Zhu X, Pan C, Lou Y, Li F, Zhu Y, Zhang Y (2021) CO2 electroreduction to formate at a partial current density up to 590 mA mg-1 via micrometer-scale lateral structuring of bismuth nanosheets. Small 17:2100602. https://doi.org/10.1002/smll.202100602

    Article  CAS  Google Scholar 

  35. Chen W, Wu W, Pan Z, Wu X, Zhang H (2018) PEG400-assisted synthesis of oxygen-incorporated MoS2 ultrathin nanosheets supported on reduced graphene oxide for sodium ion batteries. J Alloys Compd 763:257–266. https://doi.org/10.1016/j.jallcom.2018.05.301

    Article  CAS  Google Scholar 

  36. Li C, Yang W, He W, Zhang X, Zhu J (2021) Multifunctional surfactants for synthesizing high-performance energy storage materials. Energy Storage Materials 43:1–19. https://doi.org/10.1016/j.ensm.2021.08.033

    Article  Google Scholar 

  37. Wang R, Wang S, Peng X, Zhang Y, Jin D, Chu PK, Zhang L (2017) Elucidating the intercalation pseudocapacitance mechanism of MoS2-carbon monolayer interoverlapped superstructure: toward high-performance sodium-ion-based hybrid supercapacitor. ACS Appl Mater Interfaces 9:32745–32755. https://doi.org/10.1021/acsami.7b09813

    Article  CAS  PubMed  Google Scholar 

  38. Yang X, Lin C, Han D, Li G, Huang C, Liu J, Wu X, Zhai L, Mi L (2022) In situ construction of redox-active covalent organic frameworks/carbon nanotube composites as anodes for lithium-ion batteries. J Mater Chem A 10:3989–3995. https://doi.org/10.1039/D1TA09433E

    Article  CAS  Google Scholar 

  39. Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S (2020) Defect engineering on electrode materials for rechargeable batteries. Adv Mater 32:1905923. https://doi.org/10.1002/adma.201905923

    Article  CAS  Google Scholar 

  40. Liang A, Zhang Y, Jiang F, Zhou W, Xu J, Hou J, Wu Y, Ding Y, Duan X (2019) Electrochemical self-assembly of a 3D interpenetrating porous network PEDOT-PEG-WS2 nanocomposite for high-efficient energy storage. The J Phys Chem C 123:25428–25436. https://doi.org/10.1021/acs.jpcc.9b05227

    Article  CAS  Google Scholar 

  41. Yang X, Li W, Tan Z, Sha J, Tong Z, Zhang Y, Lan Y (2020) Polyoxometalate-pillared metal-organic frameworks synthesized by surfactant-assisted strategy and incorporated with carbon nanotubes for energy storage. J Mater Chem A 8:25316–25322. https://doi.org/10.1039/D0TA08976A

    Article  CAS  Google Scholar 

  42. Tan Y, Li S, Zhao X, Wang Y, Shen Q, Qu X, Liu Y, Jiao L (2022) Unexpected role of the interlayer “dead Zn2+” in strengthening the nanostructures of VS2 cathodes for high-performance aqueous Zn-ion storage. Adv Energy Mater 12:2104001. https://doi.org/10.1002/aenm.202104001

    Article  CAS  Google Scholar 

  43. Shang Z, Wang S, Zhang H, Zhang W, Lu S, Lu K (2022) Advances in the regulation of kinetics of cathodic H+/Zn2+ interfacial transport in aqueous Zn/MnO2 electrochemistry. Nanoscale 14:14433–14454. https://doi.org/10.1039/D2NR03264C

    Article  CAS  PubMed  Google Scholar 

  44. Huang M, Mai Y, Fan G, Liang X, Fang Z, Jie X (2021) Toward fast zinc-ion storage of MoS2 by tunable pseudocapacitance. J Alloy Compd 871:159541. https://doi.org/10.1016/j.jallcom.2021.159541

    Article  CAS  Google Scholar 

  45. Zhu W, Shi C, Wang Y, Hu Y, Liu K (2022) Glucose assisted synthesis of 1T-MoS2/C composite anode for high-performance lithium-ion batteries. Diam Relat Mater 130:109436. https://doi.org/10.1016/j.diamond.2022.109436

    Article  CAS  Google Scholar 

  46. Mi Z, Hu D, Lin J, Pan H, Chen Z, Li Y, Liu Q, Zhu S (2022) Anchoring nanoarchitectonics of 1T’-MoS2 nanoflakes on holey graphene sheets for lithium-ion batteries with outstanding high-rate performance. Electrochim Acta 403:139711. https://doi.org/10.1016/j.electacta.2021.139711

    Article  CAS  Google Scholar 

  47. Liu Y, Zhang L, Wang H, Yu C, Yan X, Liu Q, Xu B, Wang L-M (2018) Synthesis of severe lattice distorted MoS2 coupled with hetero-bonds as anode for superior lithium-ion batteries. Electrochim Acta 262:162–172. https://doi.org/10.1016/j.electacta.2018.01.023

    Article  CAS  Google Scholar 

  48. Wang D, Zhang X, Bao S, Zhang Z, Fei H, Wu Z (2017) Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J Mater Chem A 5:2681–2688. https://doi.org/10.1039/C6TA09409K

    Article  CAS  Google Scholar 

  49. Mondal A, Vomiero A (2022) 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 32:2208994. https://doi.org/10.1002/adfm.202208994

    Article  CAS  Google Scholar 

  50. Yao Z, Zhang W, Ren X, Yin Y, Zhao Y, Ren Z, Sun Y, Lei Q, Wang J, Wang L, Ji T, Huai P, Wen W, Li X, Zhu D, Tai R (2022) A volume self-regulation MoS2 superstructure cathode for stable and high mass-loaded Zn-ion storage. ACS Nano 16:12095–12106. https://doi.org/10.1021/acsnano.2c02330

    Article  CAS  PubMed  Google Scholar 

  51. Liu N, Wu X, Fan L, Gong S, Guo Z, Chen A, Zhao C, Mao Y, Zhang N, Sun K (2020) Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Adv Mater 32:1908420. https://doi.org/10.1002/adma.201908420

    Article  CAS  Google Scholar 

  52. Yao X, Li C, Xiao R, Li J, Yang H, Deng J, Balogun MS (2022) Heterostructures stimulate electric-field to facilitate optimal Zn2+ intercalation in MoS2 cathode. Small 18:2204534. https://doi.org/10.1002/smll.202204534

    Article  CAS  Google Scholar 

  53. Li S, Yu D, Liu J, Chen N, Shen Z, Chen G, Yao S, Du F (2023) Quantitative regulation of interlayer space of NH4V4O10 for fast and durable Zn2+ and NH4+ Storage. Adv Sci 10:2206836. https://doi.org/10.1002/advs.202206836

    Article  CAS  Google Scholar 

  54. Liao J, Hu Q, Mu J, Chen F, He X, Chen F, Wen Z, Chen C (2020) Introducing a conductive pillar: a polyaniline intercalated layered titanate for high-rate and ultra-stable sodium and potassium ion storage. Chem Commun 56:8392–8395. https://doi.org/10.1039/D0CC01107J

    Article  CAS  Google Scholar 

  55. Xu QH, Li XY, Wu LC, Zhang Z, Chen Y, Liu L, Cheng Y (2023) Enlarged interlayer spacing of marigold-shaped 1T-MoS2 with sulfur vacancies via oxygen-assisted phosphorus embedding for rechargeable zinc-ion batteries. Nanomaterials 13:1185. https://doi.org/10.3390/nano13071185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li S, Wei Y, Wu Q, Han Y, Qian G, Liu J, Yang C (2024) Super p/MoS2 cathode material for aqueous zinc-ion batteries. Ionics 30:229–236. https://doi.org/10.1007/s11581-023-05227-0

    Article  CAS  Google Scholar 

  57. Wang X, Zhang S, Yang R, Bai S, Li J, Wu Y, Jin B, Jin X, Shao M, Wang B (2023) Hierarchical carbon nanosheet confined defective MoSx cathode towards long-cycling zinc-ion-battery. Nano Res 16:9364–9370. https://doi.org/10.1007/s12274-023-5572-7

    Article  CAS  Google Scholar 

  58. Wang Y-T, Zhang Z-Z, Li M-X (2022) One-pot synthesis of 1T MoS2/MWCNT hybrids for enhanced zinc-ion storage. Nano Futures 6:025001. https://doi.org/10.1088/2399-1984/ac4f2a

    Article  CAS  Google Scholar 

  59. Liu L, Yang W, Chen H, Chen X, Zhang K, Zeng Q, Lei S, Huang J, Li S, Peng S (2022) High zinc-ion intercalation reaction activity of MoS2 cathode based on regulation of thermodynamic metastability and interlayer water. Electrochim Acta 410:140016. https://doi.org/10.1016/j.electacta.2022.140016

    Article  CAS  Google Scholar 

  60. Wang L, Huang K-W, Chen J, Zheng J (2019) Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci Adv 5:eaax4279. https://doi.org/10.1126/sciadv.aax4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wan F, Huang S, Cao H, Niu Z (2020) Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 14:6752–6760. https://doi.org/10.1021/acsnano.9b10214

    Article  CAS  PubMed  Google Scholar 

  62. Huang M, Mai Y, Zhao L, Liang X, Fang Z, Jie X (2020) Hierarchical MoS2@CNTs hybrid as a long-life and high-rate cathode for aqueous rechargeable Zn-ion batteries. Chem Electro Chem 7:4218–4223. https://doi.org/10.1002/celc.202001036

    Article  CAS  Google Scholar 

  63. Sheng Z, Qi P, Lu Y, Liu G, Chen M, Gan X, Qin Y, Hao K, Tang Y (2021) Nitrogen-doped metallic MoS2 derived from a metal-organic framework for aqueous rechargeable zinc-ion batteries. ACS Appl Mater Interfaces 13:34495–34506. https://doi.org/10.1021/acsami.1c11063

    Article  CAS  PubMed  Google Scholar 

  64. Chao D, Liang P, Chen Z, Bai L, Shen H, Liu X, Xia X, Zhao Y, Savilov SV, Lin J, Shen ZX (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10:10211–10219. https://doi.org/10.1021/acsnano.6b05566

    Article  CAS  PubMed  Google Scholar 

  65. Gao S, Li B, Tan H, Xia F, Dahunsi O, Xu W, Liu Y, Wang R, Cheng Y (2022) High-energy and stable subfreezing aqueous Zn-MnO2 batteries with selective and pseudocapacitive Zn-ion insertion in MnO2. Adv Mater 34:2201510. https://doi.org/10.1002/adma.202201510

    Article  CAS  Google Scholar 

  66. Pan H, Cen X, Huang Y, Wang Q, Luo W, Wang Y, Yan X (2023) Rational design of MoO2-based electrodes via crystal surface engineering control for ultra-stable sodium ion batteries. J Power Sources 564:232867. https://doi.org/10.1016/j.jpowsour.2023.232867

    Article  CAS  Google Scholar 

  67. Liang H, Cao Z, Ming F, Zhang W, Anjum DH, Cui Y, Cavallo L, Alshareef HN (2019) Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett 19:3199–3206. https://doi.org/10.1021/acs.nanolett.9b00697

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Guangxi Natural Science Foundation of China (2018GXNSFAA294042).

Author information

Authors and Affiliations

Authors

Contributions

The authors thank all research scholars and collaborators who have supported this project and contributed to the cited manuscripts.

Corresponding author

Correspondence to Yiju Lv.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Lu, X., Mo, Q. et al. Polyethylene glycol intercalation for MoS2 enables fast zinc-ion storage via pseudocapacitance. Ionics 30, 2229–2241 (2024). https://doi.org/10.1007/s11581-024-05441-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05441-4

Keywords

Navigation