Skip to main content
Log in

N-doped porous carbon nanofibers derived from N-rich cross-linked polymer for high-performance supercapacitors

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Porous carbon materials with regular morphological structure and high heteroatom content have great application potentials in the area of novel energy storage devices. Herein, a family of novel N-doped porous carbon nanofibers are prepared by using a facile CuCl2-mediated activation of a fiber-like N-rich cross-linked polymer, which is readily accessible based on a solvent-thermal reaction between 2,4,6-tris(4-aminophenyl)triazine and dimethyl succinyl succinate. With the assistance of the mild activating reagent (CuCl2), the as-prepared carbon nanofibers (C-X-CuCl2) retain the fibrous morphology of precursor and achieve abundant heteroatom species in the carbon skeleton. The C-X-CuCl2 samples obtain the highest specific surface area of 1964.9 m2 g–1 and the highest N/O doping contents of 10.10 and 15.06 at.%, respectively, all of which are favorable for improving electrochemical performance when applied in supercapacitors. The C-750-CuCl2 electrode delivers the best-performed overall capacitance of 281.5 F g–1 at 0.5 A g–1, and its symmetrical supercapacitors with aqueous electrolyte (6 M KOH) show 93.1% of capacity retention after 10000 charging/discharging operations at 5.0 A g–1. An outstanding energy density of 75.5 Wh kg–1 at a power density of 300 W kg–1 is realized as well for the C-750-CuCl2-based symmetrical supercapacitors when 1-ethyl-3-methylimidazolium tetrafluoroborate is used as the electrolyte. These results indicate that the C-750-CuCl2 carbon nanofiber is a promising material for high-performance supercapacitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Yi M, Ma J, Ren Y et al (2023) Ionic liquid meets MOF: a facile method to optimize the structure of CoSe2-NiSe2 heterojunctions with N, P, and F triple-doped carbon using ionic liquid for efficient hydrogen evolution and flexible supercapacitors. Adv Sci 10:2206029. https://doi.org/10.1002/advs.202206029

    Article  CAS  Google Scholar 

  2. Lai C, Qu X, Zhao H et al (2022) Improved performance in asymmetric supercapacitors utilized by dual ion-buffering reservoirs based on honeycomb-structured NiCo2O4 and 3D rGO-PPy aerogels. Appl Surf Sci 586:152847. https://doi.org/10.1016/j.apsusc.2022.152847

    Article  CAS  Google Scholar 

  3. Qian X, Miao L, Jiang J et al (2020) Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors. Chem Eng J 388:124208. https://doi.org/10.1016/j.cej.2020.124208

    Article  CAS  Google Scholar 

  4. Ma X, Deng J, Zhang R et al (2023) Hierarchical porous carbon nanoarchitectonics with honeycomb-like and N, P co-doped features for flexible symmetric supercapacitors and high-efficiency dye removal. J Energy Storage 65:107272. https://doi.org/10.1016/j.est.2023.107272

    Article  Google Scholar 

  5. Shaheen Shah S, Oladepo S, Ali Ehsan M et al (2023) Recent progress in polyaniline and its composites for supercapacitors. Chem Rec:e202300105. https://doi.org/10.1002/tcr.202300105

  6. Afzal A, Abuilaiwi FA, Habib A et al (2017) Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J Power Sources 352:174–186. https://doi.org/10.1016/j.jpowsour.2017.03.128

    Article  CAS  Google Scholar 

  7. Kour S, Tanwar S, Sharma AL (2022) A review on challenges to remedies of MnO2 based transition-metal oxide, hydroxide, and layered double hydroxide composites for supercapacitor applications. Mater Today Commun 32:104033. https://doi.org/10.1016/j.mtcomm.2022.104033

    Article  CAS  Google Scholar 

  8. Yu F, Pang L, Wang H-X (2021) Preparation of mulberry-like ruo2 electrode material for supercapacitors. Rare Metals 40:440–447. https://doi.org/10.1007/s12598-020-01561-8

    Article  CAS  Google Scholar 

  9. Sun J, Zhang J, Shang M et al (2023) N, O co-doped carbon aerogel derived from sodium alginate/melamine composite for all-solid-state supercapacitor. Appl Surf Sci 608:155109. https://doi.org/10.1016/j.apsusc.2022.155109

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhang P, Zhang S et al (2021) A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li–S batteries. InfoMat 3:790–803. https://doi.org/10.1002/inf2.12214

    Article  CAS  Google Scholar 

  11. Yang Z, Ren J, Zhang Z et al (2015) Recent advancement of nanostructured carbon for energy applications. Chem Rev 115:5159–5223. https://doi.org/10.1021/cr5006217

    Article  CAS  PubMed  Google Scholar 

  12. Xie L, Su F, Xie L et al (2020) Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors. Mater Chem Front 4:2610–2634. https://doi.org/10.1039/D0QM00180E

    Article  CAS  Google Scholar 

  13. Yan L, Liu A, Ma R et al (2023) Regulating the specific surface area and porous structure of carbon for high performance supercapacitors. Appl Surf Sci 615:156267. https://doi.org/10.1016/j.apsusc.2022.156267

    Article  CAS  Google Scholar 

  14. Liu L, Niu Z, Chen J (2018) Flexible supercapacitors based on carbon nanotubes. Chin Chem Lett 29:571–581. https://doi.org/10.1016/j.cclet.2018.01.013

    Article  CAS  Google Scholar 

  15. Xu Z, Zhuang X, Yang C et al (2016) Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv Mater 28:1981–1987. https://doi.org/10.1002/adma.201505131

    Article  CAS  PubMed  Google Scholar 

  16. Qin F, Tian X, Guo Z et al (2018) Asphaltene-based porous carbon nanosheet as electrode for supercapacitor. ACS Sustain Chem Eng 6:15708–15719. https://doi.org/10.1021/acssuschemeng.8b04227

    Article  CAS  Google Scholar 

  17. Hao J, Wang J, Qin S et al (2018) B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors. J Mater Chem A 6:8053–8058. https://doi.org/10.1039/C8TA00683K

    Article  CAS  Google Scholar 

  18. Liu Z, Zhou Z, Xiong W et al (2018) Controlled synthesis of carbon nanospheres via the modulation of the hydrophilic length of the assembled surfactant micelles. Langmuir 34:10389–10396. https://doi.org/10.1021/acs.langmuir.8b02156

    Article  CAS  PubMed  Google Scholar 

  19. Kondrat S, Wu P, Qiao R et al (2014) Accelerating charging dynamics in subnanometre pores. Nat Mater 13:387–393. https://doi.org/10.1038/nmat3916

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Ghosh S, Barg S, Jeong SM et al (2020) Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv Energy Mater 10:2001239. https://doi.org/10.1002/aenm.202001239

    Article  CAS  Google Scholar 

  21. Ruan W, Wang Y, Liu C et al (2022) One-step fabrication of N-doped activated carbon by NH3 activation coupled with air oxidation for supercapacitor and CO2 capture applications. J Anal Appl Pyrolysis 168:105710. https://doi.org/10.1016/j.jaap.2022.105710

    Article  CAS  Google Scholar 

  22. Wang H, Zhou H, Wu S et al (2021) Facile synthesis of N/B co-doped hierarchically porous carbon materials based on threonine protic ionic liquids for supercapacitor. Electrochim Acta 380:138230. https://doi.org/10.1016/j.electacta.2021.138230

    Article  CAS  Google Scholar 

  23. Yi J-L, Yu X-H, Zhang R-L et al (2021) Chitosan-based synthesis of O, N, and P codoped hierarchical porous carbon as electrode materials for supercapacitors. Energy Fuel 35:20339–20348. https://doi.org/10.1021/acs.energyfuels.1c03164

    Article  CAS  Google Scholar 

  24. Chen H, Xiong Y, Yu T et al (2017) Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior. Carbon 113:266–273. https://doi.org/10.1016/j.carbon.2016.11.035

    Article  CAS  Google Scholar 

  25. Lin G, Ma R, Zhou Y et al (2018) KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochim Acta 261:49–57. https://doi.org/10.1016/j.electacta.2017.12.107

    Article  ADS  CAS  Google Scholar 

  26. Jia B, Mian Q, Wu D et al (2022) Heteroatoms self-doped porous carbon from cottonseed meal using K2CO3 as activator and DES electrolyte for supercapacitor with high energy density. Mater Today Chem 24:100828. https://doi.org/10.1016/j.mtchem.2022.100828

    Article  CAS  Google Scholar 

  27. Mangisetti SR, Kamaraj M, Sundara R (2021) Large-scale single-step synthesis of wrinkled N–S doped 3D graphene like nanosheets from tender palm shoots for high energy density supercapacitors. Int J Hydrog Energy 46:403–415. https://doi.org/10.1016/j.ijhydene.2020.09.161

    Article  CAS  Google Scholar 

  28. Li F, Liu Y-l, Wang G-G et al (2022) 3D porous H-Ti3C2Tx films as free-standing electrodes for zinc ion hybrid capacitors. Chem Eng J 435:135052. https://doi.org/10.1016/j.cej.2022.135052

    Article  CAS  Google Scholar 

  29. Liu S, Liang Y, Zhou W et al (2018) Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high-performance supercapacitors. J Mater Chem A 6:12046–12055. https://doi.org/10.1039/C8TA02838A

    Article  CAS  Google Scholar 

  30. Zheng L, Tang B, Dai X et al (2020) High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors. Chem Eng J 399:125671. https://doi.org/10.1016/j.cej.2020.125671

    Article  CAS  Google Scholar 

  31. Patra BC, Das SK, Ghosh A et al (2018) Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries. J Mater Chem A 6:16655–16663. https://doi.org/10.1039/C8TA04611E

    Article  CAS  Google Scholar 

  32. Yang Z, Liu J, Li Y et al (2021) Arylamine-linked 2D covalent organic frameworks for efficient pseudocapacitive energy storage. Angew Chem Int Ed 60:20754–20759. https://doi.org/10.1002/anie.202108684

    Article  CAS  Google Scholar 

  33. Boonprachai R, Autthawong T, Namsar O et al (2022) Natural porous carbon derived from popped rice as anode materials for lithium-ion batteries. Crystals 12:223. https://doi.org/10.3390/cryst12020223

    Article  CAS  Google Scholar 

  34. Amirtha RM, Hsu H-H, Abdelaal MM et al (2022) Constructing a carbon-encapsulated carbon composite material with hierarchically porous architectures for efficient capacitive storage in organic supercapacitors. Int J Mol Sci 23:6774. https://doi.org/10.3390/ijms23126774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wan L, Hu J, Liu J et al (2021) Heteroatom-doped porous carbons derived from lotus pollen for supercapacitors: Comparison of three activators. J Alloys Compd 859:158390. https://doi.org/10.1016/j.jallcom.2020.158390

    Article  CAS  Google Scholar 

  36. Zheng L, Dai X, Ouyang Y et al (2021) Nhighly N/O co-doped carbon nanospheres for symmetric supercapacitors application with high specific energy. J Energy Storage 33:102152. https://doi.org/10.1016/j.est.2020.102152

    Article  Google Scholar 

  37. Amiri D, Kamali Heidari E, Kamyabi-Gol A et al (2022) Electrospun NiMoO4-encapsulated carbon nanofibers electrodes for advanced supercapacitors. J Energy Storage 55:105490. https://doi.org/10.1016/j.est.2022.105490

    Article  Google Scholar 

  38. Cao Q, Zhu M, Chen J et al (2020) Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors. ACS Appl Mater Interfaces 12:1210–1221. https://doi.org/10.1021/acsami.9b14727

    Article  CAS  PubMed  Google Scholar 

  39. Chen C, Zhao M, Cai Y et al (2021) Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances. Carbon 179:458–468. https://doi.org/10.1016/j.carbon.2021.04.062

    Article  CAS  Google Scholar 

  40. Zhang Y, Zhang L, Cheng L et al (2021) Synthesis of faradaic-active N,O-doped carbon nanosheets from m-trihydroxybenzene and piperazine for high-performance supercapacitor. Appl Surf Sci 538:148040. https://doi.org/10.1016/j.apsusc.2020.148040

    Article  CAS  Google Scholar 

  41. Wu S, Feng C, Fan B et al (2022) N/O/P co-doped hierarchical porous graphitic carbon materials for high-rate supercapacitors. J Alloys Compd 899:163282. https://doi.org/10.1016/j.jallcom.2021.163282

    Article  CAS  Google Scholar 

  42. Zhu C, Yan J (2022) Fabricating of N/O-codoping porous carbon interpenetrating networks for high energy aqueous supercapacitor. J Energy Storage 52:105047. https://doi.org/10.1016/j.est.2022.105047

    Article  Google Scholar 

  43. Miao L, Duan H, Liu M et al (2017) Poly(ionic liquid)-derived, N, S-codoped ultramicroporous carbon nanoparticles for supercapacitors. Chem Eng J 317:651–659. https://doi.org/10.1016/j.cej.2017.02.110

    Article  CAS  Google Scholar 

  44. Tong J, Wang J, Xu P et al (2023) Nitrogen and oxygen codoped porous carbon based on a synthetic polymer for high-performance solid-state supercapacitors. J Energy Storage 58:106349. https://doi.org/10.1016/j.est.2022.106349

    Article  Google Scholar 

  45. Siddiqa A, Sushmitha DJ, Nagaraja KK et al (2023) Self-heteroatom-doped garlic-derived porous activated carbon for a high-energy-density supercapacitor. J Electron Mater 52:1717–1729. https://doi.org/10.1007/s11664-022-10197-6

    Article  ADS  CAS  Google Scholar 

  46. Bang J-H, Lee B-H, Choi Y-C et al (2022) A study on superior mesoporous activated carbons for ultra power density supercapacitor from biomass precursors. Int J Mol Sci 23:8537. https://doi.org/10.3390/ijms23158537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tarazona P (1985) Free-energy density functional for hard spheres. Phys Rev A 31:2672–2679. https://doi.org/10.1103/PhysRevA.31.2672

    Article  ADS  CAS  Google Scholar 

  48. Peng J, Dai X, Huang J et al (2023) High-yield preparation of B/N co-doped porous carbon nanosheets from a cross-linked boronate polymer for supercapacitor applications. J Energy Storage 59:106498. https://doi.org/10.1016/j.est.2022.106498

    Article  Google Scholar 

  49. Li J, Yun X, Hu Z et al (2019) Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. J Mater Chem A 7:26311–26325. https://doi.org/10.1039/C9TA08151H

    Article  CAS  Google Scholar 

  50. Wang J-G, Liu H, Zhang X et al (2018) Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors. J Mater Chem A 6:17653–17661. https://doi.org/10.1039/C8TA07573E

    Article  CAS  Google Scholar 

  51. Tang C, Liu Y, Yang D et al (2017) Oxygen and nitrogen co-doped porous carbons with finely-layered schistose structure for high-rate-performance supercapacitors. Carbon 122:538–546. https://doi.org/10.1016/j.carbon.2017.07.007

    Article  CAS  Google Scholar 

  52. Wei W, Liu W, Chen Z et al (2020) Template-assisted construction of N,O-doped mesoporous carbon nanosheet from hydroxyquinoline-Zn complex for high-performance aqueous symmetric supercapacitor. Appl Surf Sci 509:144921. https://doi.org/10.1016/j.apsusc.2019.144921

    Article  CAS  Google Scholar 

  53. Zhang Y, Qu T, Xiang K et al (2018) In situ formation/carbonization of quinone-amine polymers towards hierarchical porous carbon foam with high faradaic activity for energy storage. J Mater Chem A 6:2353–2359. https://doi.org/10.1039/C7TA09644E

    Article  CAS  Google Scholar 

  54. Song S, Ma F, Wu G et al (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3:18154–18162. https://doi.org/10.1039/C5TA04721H

    Article  CAS  Google Scholar 

  55. Tang B, Zheng L, Dai X et al (2019) Nitrogen/oxygen co-doped porous carbons derived from a facilely-synthesized schiff-base polymer for high-performance supercapacitor. J Energy Storage 26:100961. https://doi.org/10.1016/j.est.2019.100961

    Article  Google Scholar 

  56. Wei T, Wei X, Yang L et al (2016) A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage. J Power Sources 331:373–381. https://doi.org/10.1016/j.jpowsour.2016.09.053

    Article  CAS  Google Scholar 

  57. Cheng Y, Huang L, Xiao X et al (2015) Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15:66–74. https://doi.org/10.1016/j.nanoen.2015.04.007

    Article  CAS  Google Scholar 

  58. Qin C, Wang S, Wang Z et al (2021) Hierarchical porous carbon derived from gardenia jasminoides ellis flowers for high performance supercapacitor. J Energy Storage 33:102061. https://doi.org/10.1016/j.est.2020.102061

    Article  Google Scholar 

  59. Chen C, Yu D, Zhao G et al (2016) Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27:377–389. https://doi.org/10.1016/j.nanoen.2016.07.020

    Article  CAS  Google Scholar 

  60. Momodu D, Sylla NF, Mutuma B et al (2019) Stable ionic-liquid-based symmetric supercapacitors from capsicum seed-porous carbons. J Electroanal Chem 838:119–128. https://doi.org/10.1016/j.jelechem.2019.02.045

    Article  CAS  Google Scholar 

  61. Wang Y, Yang B, Zhang D et al (2020) Strong polar nonaqueous solvent-assisted microwave fabrication of N and P co-doped microporous carbon for high-performance supercapacitor. Appl Surf Sci 512:145711. https://doi.org/10.1016/j.apsusc.2020.145711

    Article  CAS  Google Scholar 

  62. Trigueiro JPC, Lavall RL, Silva GG (2016) Nanocomposites of graphene nanosheets/multiwalled carbon nanotubes as electrodes for in-plane supercapacitors. Electrochim Acta 187:312–322. https://doi.org/10.1016/j.electacta.2015.11.053

    Article  CAS  Google Scholar 

  63. Pan H, Zhang Y, Pan Y et al (2020) Nitrogen-doped porous carbon with interconnected tubular structure for supercapacitors operating at sub-ambient temperatures. Chem Eng J 401:126083. https://doi.org/10.1016/j.cej.2020.126083

    Article  CAS  Google Scholar 

  64. Arkhipova EA, Ivanov AS, Maslakov KI et al (2020) Mesoporous graphene nanoflakes for high performance supercapacitors with ionic liquid electrolyte. Microporous Mesoporous Mater 294:109851. https://doi.org/10.1016/j.micromeso.2019.109851

    Article  CAS  Google Scholar 

  65. Oyedotun KO, Masikhwa TM, Lindberg S et al (2019) Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene. Chem Eng J 375:121906. https://doi.org/10.1016/j.cej.2019.121906

    Article  CAS  Google Scholar 

  66. Yu D, Chen C, Zhao G et al (2018) Biowaste-derived hierarchical porous carbon nanosheets for ultrahigh power density supercapacitors. ChemSusChem 11:1678–1685. https://doi.org/10.1002/cssc.201800202

    Article  CAS  PubMed  Google Scholar 

  67. An Y, Yang Y, Hu Z et al (2017) High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate. J Power Sources 337:45–53. https://doi.org/10.1016/j.jpowsour.2016.10.112

    Article  CAS  Google Scholar 

Download references

Funding

This work obtained financial supports from the Hunan Provincial Natural Science Foundation of China (2022JJ30560).

Author information

Authors and Affiliations

Authors

Contributions

Jiang Peng: Methodology, Investigation, Writing-Original Draft, Data curation. Jing Huang: Writing-Original Draft, Visualization. Junqing Zeng: Software. Liping Zheng: Supervision, Validation. Huajie Chen: Supervision, Resources, Writing-review & editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Liping Zheng or Huajie Chen.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Huang, J., Zeng, J. et al. N-doped porous carbon nanofibers derived from N-rich cross-linked polymer for high-performance supercapacitors. Ionics 30, 979–990 (2024). https://doi.org/10.1007/s11581-023-05287-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05287-2

Keywords

Navigation