Skip to main content
Log in

Effect of KBr on electrodeposition of Ag in choline chloride-ethylene glycol deep eutectic solvents

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Bright silver coatings were successfully prepared in deep eutectic solvent (DES) using the additive KBr in choline chloride-ethylene glycol (ChCl-EG, molar ratio 1:2). The results show that the reductive peak potential of the silver coordination ions shifts negatively with increasing KBr concentration. Relevant electrochemical parameters were calculated, such as the transfer coefficient α = 0.258 and the diffusion coefficient D = 1.04×10−6 cm2·s−1. The effects of temperature were investigated for the electron transfer activation energy EA=23.144 KJ·mol−1 and the diffusion activation energy ED=42.281 KJ·mol−1. The adsorption of bromine ions on the electrode surface was demonstrated using the impedance potential method and the impedance frequency method to derive differential capacitance curves. Simulation results from Material Studio software confirmed that bromine ions are mainly adsorbed on the hollow (fcc) sites on the crystalline surface of the copper electrode (100). The addition of KBr causes changes in the microstructure of the silver coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All of the material is owned by the authors, and/or no permissions are required.

References

  1. Nervers A, Hallez L, Touyeras F, Hihn JY (2018) Effect of ultrasound on silver electrodeposition: crystalline structure modification. Ultrason Sonochem 40:60–71

    Article  Google Scholar 

  2. Reyna-González JM, Reyes-López JC, Aguilar-Martínez M (2013) Silver and silvercopper electrodeposition from a pyridinium-based ionic liquid. Electrochim Acta 94:344–352

    Article  Google Scholar 

  3. Bomparola R, Caporali S, Lavacchi A, Bardi U (2017) Silver electrodeposition from air and water-stable ionic liquid: an environmentally friendly alternative to cyanide baths. Surf Coat Technol 24:9485–9490

    Google Scholar 

  4. Sadyrbaeva TZ (2010) Liquid membrane system for extraction and electrodeposition of silver(I). J Electroanal Chem 648:105–110

    Article  CAS  Google Scholar 

  5. Gómez E, García-Torres J, Vallés E (2008) Electrodeposition of silver as a precursor matrix of magnetoresistive materials. Mater Lett 61:1671–1674

    Article  Google Scholar 

  6. Li Q, Jiang J, Li G, Zhao W, Zhao X, Tu T (2016) The electrochemical stability of ionic liquids and deep eutectic solvents. Sci China Chem 59:571–577

    Article  CAS  Google Scholar 

  7. Pei Y, Zhang Y, Ma J, Fan M, Zhang S, Wang J (2022) Ionic liquids for advanced materials. Mater Today Nano 17:100159

    Article  CAS  Google Scholar 

  8. Sadjadi S (2021) Magnetic (poly) ionic liquids: a promising platform for green chemistry. J Mol Liq 323:114994

    Article  CAS  Google Scholar 

  9. Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16

    Article  CAS  PubMed  Google Scholar 

  10. Torimoto T, Tsuda T, Okazaki KI, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22:1196–1221

    Article  CAS  PubMed  Google Scholar 

  11. Kianfar E, Mafi S (2021) Ionic liquids: properties, application, and synthesis. Fine Chem Eng 2:22–31

    CAS  Google Scholar 

  12. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    Article  CAS  PubMed  Google Scholar 

  13. Ren X, Zhu X, Xu C, Hua Y, Zhang Q, Liu H, Ru J (2020) The electrodeposition of amorphous/nanocrystalline Ni-Cr alloys from ChCl-EG deep eutectic solvent. J Electrochem Soc 167:062502

    Article  CAS  Google Scholar 

  14. Urcezino AS, Santos LP, Casciano PN, Correia AN, Lima-Neto PD (2017) Electrodeposition study of Ni coatings on copper from choline chloride-based deep eutectic solvents. J Braz Chem Soc 28:1193–1203

    CAS  Google Scholar 

  15. Li QS, Qian HX, Fu X, Sun HJ, Sun J (2021) Characterization and electrochemical analysis of silver electrodeposition in ChCl-Urea deep eutectic solvents. Bull Mater Sci 44:14

    Article  CAS  Google Scholar 

  16. Fu X, Sun HJ, Zhan CB, Zhang RJ, Wang BJ, Sun J (2022) Study on electrodeposition behaviour and corrosion resistance of nickel-copper alloy in ChCl-EG deep eutectic solvents. Bull Mater Sci 45:1–5

    Article  Google Scholar 

  17. Geng T, Zeller SJ, Kibler LA, Ceblin MU, Jacob T (2022) Electrodeposition of Cu onto Au (111) from deep eutectic solvents: molar ratio of salt and hydrogen bond donor. Chem Electro Chem 9:e202101283

    CAS  Google Scholar 

  18. Ceblin MU, Zeller S, Schick B, Kibler LA, Jacob T (2019) Electrodeposition of Ag onto Au (111) from deep eutectic solvents. Chem Electro Chem 6:141–146

    CAS  Google Scholar 

  19. Bezerra-Neto JR, Bezerra LI, Sousa NG, Dos Santos LPM, Marinho ES, Monteiro NKV, Correia AN, de Lima-Neto P (2020) Molecular approach about the effect of water on the electrochemical behaviour of Ag+ ions in urea-choline chloride-water mixture. J Mol Model 26:1–9

    Article  Google Scholar 

  20. Sánchez-Ortiz W, Aldana-González J, Manh TL, Romero-Romo M, Mejía-Caballero I, Ramírez-Silva MT, Arce-Estrada EM, Mugica-Álvarez V, Palomar-Pardavé M (2021) A deep eutectic solvent as leaching agent and electrolytic bath for silver recovery from spent silver oxide batteries. J Electrochem Soc 168:016508

    Article  Google Scholar 

  21. Lu YS, Pan WY, Hung TC, Hsieh YT (2020) Electrodeposition of silver in a ternary deep eutectic solvent and the electrochemical sensing ability of the Ag-modified electrode for nitrofurazone. Langmuir 36:11358–11365

    Article  CAS  PubMed  Google Scholar 

  22. Sebastián P, Vallés E, Gómez E (2013) First stages of silver electrodeposition in a deep eutectic solvent. Comparative behavior in aqueous medium. Electrochim Acta 112:149–158

    Article  Google Scholar 

  23. Bezerra-Neto JR, Bezerra LL (2020) Molecular approach about the effect of water on the electrochemical behaviour of Ag+ ions in urea-choline chloride-water mixture. J Mol Model 26:339

    Article  CAS  PubMed  Google Scholar 

  24. Sousa NG, Sousa CP, Othon S (2019) One-step preparation of silver electrodeposits from non-aqueous solvents. J Mol Liq 288:111091

    Article  CAS  Google Scholar 

  25. Alesary HF, Khudhair AF, Rfaish SY (2019) Effect of sodium bromide on the electrodeposition of Sn, Cu,Ag and Ni from a deep eutectic solvent-based ionic liquid. Int J Electrochem Sci 14:7116–7132

    Article  CAS  Google Scholar 

  26. Yue D, Jia Y, Yao Y, Sun J, Jing Y (2020) Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea. Electrochim Acta 65:30–36

    Article  Google Scholar 

  27. Fang JL (2007) Theory and application of coordination compounds in electroplating. Chemical Industry Press, Beijing

    Google Scholar 

  28. Al-Esary HFN (2017) Influence of additives on electrodeposition of metals from deep eutectic solvents. Doctoral dissertation, University of Leicester

    Google Scholar 

  29. Alesary HF, Cihangir S, Ballantyne AD, Harris RC, Weston DP (2019) Influence of additives on the electrodeposition of zinc from a deep eutectic solvent. Electrochim Acta 304:118–130

    Article  CAS  Google Scholar 

  30. Viswanathan V, Nørskov JK, Speidel A, Scheffler R, Gowda S, Luntz AC (2013) Li-O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory. J Phys Chem Lett 4:556–560

    Article  CAS  PubMed  Google Scholar 

  31. Lu J, Dreisinger D, Glück T (2014) Manganese electrodeposition a literature review. Hydrometallurgy 141:105–116

    Article  CAS  Google Scholar 

  32. Motobayashi K, Shibamura Y, Ikeda K (2020) Origin of a high overpotential of Co electrodeposition in a room-temperature ionic liquid. J Phys Chem Lett 11:8697–8702

    Article  CAS  PubMed  Google Scholar 

  33. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamental and applications, vol 222-223. New York:Wiley, pp 253–268

    Google Scholar 

  34. Delahay P (1953) Theory of irreversible waves in oscillographic polarography. J Am Chem Soc 75:1190–1196

    Article  CAS  Google Scholar 

  35. Protsenko VS, Kityk AA, Danilov FI (2011) Voltammetry study of Cr (III)/Cr (II) system in aqueous methanesulfonate solutions. J Electroanal Chem 661:213–218

    Article  CAS  Google Scholar 

  36. Ševčík A (1948) Oscillographic polarography with periodical triangular voltage. Collect Czechoslov Chem Commun 13:349–377

    Article  Google Scholar 

  37. Kityk AA, Protsenko VS, Danilov FI (2013) Voltammetry study of Cr (III)/Cr (II) system in methanesulfonate and sulfate solutions: temperature dependences. J Electroanal Chem 689:269–275

    Article  CAS  Google Scholar 

  38. Jovi VD, Jovi BM (2003) EIS and differential capacitance measurements onto single crystal faces in different solutions: part II: Cu(111) and Cu(100) in 0.1 M NaOH. J Electroanal Chem (Lausanne) 541:13–21

    Article  Google Scholar 

  39. Figueiredo M, Gomes C, Costa R, Martins A, Pereira CM, Silva F (2009) Differential capacity of a deep eutectic solvent based on choline chloride and glycerol on solid electrodes. Electrochim Acta 54:2630–2634

    Article  CAS  Google Scholar 

  40. Brug GJ, van den Eeden AL, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem 176:275–295

    Article  CAS  Google Scholar 

  41. Matsushima H, Bund A, Plieth W, Kikuchi S, Fukunaka Y (2007) Copper electrodeposition in a magnetic field. Electrochim Acta 53:161–166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the project of Liaoning Province Shenyang National Laboratory for Materials Science Joint Research (Project 2019JH3/30100021) and Shenyang Ligong University Innovation Team Fund Support. We also like to express our gratitude to the anonymous reviewers of this paper for their criticisms and suggestions that contributed to improve our work.

Funding

This work was supported by the project of Liaoning Province Shenyang National Laboratory for Materials Science Joint Research (Project 2019JH3/30100021).

Author information

Authors and Affiliations

Authors

Contributions

Chongbo Zhan: completed the main experiment; data analysis and related chart making; writing draft. Runjia Zhang: completed some experiments. Xu Fu: completed some experiments. Haijing Sun, Xin Zhou: paper review and suggestion for revision. Baojie Wang, Han Li: paper review and suggestion for revision. Jie Sun: supervision, writing—review and editing, funding acquisition.

Corresponding author

Correspondence to Jie Sun.

Ethics declarations

Ethical approval

The manuscript does not include human/animal studies

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, C., Zhang, R., Fu, X. et al. Effect of KBr on electrodeposition of Ag in choline chloride-ethylene glycol deep eutectic solvents. Ionics 29, 4325–4335 (2023). https://doi.org/10.1007/s11581-023-05124-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05124-6

Keywords

Navigation