Skip to main content

Advertisement

Log in

Benzyl isocyanate: an effective high-voltage film-forming additive for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The advancement of high-energy density lithium-ion batteries has an important impact on developing and popularizing electric vehicles, drones, and other electric tools. However, inferior interfacial stability between electrodes and electrolytes at high voltage has constrained the development of lithium-ion batteries. Here, benzyl isocyanate (BI) with an isocyanate group has been investigated as an electrolyte additive to enhance electrode/electrolyte intercalation stability in lithium-ion batteries. The results demonstrate that BI can be preferentially oxidized on the electrode surface to form a stable and uniform protective film, which reduces the interfacial impedance and thus improves the cycling stability of the cell. In the electrolyte containing 3 wt% BI, the capacity retention of Li||LiNi0.8Co0.1Mn0.1O2 was maintained at 79.4% after 200 cycles, which was greater than that of the baseline electrolyte (66.9%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    CAS  Google Scholar 

  2. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3:267–278

    CAS  Google Scholar 

  3. Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

    CAS  Google Scholar 

  4. Yang Y, Wang H, Zhu C, Ma J (2023) Armor-like inorganic-rich cathode electrolyte interphase enabled by pentafluorophenylboronic acid for high-voltage Li||NCM622 batteries. Angew Chem Int Ed:e202300057

  5. Sun M, Fan S, Liu Y, Wang Q (2022) Amide compounds as electrolyte additives for improving the performance of high-voltage lithium-ion batteries. Ionics 28:1753–1766

    CAS  Google Scholar 

  6. Jung S-K, Gwon H, Hong J, Park K-Y, Seo D-H, Kim H, Hyun J, Yang W, Kang K (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4:1300787

    Google Scholar 

  7. Wu D, Zhu C, Wu M, Wang H, Huang J, Tang D, Ma J (2022) Highly oxidation-resistant electrolyte for 4.7 V sodium metal batteries enabled by anion/cation solvation engineering. Angew Chem Int Ed 61(52):e202214198

    CAS  Google Scholar 

  8. Yang Q, Wang W, Qian K, Li B (2019) Investigation of interfacial changes on grain boundaries of Li(Ni0.5Co0.2Mn0.3)O2 in the initial overcharge process. Adv Mater Interfaces 6:1801764

    Google Scholar 

  9. Laskar MR, Jackson DHK, Xu S, Hamers RJ, Morgan D, Kuech TF (2017) Atomic layer deposited MgO: a lower overpotential coating for Li[Ni0.5Mn0.3Co0.2]O2 cathode. ACS Appl Mater Interfaces 9:11231–11239

    CAS  PubMed  Google Scholar 

  10. Li X, Liu J, Meng X, Tang Y, Banis MN, Yang J, Hu Y, Li R, Cai M, Sun X (2014) Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J Power Sources 247:57–69

    CAS  Google Scholar 

  11. Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J-G (2017) Li- and Mn-Rich cathode materials: challenges to commercialization. Adv Energy Mater 7:1601284

    Google Scholar 

  12. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

    CAS  PubMed  Google Scholar 

  13. Qian Y, Niehoff P, Börner M, Grützke M, Mönnighoff X, Behrends P, Nowak S, Winter M, Schappacher FM (2016) Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. J Power Sources 329:31–40

    CAS  Google Scholar 

  14. Wang F, Lin Y, Suo L, Fan X, Gao T, Yang C, Han F, Qi Y, Xu K, Wang C (2016) Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive. Energy Environ Sci 9:3666–3673

    CAS  Google Scholar 

  15. Tan S, Zhang Z, Li Y, Li Y, Zheng J, Zhou Z, Yang Y (2013) Tris(hexafluoro-iso-propyl)phosphate as an SEI-Forming additive on improving the electrochemical performance of the Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material. J Electrochem Soc 160:A285

    CAS  Google Scholar 

  16. Wang F-M, Cheng H-M, Wu H-C, Chu S-Y, Cheng C-S, Yang C-R (2009) Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries. Electrochim Acta 54:3344–3351

    CAS  Google Scholar 

  17. Zhao W, Zheng B, Liu H, Ren F, Zhu J, Zheng G, Chen S, Liu R, Yang X, Yang Y (2019) Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance. Nano Energy 63:103815

    CAS  Google Scholar 

  18. Li Y, Wang K, Chen J, Zhang W, Luo X, Hu Z, Zhang Q, Xing L, Li W (2020) Stabilized high-voltage cathodes via an F-Rich and Si-containing electrolyte additive. ACS Appl Mater Interfaces 12:28169–28178

    CAS  PubMed  Google Scholar 

  19. Xu MQ, Li WS, Zuo XX, Liu JS, Xu X (2007) Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive. J Power Sources 174:705–710

    CAS  Google Scholar 

  20. Contestabile M, Morselli M, Paraventi R, Neat RJ (2003) A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells. J Power Sources 119-121:943–947

    CAS  Google Scholar 

  21. Ota H, Shima K, Ue M, Yamaki J-i (2004) Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim Acta 49:565–572

    CAS  Google Scholar 

  22. Xiao Z-X, Cui S-L, Wang Y-Y, Liu S, Li G-R, Gao X-P (2021) Enabling LiNi0.88Co0.09Al0.03O2 cathode materials with stable interface by modifying electrolyte with trimethyl borate. ACS Sustain Chem Eng 9:1958–1968

    CAS  Google Scholar 

  23. Lee H, Choi S, Choi S, Kim H-J, Choi Y, Yoon S, Cho J-J (2007) SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5V Li-ion batteries. Electrochem Commun 9:801–806

    CAS  Google Scholar 

  24. Lim SH, Jung K, Lee KJ, Mun J, Han YK, Yim T (2020) Triethanolamine borate as a surface stabilizing bifunctional additive for Ni-rich layered oxide cathode. Int J Energy Res 45:2138–2147

    Google Scholar 

  25. Wang Q, Sun D, Zhou X, Wang A, Wang D, Zhu J, Shen C, Liu Y, Guo B, Wang D (2020) Amide-based interface layer with high toughness in situ building on the li metal anode. ACS Appl Mater Interfaces 12:25826–25831

    CAS  PubMed  Google Scholar 

  26. Lu J, Wang W, Yang T, Li S, Zhao X, Fan W, Fan C, Zuo X, Nan J (2020) Hexamethylene diisocyanate (HDI)-functionalized electrolyte matching LiNi0·6Co0·2Mn0·2O2/graphite batteries with enhanced performances. Electrochim Acta 352:136456

    CAS  Google Scholar 

  27. Sun D, Wang Q, Zhou J, Lyu Y, Liu Y, Guo B (2018) Forming a stable CEI layer on LiNi0.5Mn1.5O4 cathode by the synergy effect of FEC and HDI. J Electrochem Soc 165:A2032

    CAS  Google Scholar 

  28. Liu Y, Qin Y, Peng Z, Zhou J, Wan C, Wang D (2015) Hexamethylene diisocyanate as an electrolyte additive for high-energy density lithium ion batteries. J Mater Chem A 3:8246–8249

    CAS  Google Scholar 

  29. Liu G, Xu N, Zou Y, Zhou K, Yang X, Jiao T, Yang W, Yang Y, Zheng J (2021) Stabilizing Ni-Rich LiNi0.83Co0.12Mn0.05O2 with cyclopentyl isocyanate as a novel electrolyte additive. ACS Appl Mater Interfaces 13:12069–12078

    CAS  PubMed  Google Scholar 

  30. Xiao Z, Wang R, Li Y, Sun Y, Fan S, Xiong K, Zhang H, Qian Z (2019) Electrochemical analysis for enhancing interface layer of spinel LiNi0.5Mn1.5O4 using p-toluenesulfonyl isocyanate as electrolyte additive. Front Chem 7:591

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang R, Li X, Wang Z, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34:131–140

    CAS  Google Scholar 

  32. Dong P, Wang D, Yao Y, Li X, Zhang Y, Ru J, Ren T (2017) Stabilizing interface layer of LiNi0.5Co0.2Mn0.3O2 cathode materials under high voltage using p-toluenesulfonyl isocyanate as film forming additive. J Power Sources 344:111–118

    CAS  Google Scholar 

  33. Wang R-H, Li X-H, Wang Z-X, Guo H-J, He Z-J (2015) Electrochemical analysis for enhancing interface layer of spinel Li4Ti5O12: p-toluenesulfonyl isocyanate as electrolyte additive. ACS Appl Mater Interfaces 7:23605–23614

    CAS  PubMed  Google Scholar 

  34. Wang R, Li X, Wang Z, Guo H, Wang J (2015) Electrochemical analysis for cycle performance and capacity fading of lithium manganese oxide spinel cathode at elevated temperature using p-toluenesulfonyl isocyanate as electrolyte additive. Electrochim Acta 180:815–823

    CAS  Google Scholar 

  35. Wu F, Xiang J, Li L, Chen J, Tan G, Chen R (2012) Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. J Power Sources 202:322–331

    CAS  Google Scholar 

  36. Liu Y, Sun D, Zhou J, Qin Y, Wang D, Guo B (2018) Isophorone diisocyanate: an effective additive to form cathode-protective-interlayer and its influence on LiNi0.5Co0.2Mn0.3O2 at high potential. ACS Appl Mater Interfaces 10:11305–11310

    CAS  PubMed  Google Scholar 

  37. Jing Lu WW, Yang T, Li S, Zhao X, Fan W, Chaojun Fan XZ, Nan J (2020) Hexamethylene diisocyanate (HDI)-functionalized electrolyte matching LiNi0.6Co0.2Mn0.2O2/graphite batteries with enhanced performances. Electrochim Acta 136456

  38. Xu X, Qin Y, Yang W, Sun D, Liu Y, Guo B, Wang D (2017) Influence of HDI as a cathode film-forming additive on the performance of LiFe0.2Mn0.8PO4/C cathode. RSC Adv 7:41970–41972

    CAS  Google Scholar 

  39. Wang R, Dai X, Qian Z, Sun Y, Fan S, Xiong K, Zhang H, Wu F (2020) In situ surface protection for enhancing stability and performance of LiNi0.5Mn0.3Co0.2O2 at 4.8 V: the working mechanisms. ACS Materials Letters 2:280–290

    CAS  Google Scholar 

  40. Wu F, Tian J, Su Y, Wang J, Zhang C, Bao L, He T, Li J, Chen S (2015) Effect of Ni(2+) content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl Mater Interfaces 7:7702–7708

    CAS  PubMed  Google Scholar 

  41. Zheng J, Yan P, Zhang J, Engelhard MH, Zhu Z, Polzin BJ, Trask S, Xiao J, Wang C, Zhang J (2017) Suppressed oxygen extraction and degradation of LiNixMnyCozO2 cathodes at high charge cut-off voltages. Nano Res 10:4221–4231

    CAS  Google Scholar 

  42. Li W, Dolocan A, Oh P, Celio H, Park S, Cho J, Manthiram A (2017) Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nat Commun 8:14589

    PubMed  PubMed Central  Google Scholar 

  43. Zheng J, Kan WH, Manthiram A (2015) Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8−xCo0.1Mn0.1+xO2 (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. ACS Appl Mater Interfaces 7:6926–6934

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (22075173) and the Science and Technology Commission of Shanghai Municipality (19DZ2271100 and 21010501100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baofeng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Shen, J., Xie, Q. et al. Benzyl isocyanate: an effective high-voltage film-forming additive for lithium-ion batteries. Ionics 29, 2687–2695 (2023). https://doi.org/10.1007/s11581-023-05016-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05016-9

Keywords

Navigation