Skip to main content

Advertisement

Log in

The influence of S-doped technique on supercapacitor performances for Co(OH)2@nitrogen-doped carbon dots

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Recently, Co-based materials have been widely used as a type of supercapacitor. However, Co-based materials are highly restricted due to their low conductivity, poor cyclic performance, and large structural changes during the charge/discharge process. Carbon materials have been found to improve the electrochemistry performance of Co(OH)2. In this work, sulfur doping was used to enhance the electrochemistry performance of Co(OH)2@nitrogen-doped carbon dots (Co(OH)2@NC) via hydrothermal approach. Here, as-prepared S-Co(OH)2@NC shows an excellent specific capacitance of 730 F g−1 at 1 A g−1 (much higher than that of pristine Co(OH)2@NC (592 F g−1 at 1 A g−1)). An asymmetric supercapacitor (ASC) is assembled by S-Co(OH)2@NC (as a positive electrode) and graphene aerogels@NC (as a negative electrode), which presents a specific energy density as high as 39.59 Wh kg−1 with a power density of 639 W kg−1. Moreover, the ACS manifests extraordinary cycle stability (75% capacitance retention after 8500 cycles). In summary, sulfur doping in electrode material has been proven as an efficient approach for improving the electrochemical performance in supercapacitor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sahoo S, Ratha S, Rout CS et al (2022) Self-charging supercapacitors for smart electronic devices: a concise review on the recent trends and future sustainability[J]. J Mater Sci 57:4399–4400

    Article  CAS  Google Scholar 

  2. Gao YP, Zhai ZB, Wang QQ et al (2019) Cycling profile of layered MgAl2O4/reduced graphene oxide composite for asymmetrical supercapacitor[J]. J Colloid Interface Sci 539:38–44

    Article  CAS  PubMed  Google Scholar 

  3. Gao YP, Wei ZN, Xu J (2020) High-performance asymmetric supercapacitor based on 1T-MoS2 and MgAl-Layered double hydroxides[J]. Electrochim Acta 330:135195

    Article  CAS  Google Scholar 

  4. Chen W, Yu H, Lee SY et al (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage[J]. Chem Soc Rev 47:2837–2872. https://doi.org/10.1039/C7CS00790F

    Article  CAS  PubMed  Google Scholar 

  5. Chen D, Jiang K, Huang T et al (2020) Recent advances in fiber supercapacitors: materials, device configurations, and applications[J]. Adv Mater 32:1901806. https://doi.org/10.1002/adma.201901806

    Article  CAS  Google Scholar 

  6. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem 7:19–29

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen T, Fatima M (2019) Montemor metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices[J]. Adv Sci 6:1801797. https://doi.org/10.1002/advs.201801797

    Article  CAS  Google Scholar 

  8. Gao YP, Huang KJ, Zhang CX et al (2017) High-performance symmetric supercapacitor based on flower-like zinc molybdate[J]. J Alloy Compd 753:1151–1158. https://doi.org/10.1016/j.jallcom.2017.10.161

    Article  CAS  Google Scholar 

  9. Xu Z, Du C, Yang H et al (2021) NiCoP@CoS tree-like core-shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors[J]. Chem Eng J 421:127871. https://doi.org/10.1016/j.cej.2020.127871

    Article  CAS  Google Scholar 

  10. Senthilkumar ST, Fu N, Liu Y et al (2016) Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon[J]. Electrochim Acta 211:411–419. https://doi.org/10.1016/j.electacta.2016.06.059

    Article  CAS  Google Scholar 

  11. Kumar KS, Choudhary N, Jung Y et al (2018) recent advances in two-dimensional nanomaterials for supercapacitor electrode applications[J]. ACS Energy Lett 3:482–495. https://doi.org/10.1021/acsenergylett.7b01169

    Article  CAS  Google Scholar 

  12. Wu H, Jiang K, Gu S et al (2015) Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors[J]. Nano Res 8:3544–3552

    Article  CAS  Google Scholar 

  13. Gao ZY, Wang Z, Chang JL et al (2019) Ligustrazine inhibits B16F10 melanoma metastasis and suppresses angiogenesis induced by vascular endothelial growth factor[J]. Colloid Interface Sci 534:563–573. https://doi.org/10.1016/j.bbrc.2009.06.042

    Article  CAS  Google Scholar 

  14. Yavuz A, Erdogan PY, Ozdemir N et al (2019) Electrochemical synthesis of CoOOH–Co(OH)2 composites electrode on graphite current collector for supercapacitor applications[J]. J Mater Sci Mater Electron 30:18413–18423

    Article  CAS  Google Scholar 

  15. Lei X, Shi Z, Wang X et al (2018) Solvothermal synthesis of pompon-like nickel-cobalt hydroxide/graphene oxide composites for high-performance supercapacitor application[J]. Colloids Surf A 549:76–85. https://doi.org/10.1016/j.colsurfa.2018.04.011

    Article  CAS  Google Scholar 

  16. Sahoo S, Late NKK, DJ, et al (2017) Electrochemical synthesis of a ternary transition metal sulfide nanosheets on nickel foam and energy storage application[J]. J Alloy Compd 695:154–161

    Article  CAS  Google Scholar 

  17. Liu WW, Feng YQ, Yan XB et al (2013) Superior microsupercapacitors based on graphene quantum dots[J]. Adv Funct Mater 23:4111–4122. https://doi.org/10.1002/adfm.201203771

    Article  CAS  Google Scholar 

  18. Zuo P, Lu X, Sun Z et al (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots[J]. Microchim Acta 183:519–542

    Article  CAS  Google Scholar 

  19. Zhang S, Sui LN, Dong HZ et al (2018) High-performance supercapacitor of graphene quantum dots with uniform sizes[J]. ACS Appl Mater Interfaces 10:12983–12991

    Article  CAS  PubMed  Google Scholar 

  20. Wang Q, Qu ZT, Chen SH et al (2022) Metal organic framework derived P-doping CoS@C with sulfide defect to boost high-performance asymmetric supercapacitors[J]. J Colloid Interface Sci 624:385–393. https://doi.org/10.1016/j.jcis.2022.03.053

    Article  CAS  PubMed  Google Scholar 

  21. Sahoo S, Krishnamoorthy K, Pazhamalai P et al (2018) Copper molybdenum sulfide anchored nickel foam: a high performance, binder-free, negative electrode for supercapacitors[J]. Nanoscale 10:13838–13888

    Article  Google Scholar 

  22. De B, Karak N (2017) InP Quantum Dots: An Environmentally Friendly Material with Resonance Energy Transfer Requisites[J]. J Mater Chem A 5:1826–1859. https://doi.org/10.1021/acsami.8b00323

    Article  CAS  Google Scholar 

  23. Wang XX, Liu KH, Li J et al (2023) Creation of an extrinsic pseudocapacitive material presenting extraordinary cycling-life with the battery-type material Co(OH)2 by S2− doping for application in supercapacitors[J]. Chem Eng J 451:138969

    Article  CAS  Google Scholar 

  24. Hou C, Hou Y, Fan Y et al (2018) Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes highperformance Li-ion batteries[J]. J Mater Chem A 6(16):6967–6976. https://doi.org/10.1039/C8TA00975

    Article  CAS  Google Scholar 

  25. Zhao T, Liu C, Yi F et al (2020) Hollow N-doped carbon @ O-vacancies NiCo2O4 nanocages with a built-in electric field as high-performance cathodes for hybrid supercapacitor[J]. Electrochim Acta 364:137260. https://doi.org/10.1016/j.electacta.2020.137260

    Article  CAS  Google Scholar 

  26. Chen ZH, Zheng WJ, Zhang X et al (2022) Coupling of chrysanthemum-shaped cobalt hydroxide and nitrogen-doped carbon dots for high-performance hybrid supercapacitors[J]. J Electroanal Chem 925:116666. https://doi.org/10.1016/j.jelechem.2022.116666

    Article  CAS  Google Scholar 

  27. Zhou SS, Hao C, Wang JJ et al (2018) Metal-organic framework templated synthesis of porous NiCo2O4/ZnCo2O4/Co3O4 hollow polyhedral nanocages and their enhanced pseudocapacitive properties[J]. Chem Eng J 351:74–84. https://doi.org/10.1016/j.cej.2018.06.070

    Article  CAS  Google Scholar 

  28. Thirumal V, Pandurangan A, Jayavel R et al (2016) Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications[J]. Synth Met 220:524–532. https://doi.org/10.1016/j.synthmet.2016.07.011

    Article  CAS  Google Scholar 

  29. Wang ET, Jiang SS, Bu XD (2020) One-pot electrochemical assembling of porous cobalt hydroxide/nitrogen-doped porous graphene onto Ni foam as a binder-free electrode for supercapacitor applications[J]. J Energy Storage 32:101881. https://doi.org/10.1016/j.est.2020.101881

    Article  Google Scholar 

  30. Shi WL, Liu YN, Shi YX et al (2023) Realization of photocatalytic hydrogen production by optimizing energy band structure and promoting charges separation over the S-doped CoFe2O4 microrods[J]. Mater Today Commun 35:105588. https://doi.org/10.1016/j.mtcomm.2023.105588

    Article  CAS  Google Scholar 

  31. Ghosh D, Giri S, Das CK (2013) Preparation of CTAB-assisted hexagonal platelet Co(OH)2/graphene hybrid composites as efficient supercapacitor electrode material[J]. ACS Sustain Chem Eng 1(9):1135–1142. https://doi.org/10.1021/sc400055z

    Article  CAS  Google Scholar 

  32. Singh SK, Dhavale VM, Boukherroub R et al (2017) S. N-doped porous reduced graphene oxide as an efficient electrode material for high performance flexible solid-state supercapacitor[J]. Appl Mater Today 8:141–149. https://doi.org/10.1016/j.apmt.2016.10.002

    Article  Google Scholar 

  33. Manohara Babu I, William JJ, Muralidharan G (2019) Carboxymethyl cellulose aided fabrication of flaky structured mesoporous β-Co(OH)2/C nanocomposites for supercapacitors[J]. J Mater Sci Mater Electron 30:2107–2117

    Article  Google Scholar 

  34. Sahoo S, Krishnamoorthy K, Pazhamalai P et al (2019) Copper molybdenum sulfide nanoparticles embedded on graphene sheets as advanced electrodes for wide temperature-tolerant supercapacitors[J]. Inorg Chem Front 6:1775–1784

    Article  CAS  Google Scholar 

  35. Peng SJ, Han XP, Li LL et al (2016) Unique cobalt sulfide/reduced graphene oxide composites as an anode for sodium-ion batteries with superior rate capability and long cycling stability[J]. Small 12:1359–1368. https://doi.org/10.1002/smll.201502788

    Article  CAS  PubMed  Google Scholar 

  36. Miao XH, Pan K, Wang GF et al (2014) Well-dispersed CoS nanoparticles on a functionalized graphene nanosheet surface: a counter electrode of dye-sensitized solar cells[J]. Chem Eur J 20:474–482. https://doi.org/10.1002/chem.201303558

    Article  CAS  PubMed  Google Scholar 

  37. Chen M, Xiao J, Hua W et al (2020) A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for High-Power Sodium-Ion Batteries[J]. Angew Chem Int Ed 59:12076–12083. https://doi.org/10.1002/ange.202003275

    Article  CAS  Google Scholar 

  38. Wang YJ, Li AS, Cheng CW (2021) Ultrathin Co(OH)2 Nanosheets@nitrogen-doped carbon nanoflake arrays as efficient air cathodes for rechargeable Zn–Air batteries[J]. Small 17:2101720. https://doi.org/10.1002/smll.202101720

    Article  CAS  Google Scholar 

  39. Chen D, Shao SB, Zhang W et al (2022) Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of Ti3C2 nanosheets for sensitive uric acid detection[J]. Anal Chim Acta 1197:339520

    Article  CAS  PubMed  Google Scholar 

  40. Zhang HJ, Cai CL, Zhang SM et al (2021) Metathesis reaction to form nanosheet-structured Co(OH)2 deposited on n-doped carbon as composites electrocatalysts for oxygen reduction[J]. ACS Appl Energy Mater 4:4165–4172. https://doi.org/10.1021/acsaem.1c00487

    Article  CAS  Google Scholar 

  41. Wang CJ, Wang YB, Shi HX et al (2019) A strong blue fluorescent nanoprobe for highly sensitive and selective[J]. Mater Chem Phys 232:145–215. https://doi.org/10.1016/j.matchemphys.2019.04.071

    Article  CAS  Google Scholar 

  42. Wang QH, Jiao LF, Du HM et al (2011) Novel flower-like CoS hierarchitectures: one-pot synthesis and electrochemical properties[J]. J Mater Chem 21(2):1–5

    Article  Google Scholar 

  43. Pallavolu MR, Prabhu S, Nallapureddy RR et al (2023) Bio-derived graphitic carbon quantum dot encapsulated S- and N-doped graphene sheets with unusual battery-type behavior for high-performance supercapacitor[J]. Carbon 202:93–102

    Article  CAS  Google Scholar 

  44. Chen CY, Shih ZY, Yang Z et al (2012) Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors [J]. J Power Sources 215:43–47. https://doi.org/10.1016/j.jpowsour.2012.04.075

    Article  CAS  Google Scholar 

  45. Niu LY, Wang YD, Ruan FP et al (2016) In situ growth of NiCo2S4@Ni3V2O8 on Ni foam as a binder-free electrode for asymmetric supercapacitors[J]. J Mater Chem A 4:5669–5677

    Article  CAS  Google Scholar 

  46. Nz M, Rahmanifar MS, Noori A et al (2021) The ordered mesoporous carbon nitride-graphene aerogel nanocomposite for high-performance supercapacitors[J]. J Power Sources 494:229741. https://doi.org/10.1016/j.jpowsour.2021.229741

    Article  CAS  Google Scholar 

  47. Ji ZY, Li N, Xie MH et al (2020) High-performance hybrid supercapacitor realized by nitrogen-doped carbon dots modified cobalt sulfide and reduced graphene oxide. Electrochimica Acta 334:135632. https://doi.org/10.1016/j.electacta.2020.135632

  48. Ren JC, Meng QY, Xu ZY et al (2019) CoS2 hollow nanocubes derived from Co-Co Prussian blue analogue: high-performance electrode materials for supercapacitors[J]. J Electroanal Chem 836:30–37

    Article  CAS  Google Scholar 

  49. Han X, Tao K, Wang D et al (2018) Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors[J]. Nanoscale 10:2735–2741

    Article  CAS  PubMed  Google Scholar 

  50. Chen Q, Cai D, Zhan H (2017) Construction of reduced graphene oxide nanofibers and cobalt sulfide nanocomposite for pseudocapacitors with enhanced performance[J]. J Alloy Compd 706:126–132

    Article  CAS  Google Scholar 

  51. Miao Y, Zhang X, Zhan J et al (2020) Hierarchical NiS@ CoS with controllable core-shell structure by twostep strategy for supercapacitor electrodes[J]. Adv Mater Interfaces 7:1901618

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Major Special Project of Fujian Province (Grant No. 2021HZ027002), Fujian Provincial Science and Technology Plan Project (Grant No. 2021H4004), Fuzhou Science and Technology Plan Project (Grant NO. 2021-ZD-285), and Quanzhou Municipal Science and Technology Plan Project (Grant No. 2021C002R).

Author information

Authors and Affiliations

Authors

Contributions

FanYi Lin wrote the main manuscript text. FanYi Lin and Zihan Chen designed this study and detailed experiments. FanYi Lin and Xiansheng Hong carried out the experiment work and collected the experimental results. Xiansheng Hong and Yuying Zheng revised the article. Yuying Zheng provided financial support for this study.

Corresponding author

Correspondence to Yuying Zheng.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1007 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Hong, X., Chen, Z. et al. The influence of S-doped technique on supercapacitor performances for Co(OH)2@nitrogen-doped carbon dots. Ionics 29, 3249–3259 (2023). https://doi.org/10.1007/s11581-023-04982-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04982-4

Keywords

Navigation