Skip to main content

Advertisement

Log in

A review on microbial fuel cell and green energy

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Microbial fuel cells have received great interest as a mode of energy conversion tool for generating green energy by using various substrate molecules catalyzed by microorganisms. MFCs use microbes especially bacteria as the catalysts to oxidize organic and inorganic substrates loaded in wastewater and generate electricity without adding any carbon footprint to the atmosphere. The biggest challenge faced by the MFCs is its poor power output. Several strategies have been adopted to enhance power output. The strategies include the use of genetically engineered active microbes that provide a high transfer rate of electrons, the use of polymer-coated electrodes and electrodes made from naturally available materials, the use of cheap ceramic and clay to cut down the cost of membranes, and the utilization of effective non-toxic mediators, high-volume MFCs, stacking of MFCS, etc. This problem could be sorted out by the selection of promising microbes and apart from several other factors reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References  

  1. Alidrisi H, Demirbas A (2016) Enhanced electricity generation using biomass materials. Energy Sources, Part A: Recover Utilization Environ Effects 38:1419–1427

    Article  CAS  Google Scholar 

  2. Kober T, Schiffer HW, Densing M, Panos E (2020) Global energy perspectives to 2060–WEC’s World Energy Scenarios 2019. Energ Strat Rev 31:100523–100531

    Article  Google Scholar 

  3. Siddiqi MM, Naseer MN, Wahab A, Hamizi NA, Badruddin IA, Hasan MA, Zaman Chowdhury Z, Akbarzade O, Johan MR, Kamangar S (2020) Exploring e-waste resources recovery in household solid waste recycling. Processes 8:1047–1059

    Article  CAS  Google Scholar 

  4. Zhang Y, Zheng L, Zhang Q, Li C (2021) Simultaneous degradation of high concentration of citric acid coupled with electricity generation in dual-chamber microbial fuel cell. Biochem Eng J 173:108095

    Article  CAS  Google Scholar 

  5. Li WW, Yu HQ, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924

    Article  CAS  Google Scholar 

  6. Abbasi T, Abbasi S (2012) Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renew Sustain Energy Rev 16:1696–1708

    Article  CAS  Google Scholar 

  7. Tauseef S, Abbasi T, Abbasi S (2013) Energy recovery from wastewaters with high-rate anaerobic digesters. Renew Sustain Energy Rev 19:704–741

    Article  CAS  Google Scholar 

  8. Malekmohammadi S, Ahmad Mirbagheri S (2021) A review of the operating parameters on the microbial fuel cell for wastewater treatment and electricity generation. Water Sci Technol 84:1309–1323

    Article  CAS  PubMed  Google Scholar 

  9. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc Royal Soc London Series b, Containing Papers Biol Charact 84:260–276

    Article  Google Scholar 

  10. Cohen B (1931) The bacterial culture as an electrical half-cell. J Bacteriol 21:18–19

    CAS  Google Scholar 

  11. Bennetto H, Stirling J, Dew M, Tanaka K (1981) Rates of reduction of phenothiazine'redox' dyes by E. coli. Chem Ind 776–778

  12. Thurston C, Bennetto H, Delaney G, Mason J, Roller S, Stirling J (1985) Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. Microbiology 131:1393–1401

    Article  CAS  Google Scholar 

  13. Allen RM, Bennetto H (1993) Microbial fuel-cells. Appl Biochem Biotechnol 39:27–40

    Article  Google Scholar 

  14. Verma J, Kumar D, Singh N, Katti SS, Shah YT (2021) Electricigens and microbial fuel cells for bioremediation and bioenergy production: a review. Environ Chem Lett 19:2091–2126

    Article  CAS  Google Scholar 

  15. Srivastava P, Belford A, Abbassi R, Asadnia M, Garaniya V, Yadav AK (2021) Low-power energy harvester from constructed wetland-microbial fuel cells for initiating a self-sustainable treatment process. Sustainable Energy Technol Assess 46:101282

    Article  Google Scholar 

  16. Chandrasekhar Y-H (2017) Effectiveness of piggery waste treatment using microbial fuel cells coupled with elutriated-phased acid fermentation. Bioresour Technol 244:650–657

    Article  CAS  PubMed  Google Scholar 

  17. Sarmin S, Ethiraj B, Islam MA, Ideris A, Yee CS, Khan MMR (2019) Bio-electrochemical power generation in petrochemical wastewater fed microbial fuel cell. Sci Total Environ 695:133820

    Article  CAS  PubMed  Google Scholar 

  18. Choudhury P, Ray RN, Bandyopadhyay TK, Basak B, Muthuraj M, Bhunia B (2021) Process engineering for stable power recovery from dairy wastewater using microbial fuel cell. Int J Hydrogen Energy 46:3171–3182

    Article  CAS  Google Scholar 

  19. Khater DKM, El-khatib MH, Rabeay Y, Hassan A (2015) Electricity generation using Glucose as substrate in microbial fuel cell. J Basic Environ Sci 2:84–98

    Google Scholar 

  20. Sahari SK, Rosli MZF, Butit AM, Kipli K, Anyi M, Awang A, Sawawi M, Mahmood M, Hasanah L, Kram AR (2022) Fabrication of single chamber microbial fuel cell (SMFC) using soil as a substrate. Pertanika J Sci Technol 30:1103–1114

    Article  Google Scholar 

  21. Kumar R, Singh L, Zularisam AW (2016) Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew Sustain Energy Rev 56:1322–1336

    Article  CAS  Google Scholar 

  22. Mohan SV, Velvizhi G, Modestra JA, Srikanth S (2014) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sustain Energy Rev 40:779–797

    Article  Google Scholar 

  23. Shehab NA, Ortiz-Medina J, Katuri KP, Hari AR, Amy G, Logan BE, Saikaly PE (2017) Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Biores Technol 239:82–86

    Article  CAS  Google Scholar 

  24. Ji B, Zhao Y, Vymazal J, Mander Ü, Lust R, Tang C (2021) Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis. Chemosphere 262:128366

    Article  CAS  PubMed  Google Scholar 

  25. Guan YF, Zhang F, Huang BC, Yu HQ (2019) Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode. J Clean Prod 229:412–419

    Article  CAS  Google Scholar 

  26. Zhang L, Fu G, Zhang Z (2019) Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment. Biores Technol 272:105–113

    Article  CAS  Google Scholar 

  27. Munoz-Cupa C, Hu Y, Xu C, Bassi A (2021) An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci Total Environ 754:142429

    Article  CAS  PubMed  Google Scholar 

  28. Chen KT, Bai MD, Wu SI, Chen CC, Lu WJ, Wan HP, Huang C (2019) Electro-autotrophs induced the growth of exoelectrogens on the anode in a microbial fuel cell. Biochem Eng J 141:29–34

    Article  CAS  Google Scholar 

  29. Huang X, Duan W, Sun F, Cui H, Zhang S, Chen X (2021) Role of electrode materials on performance and microbial characteristics in the constructed wetland coupled microbial fuel cell (CW-MFC): a review. J Clean Prod 301:126951

    Article  Google Scholar 

  30. Kaur R, Marwaha A, Chhabra VA, Kim KH, Tripathi S (2020) Recent developments on functional nanomaterial-based electrodes for microbial fuel cells. Renew Sustain Energy Rev 119:109551

    Article  CAS  Google Scholar 

  31. Leiva-Aravena E, Leiva E, Zamorano V, Rojas C, Regan JM, Vargas IT (2019) Organotrophic acid-tolerant microorganisms enriched from an acid mine drainage affected environment as inoculum for microbial fuel cells. Sci Total Environ 678:639–646

    Article  CAS  PubMed  Google Scholar 

  32. Li F, An X, Wu D, Xu J, Chen Y, Li W, Cao Y, Guo X, Lin X, Li C (2019) Engineering microbial consortia for high-performance cellulosic hydrolyzates-fed microbial fuel cells. Front Microbiol 10:409. https://doi.org/10.3389/fmicb.2019.00409

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zheng T, Wang J, Wang Q, Nie C, Smale N, Shi Z, Wang X (2015) A bibliometric analysis of industrial wastewater research: current trends and future prospects. Scientometrics 105:863–882

    Article  Google Scholar 

  34. Idris SA, Esat FN, Abd Rahim AA, Rizzqi WZ, Ruzlee W, Razali WZ (2016) Electricity generation from the mud by using microbial fuel cell. in: MATEC web of conferences EDP Sciences, pp 02001

  35. Xu X, Zhao Q, Wu M, Ding J, Zhang W (2017) Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe (III) oxide addition. Biores Technol 225:402–408

    Article  CAS  Google Scholar 

  36. Pawar AA, Karthic A, Lee S, Pandit S, Jung SP (2022) Microbial electrolysis cells for electromethanogenesis: Materials, configurations and operations. Environ Eng Res 27:200484–200514

    Article  Google Scholar 

  37. Son S, Koo B, Chai H, Tran HVH, Pandit S, Jung SP (2021) Comparison of hydrogen production and system performance in a microbial electrolysis cell containing cathodes made of non-platinum catalysts and binders. J Water Process Eng 40:101844–101855

    Article  Google Scholar 

  38. Zahi M, Savla N, Pandit S, Thakur VK, Jung SP, Gupta PK, Prasad R, Marsili E (2022) Microbial desalination cell: Desalination through conserving energy. Desalination 521:115381–392

    Article  Google Scholar 

  39. Kang H, Kim E, Jung SP (2017) Influence of flowrates to a reverse electro-dialysis (RED) stack on performance and electrochemistry of a microbial reverse electrodialysis cell (MRC). Int J Hyd Energy 42:27685–27692

    Article  CAS  Google Scholar 

  40. Quraishi M, Wani K, Soumya Pandit S, Gupta PK, Rai AK, Lahiri D, Jadhav DA, Ray RR, Jung SP, Thakur VK, Prasad R (2021) Valorisation of CO2 into value-added products via microbial electrosynthesis (MES) and electro-fermentation technology. Fermentation 7:291–327

    Article  CAS  Google Scholar 

  41. Kurniawan TA, Chan GY, Lo WH, Babe S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  42. Wang Y, Lin S, Juang R (2003) Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. J Hazard Mater 102:291–302

    Article  CAS  PubMed  Google Scholar 

  43. Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Biores Technol 98:2568–2577

    Article  CAS  Google Scholar 

  44. Siva GV, Prashanthi R, Mohan N (2014) Bio-electricity production from industrial effluents using mediator less-microbial fuel cell (MFC). J Environ Appl Biores 2:44–48

    Google Scholar 

  45. Siva GV, Prashanthi R, Mohan N (2015) Bio-electricity production from organic waste using single chamber Microbial Fuel Cell (MFC). International Journal of Engineering SCIENCES & Research Technology 4(5):2277–9655

    Google Scholar 

  46. Prashanthi R (2017) Designing and construction of microbial fuel cell for generation of bioelectricity from the organic waste. Dissertation, University of Madras, Chennai, India

  47. Cao Y, Mu H, Liu W, Zhang Guo J, Xian M, Liu H (2019) Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb Cell Fact 18:1–14

    Article  Google Scholar 

  48. Hamed MS, Majdi HS, Hasan BO (2020) Effect of electrode material and hydrodynamics on the produced current in double chamber microbial fuel cells. ACS Omega 5:10339–10348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kalathil S, Patil SA, Pant D (2018) Microbial fuel cells: electrode materials. Encycl Interfacial Chem 1:13459–13466

    Google Scholar 

  50. Konovalova EY, Stom D, Zhdanova G, Yuriev Li, Y, Barbora Goswami P (2018) The microorganisms used for working in microbial fuel cells. In: AIP Conference Proceedings AIP Publishing LLC, pp 1952:020017

  51. Obilek K, Onyeaka H, Meyer EL, Nwokolo N (2021) Microbial fuel cells, a renewable energy technology for bio-electricity generation: a mini-review. Electrochem Commun 125:107003

    Article  Google Scholar 

  52. Sharma Y, Li B (2010) The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Biores Technol 101:1844–1850

    Article  CAS  Google Scholar 

  53. Duarte KD, Kwon Y (2020) In situ carbon felt anode modification via codeveloping Saccharomyces cerevisiae living-template titanium dioxide nanoclusters in a yeast-based microbial fuel cell. J Power Sources 474:228651

    Article  CAS  Google Scholar 

  54. Walter XA, Greenman J, Ieropoulos IA (2020) Microbial fuel cells directly powering a microcomputer. J Power Sources 446:227328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rethinasabapathy M, Vilian A, Hwang S, Kang SM, Cho Y, Han Y, Rhee J, Huh YS (2021) Cobalt ferrite microspheres as a biocompatible anode for higher power generation in microbial fuel cells. J Power Sources 483:229170

    Article  CAS  Google Scholar 

  56. Munjal M, Tiwari B, Lalwani S, Sharma M, Singh G, Sharma RK (2020) An insight of bioelectricity production in mediator less microbial fuel cell using mesoporous Cobalt Ferrite anode. Int J Hydrogen Energy 45:12525–12534

    Article  CAS  Google Scholar 

  57. Yang Y, Zhao Y, Tang C, Xu L, Morgan D, Li R (2020) Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation. Chem Eng J 392:123708

    Article  CAS  Google Scholar 

  58. Ho PI, Gnana Kumar G, Kim AR, Kim P, Nahm KS (2011) Microbial electricity generation of diversified carbonaceous electrodes under variable mediators. Bioelectrochemi 80:99–104

    Article  Google Scholar 

  59. Guo Y, Wang G, Zhang H, Wen H, Li W (2020) Effects of biofilm transfer and electron mediators transfer on Klebsiella quasipneumoniae sp. 203 electricity generation performance in MFCs. Biotechnol Biofuels 13:1–11

    Article  Google Scholar 

  60. Chaturvedi A, Kundu PP (2021) Recent advances and perspectives in platinum-free cathode catalysts in microbial fuel cells. J Environ Chem Eng 9:105662

    Article  CAS  Google Scholar 

  61. Peera SG, Maiyalagan T, Liu C, Ashmath S, Lee TG, Jiang MS (2021) A review on carbon and non-precious metal based cathode catalysts in microbial fuel cells. Int J Hydrogen Energy 46:3056–3089

    Article  CAS  Google Scholar 

  62. Qiu S, Guo Z, Na F, Yang Z, Yu C (2021) An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells. Bioelectrochemistry 141:107834

    Article  CAS  PubMed  Google Scholar 

  63. Song HL, Zhu Y, Li J (2019) Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells–a mini review. Arab J Chem 12:2236–2243

    Article  CAS  Google Scholar 

  64. Shirkosh M, Hojjat Y, Mardanpour MM (2022) Boosting microfluidic microbial fuel cells performance via investigating electron transfer mechanisms, metal-based electrodes, and magnetic field effect. Sci Rep 12:1–16

    Article  Google Scholar 

  65. Song C (2002) Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. Catal Tod 77:17–49

    Article  CAS  Google Scholar 

  66. Ucar D, Zhang Y, Angelidaki I (2017) An overview of electron acceptors in Microbial fuel cells. Frontiers in Microbiol. https://doi.org/10.3389/fmicb.2017.00643

    Article  Google Scholar 

  67. You S, Zhao Q, Zhang J, Jian J, Zhao S (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415

    Article  CAS  Google Scholar 

  68. Eliato TR, Pazuki G, Majidian N (2016) Potassium permanganate as an electron receiver in a microbial fuel cell. Energy Sources, part a: Recover Utilization Environ Eff 38:644–651

    Article  CAS  Google Scholar 

  69. Li J, Fu Q, Liao Q, Zhu X, Ye D, Tian X (2009) Persulfate: a self-activated cathodic electron acceptor for microbial fuel cells. J Power Sources 194:269–274

    Article  CAS  Google Scholar 

  70. Guerrero-Rangel N, Rodriguez-de la Garza J, Garza-Garcia Y, Rios-Gonzalez L (2010) Comparative Study of Three Cathodic Electron Acceptors on the. International Journal of Electrical and Power Engineering 4:27–31

    Article  Google Scholar 

  71. Kong X, Sun Y, Yuan Z, Li D, Li L, Li Y (2010) Effect of cathode electron-receiver on the performance of microbial fuel cells. Int J Hydrogen Energy 35:7224–7227

    Article  CAS  Google Scholar 

  72. Momoh O, Neayor B (2010) Generation of electricity from abattoir waste water with the aid of a relatively cheap source of catholyte. J Appl Sci Environ Manag 14:21–27

    Google Scholar 

  73. Mathuriya AS, Kaur A, Gupta PK, Pandit S, Jadhav DA (2021) Potential of microbial fuel cells for wastewater treatment. In: Bioremediation, Nutrients, and Other Valuable Product Recovery. Elsevier, pp 115–124

  74. Debabov V (2008) Electricity from microorganisms. Microbiology 77:123–131

    Article  CAS  Google Scholar 

  75. Liu X, Wang S, Xu A, Zhang L, Liu H, Ma LZ (2019) Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Appl Microbiol Biotechnolapplied Microbiol Biotechnol 103:1535–1544. https://doi.org/10.1007/s00253-018-9484-5

    Article  CAS  Google Scholar 

  76. Time (2009) The 50 best inventions of 2009. Available online: http://www.time.com/time/specials/packages/article/0,28804,1934027

  77. Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Varjani S, Kumar M (2020) Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review. Sci Total Environ 712:135612

    Article  CAS  PubMed  Google Scholar 

  78. Enamala MK, Dixit R, Tangellapally A, Singh M, Dinakarrao SMP, Chavali M, Pamanji SR, Ashokkumar V, Kadier A, Chandrasekhar K (2020) Photosynthetic microorganisms (Algae) mediated bioelectricity generation in microbial fuel cell: Concise review. Environ Technol Innov 19:10099

    Article  Google Scholar 

  79. Kim KY, Rossi R, Regan JM, Logan BE (2021) Enumeration of exoelectrogens in microbial fuel cell effluents fed acetate or wastewater substrates. Biochem Eng J 165:107816

    Article  CAS  Google Scholar 

  80. Sonawane JM, Ezugwu CI, Ghosh PC (2020) Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: state-of-the-art and practical applications. ACS sensors 5:2297–2316

    Article  CAS  PubMed  Google Scholar 

  81. Yadav RK, Chiranjeevi P, Patil SA (2020) Integrated drip hydroponics-microbial fuel cell system for wastewater treatment and resource recovery. Bioresource Technol Reports 9:100392

    Article  Google Scholar 

  82. Jung SP (2012) Impedance analysis of Geobacter sulfurreducens PCA, Shewanella oneidensis MR-1, and their coculture in bioeletrochemical systems. Int J Electrochem Sci 7:11091–11100

    CAS  Google Scholar 

  83. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. PNAS 105:3968–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marsili E, Rollefson JB, Baron DB, Hozalski RM, Bond DR (2008) Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microbiol 74:7329–7337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Young-Ho JSP, Ahn S-E, Lee J, Cho KT, Kim Y, Kim MW, Shim J, Kang M (2012) Impedance and thermodynamic analysis of bioanode, abiotic anode, and riboflavin-amended anode in microbial fuel cells. Bull Korean Chem Soc 33:3349–3354. https://doi.org/10.5012/bkcs.2012.33.10.3349

    Article  CAS  Google Scholar 

  87. Tran HVH, Kim E, Jung SP (2021) Anode biofilm maturation time, stable cell performance time, and time-course electrochemistry in a single-chamber microbial fuel cell with a brush anode. J Ind Eng Chem 106:269–278

    Article  Google Scholar 

  88. Hsu L, Chadwick B, Kagan J, Thacher R, Wotawa-Bergen A, Richter K (2013) Scale up considerations for sediment microbial fuel cells. RSC Adv 3:15947–15954

    Article  CAS  Google Scholar 

  89. Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332

    Article  CAS  PubMed  Google Scholar 

  90. Pandit S, Khilari S, Roy S, Pradhan D, Das D (2014) Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: effect of different anodic operating conditions. Biores Technol 166:451–457

    Article  CAS  Google Scholar 

  91. Malvankar NS, Yalcin SE, Tuominen MT, Lovley DR (2014) Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat Nanotechnol 9:1012–1017

    Article  CAS  PubMed  Google Scholar 

  92. Reguera G (2018) Microbial nanowires and electroactive biofilms. FEMS Microbiol Ecol 94:fiy086. https://doi.org/10.1093/femsec/fiy086

    Article  CAS  Google Scholar 

  93. Holmes DE, Chaudhuri SK, Nevin KP, Mehta T, Methé BA, Liu A, Ward JE, Woodard TL, Webster J, Lovley DR (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol 8:1805–1815

    Article  CAS  PubMed  Google Scholar 

  94. Yi H, Nevin KP, Kim BC, Franks AE, Klimes A, Tender LM, Lovley DR (2009) Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503

    Article  CAS  PubMed  Google Scholar 

  95. Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813–818

    Article  CAS  Google Scholar 

  96. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807

    Article  PubMed  Google Scholar 

  98. Rimboud M, Pocaznoi D, Erable B, Bergel A (2014) Electroanalysis of microbial anodes for bioelectrochemical systems: basics, progress and perspectives. Phys Chem Chem Phys 16:16349–16366

    Article  CAS  PubMed  Google Scholar 

  99. Pandit S, Khilari S, Roy S, Ghangrekar M, Pradhan D, Das D (2015) Reduction of start-up time through bioaugmentation process in microbial fuel cells using an isolate from dark fermentative spent media fed anode. Water Sci Technol 72:106–115

    Article  CAS  PubMed  Google Scholar 

  100. Niessen J, Harnisch F, Rosenbaum M, Schröder U, Scholz F (2006) Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun 8:869–873

    Article  CAS  Google Scholar 

  101. Sevda S, Sreekrishnan T (2012) Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater. J Environ Sci Health, Part A 47:878–886

    Article  CAS  Google Scholar 

  102. Tan IAW, Selvanathan JR, Abdullah MO, Abdul Wahab N, Kanakaraju D (2021) Effect of different mediators on bio-energy generation and palm oil mill effluent treatment in an air-cathode microbial fuel cell-adsorption system. Defect and Diffusion Forum Trans Tech Publ 411:67–78

    Article  Google Scholar 

  103. Adebule AP, Aderiye BI, Adebayo AA (2018) Improving bioelectricity generation of microbial fuel cell (MFC) with mediators using kitchen waste as substrate. Ann Appl Microbiol Biotechnol J 2:1–5

    Article  Google Scholar 

  104. Glasser NR, Saunders SH, Newman DK (2017) The colorful world of extracellular electron shuttles. Annu Rev Microbiol 71:731–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jain A, Zhang X, Pastorella G, Connolly JO, Barry N, Woolley R, Krishnamurthy S, Marsili E (2012) Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode. Bioelectrochemistry 87:28–32

    Article  CAS  PubMed  Google Scholar 

  106. Masuda M, Freguia S, Wang YF, Tsujimura S, Kano K (2010) Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis. Bioelectrochemistry 78:173–175

    Article  CAS  PubMed  Google Scholar 

  107. Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Slate AJ, Whitehead KA, Brownson DA, Banks CE (2019) Microbial fuel cells: An overview of current technology. Renew Sustain Energy Rev 101:60–81

    Article  CAS  Google Scholar 

  109. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105:3968–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li Y, Marshall A, Gostomski PA (2014) Gaseous pollutant treatment and electricity generation in microbial fuel cells (MFCs) utilising redox mediators. Rev Environ Sci Bio/Technol 13:35–51

    Article  Google Scholar 

  111. Jung SP, Mench MM, Regan JM (2011) Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH. Environ Sci Technol 45:9069–9074

    Article  CAS  PubMed  Google Scholar 

  112. Biffinger JC, Pietron J, Bretschger O, Nadeau LJ, Johnson GR, Williams CC, Nealson KH, Ringeisen BR (2008) The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens Bioelectron 24:900–905

    Article  CAS  Google Scholar 

  113. Fan YZ, Hu HQ, Liu H (2007) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sc Technol 41:8154–8158

    Article  CAS  Google Scholar 

  114. Freguia S, Rabaey K, Yuan Z, Keller JG (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53:598–603

    Article  CAS  Google Scholar 

  115. Erable B, Etcheverry L, Bergel A (2009) Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment. Electrochem Commun 11:619–622

    Article  CAS  Google Scholar 

  116. Jung SP, Regan JM (2011) Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells. Appl Environ Microbiol 77:564–571

    Article  CAS  PubMed  Google Scholar 

  117. Parkash A (2017) Generation of electricity from sewage sludge using dual chambered microbial fuel cell containing copper as electrodes. Int J Res Appl Sci Eng Technol 45:864–867

    Google Scholar 

  118. Baudler A, Schmidt I, Langner M, Greiner A, Schröder U (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8:2048–2055

    Article  CAS  Google Scholar 

  119. Zhou X, Chen X, Li H, Xiong J, Li X, Li W (2016) Surface oxygen-rich titanium as anode for high performance microbial fuel cell. Electrochim Acta 209:582–590

    Article  CAS  Google Scholar 

  120. Singh S, Bairagi PK, Verma N (2018) Candle soot-derived carbon nanoparticles: an inexpensive and efficient electrode for microbial fuel cells. Electrochim Acta 264:119–127

    Article  CAS  Google Scholar 

  121. Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Biores Technol 100:5132–5139

    Article  CAS  Google Scholar 

  122. Harewood AJ, Popuri SR, Cadogan EI, Lee CH, Wang CC (2017) Bioelectricity generation from brewery wastewater in a microbial fuel cell using 5chitosan/biodegradable copolymer membrane. Int J Environ Sci Technol 14:1535–1550

    Article  CAS  Google Scholar 

  123. Wu D, Yi X, Tang R, Feng C, Wei C (2018) Single microbial fuel cell reactor for coking wastewater treatment: simultaneous carbon and nitrogen removal with zero alkaline consumption. Sci Total Environ 621:497–506

    Article  CAS  PubMed  Google Scholar 

  124. Yong XY, Gu DY, Wu YD, Yan ZY, Zhou J, Wu XY, Wei P, Jia HH, Zheng T, Yong YC (2017) Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation. J Hazard Mater 324:178–183

    Article  CAS  PubMed  Google Scholar 

  125. Ma’arof MINMI, Chala GT, Ravichanthiran S (2018) A study on microbial fuel cell (MFC) with graphite electrode to power underwater monitoring devices. Int J Mech Technol 9:98–105

    Google Scholar 

  126. Chandrasekhar K, Kumar G, Mohan SV, Pandey A, Jeon BH, Jang M, Kim SH (2020) Microbial Electro-Remediation (MER) of hazardous waste in aid of sustainable energy generation and resource recovery. Environ Technol Innov 19:100997

    Article  Google Scholar 

  127. Mbarire TO, Aloys O, Chaka B (2022) Investigating the ohmic behavior of mediator-less microbial fuel cells using sewerage water as the bio-anode. Cogent Engineering 9:2079222

    Article  Google Scholar 

  128. Feng Y, Yang Q, Wang X, Logan BE (2010) Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. J Power Sources 195:1841–1844

    Article  CAS  Google Scholar 

  129. Yang G, Wang J, Zhang H, Jia H, Zhang Y, Cui Z, Gao F (2019) Maximizing energy recovery from homeostasis in microbial fuel cell by synergistic conversion of short-chain volatile fatty acid. Bioresource Technology Reports 7:100200

    Article  Google Scholar 

  130. Huang L, Logan BE (2008) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl Microbiol Biotechnol 80:349–355

    Article  CAS  PubMed  Google Scholar 

  131. Behera M, Murthy SS, Ghangrekar MM (2011) Effect of operating temperature on performance of microbial fuel cell. Water Sci Technol 64:917–922

    Article  CAS  PubMed  Google Scholar 

  132. Cai T, Meng L, Chen G, Xi Y, Jiang N, Song J, Zheng S, Liu Y, Zhen G, Huang M (2020) Application of advanced anodes in microbial fuel cells for power generation: a review. Chemosphere 248:125985

    Article  CAS  PubMed  Google Scholar 

  133. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    Article  CAS  PubMed  Google Scholar 

  134. Sharif HM, Farooq M, Hussain I, Ali M, Mujtaba MA, Sultan M, Yang B (2021) Recent innovations for scaling up microbial fuel cell systems: Significance of physicochemical factors for electrodes and membranes materials. J Taiwan Inst Chem Eng 129:207–226

    Article  CAS  Google Scholar 

  135. Kramer J, Soukiazian S, Mahoney S, Hicks-Garner J (2012) Microbial fuel cell biofilm characterization with thermogravimetric analysis on bare and polyethyleneimine surface modified carbon foam anodes. J Power Sources 210:122–128

    Article  CAS  Google Scholar 

  136. Jung SP, Kim E, Koo B (2018) Effects of Wire-type and Mesh-type Anode Current Collectors on Performance and Electrochemistry of Microbial Fuel Cells. Chemosphere 209:542–550. https://doi.org/10.1016/j.chemosphere.2018.06.070

    Article  CAS  PubMed  Google Scholar 

  137. Nam T, Son S, Koo B, Tran HVH, Kim JR, Choi Y, Jung SP (2017) Comparative evaluation of performance and electrochemistry of microbial fuel cells with different anode structures and materials. Int J Hydrogen Energy 42:27677–27684

    Article  CAS  Google Scholar 

  138. Chen S, He G, Hu X, Xie M, Wang S, Zeng D, Hou H, Schröder U (2012) A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems. Chem Sus Chem 5:1059–1063

    Article  CAS  Google Scholar 

  139. Zhang J, Li J, Ye D, Zhu X, Liao Q, Zhang B (2014) Tubular bamboo charcoal for anode in microbial fuel cells. J Power Sources 272:277–282

    Article  CAS  Google Scholar 

  140. Moqsud MA, Omine K, Yasufuku N, Bushra QS, Hyodo M, Nakata Y (2014) Bioelectricity from kitchen and bamboo waste in a microbial fuel cell. Waste Manage Res 32:124–130

    Article  CAS  Google Scholar 

  141. Sophia AC, Bhalambaal VM (2015) Utilization of coconut shell carbon in the anode compartment of microbial desalination cell (MDC) for enhanced desalination and bio-electricity production. J Environ Chem Eng 3:2768–2776

    Article  CAS  Google Scholar 

  142. Yuan Y, Liu T, Fu P, Tang J, Zhou S (2015) Conversion of sewage sludge into high-performance bifunctional electrode materials for microbial energy harvesting. J Mater Chem A 3(16):8475–8482

    Article  CAS  Google Scholar 

  143. Nguyen DT, Taguchi K (2019) Enhancing the performance of E. coli-powered MFCs by using porous 3D anodes based on coconut activated carbon. Biochem Eng J 151:107357

    Article  CAS  Google Scholar 

  144. Tang J, Yuan Y, Liu T, Zhou S (2015) High-capacity carbon-coated titanium dioxide core–shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells. J Power Sources 274:170–176

    Article  CAS  Google Scholar 

  145. Chen S, Tang J, Jing X, Liu Y, Yuan Y, Zhou S (2016) A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting. Electrochim Acta 212:883–889

    Article  CAS  Google Scholar 

  146. Li D, Deng L, Yuan H, Dong G, Chen J, Zhang X, Chen Y, Yuan Y (2018) N, P-doped mesoporous carbon from onion as trifunctional metal-free electrode modifier for enhanced power performance and capacitive manner of microbial fuel cells. Electrochim Acta 262:297–305

    Article  CAS  Google Scholar 

  147. Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J (2017) Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew Chem 129:520–524

    Article  Google Scholar 

  148. Cheng Y, Mallavarapu M, Naidu R, Chen Z (2018) In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle. Chemosphere 193:618–624

    Article  CAS  PubMed  Google Scholar 

  149. Hung YH, Liu TY, Chen HY (2019) Renewable coffee waste-derived porous carbons as anode materials for high-performance sustainable microbial fuel cells. ACS Sustain Chem Eng 7:16991–16999

    Article  CAS  Google Scholar 

  150. Liu Y, Zhang X, Zhang Q, Li C (2020) Microbial fuel cells: nanomaterials based on anode and their application. Energ Technol 8:2000206. https://doi.org/10.1002/ente.202000206

    Article  CAS  Google Scholar 

  151. Abd-Elrahman NK, Al-Harbi N, Basfer NM, Al-Hadeethi Y, Umar A, Akbar S (2022) Applications of nanomaterials in microbial fuel cells: a review. Molecules 27:4483–4510

    Article  Google Scholar 

  152. Cui-e Zhao C, Wu J, Kjelleberg S, Loo JSC, Zhang Q (2015) Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells. Nano Micro Small 11:3440–3443

    Google Scholar 

  153. Cui-e Zhao C, Wu J, Ding Y, Wang VB, Zhang Y, Kjelleberg S, Loo JSC, Cao B, Zhang Q (2015) Hybrid conducting biofilm with built in bacteria for high performance microbial fuel cells. Chem Electro Chem 2:654–658. https://doi.org/10.1002/celc.201402458

    Article  CAS  Google Scholar 

  154. Song RB, Yan K, Lin ZQ, Loo JSC, Pan LJ, Zhang Q, Zhang JR, Zhu JJ (2016) Inkjet-printed porous polyaniline gel as an efficient anode for microbial fuel cells. J Mater Chem A 4:14555–14559

    Article  CAS  Google Scholar 

  155. Kang H, Jeong J, Gupta PL, Jung SP (2017) Effects of brush-anode configurations on performance and electrochemistry of microbial fuel cells. Int J Hydrogen Energy 42:27693–27700

    Article  CAS  Google Scholar 

  156. Nam T, Kang H, Pandit S, Kim SH, Yoon S, Bae S, Jung SP (2020) Effects of vertical and horizontal configurations of different numbers of brush anodes on performance and electrochemistry of microbial fuel cells. J Clean Prod 277:124125–124134

    Article  CAS  Google Scholar 

  157. Karthikeyan R, Wang B, Xuang J, Wang J (2015) Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell. Electrochim Acta 157:314–323

    Article  CAS  Google Scholar 

  158. Al Moinee A, Sanzida N (2020) Performance analysis of different anode materials of a double chambered microbial fuel cell. Chem Eng Res Bull 22:26–31

    Google Scholar 

  159. You S, Zhao Q, Zhang J, Liu H, Jiang J, Zhao S (2008) Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells. Biosens Bioelectron 23:1157–1160

    Article  CAS  PubMed  Google Scholar 

  160. Zhou X, Qu Y, Kim BH, Choo PY, Liu J, Du Y, He W, Chang IS, Ren N, Feng Y (2014) Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells. Biores Technol 169:265–270

    Article  CAS  Google Scholar 

  161. Zhou LZS, Yuan Y, Liu T, Wu Z, Cheng J (2011) Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidation to direct electroactive biofilm. Biosource Technol 102:284–289

    Article  Google Scholar 

  162. Nandy A, Sharma M, Venkatesan SV, Taylor N, Gieg L, Thangadurai V (2019) Comparative evaluation of coated and non-coated carbon electrodes in a microbial fuel cell for treatment of municipal sludge. Energies 12:1034

    Article  CAS  Google Scholar 

  163. Koo B, Jung SP (2021) Improvement of air cathode performance in microbial fuel cells by using catalysts made by binding metal-organic framework and activated carbon through ultrasonication and solution precipitation. Chem Eng J 424:130388–130398

    Article  CAS  Google Scholar 

  164. Shahadat M, Bushra R, Khan MR, Rafatullah M, Teng TT (2014) A comparative study for the characterization of polyaniline based nanocomposites and membrane properties. RSC Adv 4:20686–20692

    Article  CAS  Google Scholar 

  165. Pandit S, Chandrasekhar K, Jadha DA, Ghangrekar MM, Das D (2019) Contaminant removal and energy recovery in microbial fuel cells. In: Chang  Y-C (ed) Microbial Biodegradation of Xenobiotic Compounds. CRC Press, Boca Raton, pp 76–94

  166. Goswami R, Mishra VK (2018) A review of design, operational conditions and applications of microbial fuel cells. Biofuels 9:203–220

    Article  CAS  Google Scholar 

  167. Dwivedi KA, Huang SJ, Wang CT (2022) Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: a review. Chemosphere 287:132248

    Article  CAS  PubMed  Google Scholar 

  168. Xu H, Wang L, Lin C, Zheng J, Wen Q, Chen Y, Wang Y, Qi L (2020) Improved simultaneous decolorization and power generation in a microbial fuel cell with the sponge anode modified by polyaniline and chitosan. Appl Biochem Biotechnol 192:698–718

    Article  CAS  PubMed  Google Scholar 

  169. Dessie Y, Tadesse S, Adimasu Y (2022) Improving the performance of graphite anode in a Microbial Fuel Cell via PANI encapsulated α-MnO2 composite modification for efficient power generation and methyl red removal. Chem Eng J Adv 10:100283

    Article  CAS  Google Scholar 

  170. Inamdar HK, Basavaraj RB, Nagabhushana H, Devendrappa M, Ambalgi S, Sannakki B, Mathad RDDC (2016) DC conductivity study of polyaniline/NiO nanocomposites prepared through green synthesis mater. Today Proc 3:3850–3854

    Google Scholar 

  171. Vijay A, Khandelwal A, Chhabra M, Vincent T (2020) Microbial fuel cell for simultaneous removal of uranium (VI) and nitrate. Chem Eng J 388:124157

    Article  CAS  Google Scholar 

  172. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  CAS  PubMed  Google Scholar 

  173. Ter Heijne A, Hamelers HV, Saakes M, Buisman CJ (2008) Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta 53:5697–5703

    Article  Google Scholar 

  174. Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Biores Technol 101:469–475

    Article  CAS  Google Scholar 

  175. Cercado B, Vega-Guerrero AL, Rodríguez-Valadez F, Hernández-López JL, Cházaro-Ruiz LF, Délia ML, Bergel A (2014) Carbonaceous and protein constituents in dairy wastewater lead to a differentiated current generation in microbial fuel cells (MFCs). J Mex Chem Soc 58:309–314

    CAS  Google Scholar 

  176. Mansoorian HJ, Mahvi AH, Jafari AJ, Khanjani N (2016) Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell. J Saudi Chem Soc 20(1):88–100

    Article  CAS  Google Scholar 

  177. Cheng S, Liu W, Sun D, Huang H (2017) Enhanced power production of microbial fuel cells by reducing the oxygen and nitrogen functional groups of carbon cloth anode. Surf Interface Anal 49:410–418

    Article  CAS  Google Scholar 

  178. He Y, Liu Z, Xing XH, Li B, Zhang Y, Shen R, Zhu Z, Duan N (2015) Carbon nanotubes simultaneously as the anode and microbial carrier for up-flow fixed-bed microbial fuel cell. Biochem Eng J 94:39–44

    Article  CAS  Google Scholar 

  179. Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    Article  CAS  PubMed  Google Scholar 

  180. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814

    Article  CAS  PubMed  Google Scholar 

  181. Palanisamy G, Jung HY, Sadhasivam T, Kurkuri MD, Kim SC, Roh SH (2019) A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes. J Clean Prod 221:598–621

    Article  CAS  Google Scholar 

  182. Sarathi VS, Nahm KS (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens Bioelectron 43:461–475

    Article  PubMed  Google Scholar 

  183. Sun M, Zhang F, Tong ZH, Sheng GP, Chen YZ, Zhao Y, Chen YP, Zhou SY, Liu G, Tian YC, Yu HQ (2010) A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosens Bioelectron 26:338–343

    Article  CAS  PubMed  Google Scholar 

  184. Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435

    Article  CAS  Google Scholar 

  185. Peng L, You SJ, Wang JY (2010) Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens Bioelectron 25:1248–1251

    Article  CAS  PubMed  Google Scholar 

  186. Cheng C, Li S, Thomas A, Kotov NA, Haag R (2017) Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem Rev 117:1826–1914

    Article  CAS  PubMed  Google Scholar 

  187. Erbay C, Yang G, de Figueiredo P, Sadr R, Yu C, Han A (2015) Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells. J Power Sources 298:177–183

    Article  CAS  Google Scholar 

  188. Zhang F, Cheng S, Pant D, Van Bogaert G, Logan BE (2009) Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun 11(11):2177–2179

    Article  CAS  Google Scholar 

  189. Liu J, Qiao Y, Guo CX, Lim S, Song H, Li CM (2012) Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Biores Technol 114:275–280

    Article  CAS  Google Scholar 

  190. Hou J, Liu Z, Zhang P (2013) A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources 224:139–144

    Article  CAS  Google Scholar 

  191. Liu W, Cheng S, Guo J (2014) Anode modification with formic acid: a simple and effective method to improve the power generation of microbial fuel cells. Appl Surf Sci 320:281–286

    Article  CAS  Google Scholar 

  192. Bose D, Bose A, Kundani D, Gupta D, Jain H (2018) Comparative analysis of carbon cloth and aluminum electrodes using agar salt-bridge based Microbial Fuel Cell for bioelectricity generation from effluent derived wastewater. Nat Environ Pollut Technol 17:1201–1205

    CAS  Google Scholar 

  193. Wang X, Cheng S, Feng Y, Merrill MD, Saito T, Logan BE (2009) Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol 43:6870–6874

    Article  CAS  PubMed  Google Scholar 

  194. Wang K, Liu Y, Chen S (2011) Improved microbial electrocatalysis with neutral red immobilized electrode. J Power Sources 196:164–168

    Article  CAS  Google Scholar 

  195. Lv Z, Chen Y, Wei H, Li F, Hu Y, Wei C, Feng C (2013) One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochim Acta 111:366–373

    Article  CAS  Google Scholar 

  196. Fatima M, Kiros Y, Farooq R, Lindström RW (2021) Low-cost single chamber MFC integrated with novel lignin-based carbon fiber felt bioanode for treatment of recalcitrant azo dye. Frontiers in Energy Research 9:260. https://doi.org/10.3389/fenrg.2021.672817

    Article  Google Scholar 

  197. Calignano F, Tommasi T, Manfredi D, Chiolerio A (2015) Additive manufacturing of a microbial fuel cell—a detailed study. Sci Rep 5:1–10

    Article  Google Scholar 

  198. Roy JN, Babanova S, Garcia KE, Cornejo J, Ista LK (2014) Catalytic biofilm formation by Shewanella oneidensis MR-1 and anode characterization by expanded uncertainty. Electrochim Acta 126:3–10

    Article  CAS  Google Scholar 

  199. Seviour T, Doyle LE, Lauw SJ, Hinks J, Rice SA, Nesatyy VJ, Webster RD, Kjelleberg S, Marsili E (2015) Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem Commun 51:3789–3792

    Article  CAS  Google Scholar 

  200. Fan X, Zhou Y, Jin X, Song RB, Li Z, Zhang Q (2021) Carbon material-based anodes in the microbial fuel cells. Carbon Energy 3:449–472

    Article  CAS  Google Scholar 

  201. Ghasemi M, Daud WR, Hassan SH, Oh SE, Ismail M, Rahimnejad M, Jahim JM (2013) Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloy Compd 580:245–255

    Article  CAS  Google Scholar 

  202. Mashkour M, Rahimnejad M (2015) Effect of various carbon-based cathode electrodes on the performance of microbial fuel cell. Biofuel Res J 2:296–300

    Article  CAS  Google Scholar 

  203. He YR, Xiao X, Li WW, Sheng GP, Yan FF, Yu HQ, Yuan H, Wu LJ (2012) Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. Phys Chem Chem Phys 14:9966–9971

    Article  CAS  PubMed  Google Scholar 

  204. Boghani HC, Papaharalabos G, Michie I, Fradler KR, Dinsdale RM, Guwy AJ, Ieropoulos I, Greenman J, Premier GC (2014) Controlling for peak power extraction from microbial fuel cells can increase stack voltage and avoid cell reversal. J Power Sources 269:363–369

    Article  CAS  Google Scholar 

  205. Gajda I, Greenman J, Melhuish C, Santoro C, Ieropoulos I (2016) Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration. Biores Technol 215:285–289

    Article  CAS  Google Scholar 

  206. Kim JR, Boghani HC, Amini N, Aguey-Zinsou KF, Michie I, Dinsdale RM, Guwy AJ, Guo ZX, Premier GC (2012) Porous anodes with helical flow pathways in bioelectrochemical systems: the effects of fluid dynamics and operating regimes. J Power Sources 213:382–390

    Article  CAS  Google Scholar 

  207. Liu Y, Harnisch F, Fricke K, Schröder U, Climent V, Feliu JM (2010) The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens Bioelectron 25:2167–2171

    Article  CAS  PubMed  Google Scholar 

  208. Winfield J, Chambers LD, Stinchcombe A, Rossiter J, Ieropoulos I (2014) The power of glove: Soft microbial fuel cell for low-power electronics. J Power Sources 249:327–332

    Article  CAS  Google Scholar 

  209. Wu S, He W, Yang W, Ye Y, Huang X, Logan BE (2017) Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater. J Power Sources 356:348–355

    Article  CAS  Google Scholar 

  210. You J, Greenman J, Melhuish C, Ieropoulos I (2016) Electricity generation and struvite recovery from human urine using microbial fuel cells. J Chem Technol Biotechnol 91:647–654

    Article  CAS  Google Scholar 

  211. Artyushkova K, Roizman D, Santoro C, Doyle LE, Fatima Mohidin A, Atanassov P, Marsili E (2016) Anodic biofilms as the interphase for electroactive bacterial growth on carbon veil. Biointerphases 11:031013

    Article  PubMed  Google Scholar 

  212. Ieropoulos I, Greenman J, Melhuish C (2008) Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int J Energy Res 32:1228–1240

    Article  CAS  Google Scholar 

  213. Ieropoulos I, Greenman J, Melhuish C (2010) Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry 78:44–50

    Article  CAS  PubMed  Google Scholar 

  214. Gajda I, Greenman J, Ieropoulos I (2020) Microbial fuel cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Appl Energy 262:114475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Santoro C, Ieropoulos I, Greenman J, Cristiani P, Vadas T, Mackay A, Li B (2013) Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine. Int J Hydrogen Energy 38:11543–11551

    Article  CAS  Google Scholar 

  216. Liao Q, Zhang J, Li J, Ye D, Zhu X, Zhang B (2015) Increased performance of a tubular microbial fuel cell with a rotating carbon-brush anode. Biosens Bioelectron 63:558–561

    Article  CAS  PubMed  Google Scholar 

  217. Hutchinson AJ, Tokash JC, Logan BE (2011) Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. J Power Sources 196:9213–9219

    Article  CAS  Google Scholar 

  218. Lanas V, Ahn Y, Logan BE (2014) Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. J Power Sources 247:228–234

    Article  CAS  Google Scholar 

  219. Li L, Jiang B, Tang D, Zhang X, Yuan K, Zhang Q (2018) Alkaline treatment of used carbon-brush anodes for restoring power generation of microbial fuel cells. RSC Adv 8:36754–36760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Dharmalingam S, Kugarajah V, Elumalai V (2022) Proton exchange membrane for microbial fuel cells. In: PEM Fuel Cells. Elsevier, pp 25–53

  221. Sadhasivam T, Dhanabalan K, Roh SH, Kim TH, Park KW, Jung S, Kurkuri MD, Jung HY (2017) A comprehensive review on unitized regenerative fuel cells: Crucial challenges and developments. Int J Hydrogen Energy 42:4415–4433

    Article  CAS  Google Scholar 

  222. Merino-Jimenez I, Gonzalez-Juarez F, Greenman J, Ieropoulos I (2019) Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation. J Power Sources 429:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Michu P, Chaijak P (2022) Electricity generation and winery wastewater treatment using silica modified ceramic separator integrated with yeast-based microbial fuel cell. Commun Sci Technol 7:98–102

    Article  Google Scholar 

  224. Jadhav DA, Park SG, Eisa T, Mungray AK, Madenli EC, Olabi AG, Abdelkareem MA, Chae KJ (2022) Current outlook towards feasibility and sustainability of ceramic membranes for practical scalable applications of microbial fuel cells. Renew Sustain Energy Rev 167:112769

    Article  CAS  Google Scholar 

  225. Fatemi S, Ghoreyshi AA, Najafpour G, Rahimnejad M (2012) Bioelectricity generation in mediator-less microbial fuel cell: application of pure and mixed cultures. Iranian (Iranica) J Energy Environ 3:104–108

    Google Scholar 

  226. Sarma D, Barua PB, Dey N, Nath S, Thakuria M, Mallick S (2019) Investigation and taguchi optimization of microbial fuel cell salt bridge dimensional parameters. J Inst Eng India Ser C 100:103–112. https://doi.org/10.1007/s40032-017-0436-0

    Article  Google Scholar 

  227. Singh K, Dharmendra (2020) Optimization and performance evaluation of microbial fuel cell by varying agar concentration using different salts in salt bridge medium. Arch Mater Sci Eng 101:9-84https://doi.org/10.5604/01.3001.0014.1193

  228. Ibrahim B, Safrina Dyah Hardiningtyas, Steffen (2022) The performance of salt bridge microbial fuel cell bioelectric generator in variated carrageenan-carboxylmethyl cellulose ratio. J Pengolahan Hasil Perikanan Indonesia 25. https://doi.org/10.17844/jphpi.v25i2.39872

  229. Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106:528–536

    Article  CAS  PubMed  Google Scholar 

  230. Li WW, Sheng GP, Liu XW, Yu HQ (2011) Recent advances in the separators for microbial fuel cells. Biores Technol 102:244–252

    Article  CAS  Google Scholar 

  231. Ramirez-Nava J, Martínez-Castrejón M, García-Mesino RL, López-Díaz JA, Talavera-Mendoza O, Sarmiento-Villagrana A, Rojano F, Hernández-Flores G (2021) The implications of membranes used as separators in microbial fuel cells. Membranes 11:738. https://doi.org/10.3390/membranes11100738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Mayahi A, Ismail AF, Ilbeygi H, Othman MH, Ghasemi M, Norddin MM, Matsuura T (2013) Effect of operating temperature on the behavior of promising SPEEK/cSMM electrolyte membrane for DMFCs. Sep Purif Technol 106:72–81

    Article  CAS  Google Scholar 

  233. Kim T, Kang S, Sung JH, Kang YK, Kim YH, Jang JK (2016) Characterization of polyester cloth as an alternative separator to Nafion membrane in microbial fuel cells for bioelectricity generation using swine wastewater. J Microbiol Biotechnol 26:2171–2178

    Article  CAS  PubMed  Google Scholar 

  234. Khan MD, Li D, Tabraiz S, Shamurad B, Scott K, Khan MZ, Yu EH (2021) Integrated air cathode microbial fuel cell-aerobic bioreactor set-up for enhanced bioelectrodegradation of azo dye Acid Blue 29. Sci Total Environ 756:143752

    Article  CAS  PubMed  Google Scholar 

  235. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  CAS  PubMed  Google Scholar 

  236. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  CAS  PubMed  Google Scholar 

  237. Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355

    Article  CAS  PubMed  Google Scholar 

  238. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  PubMed  Google Scholar 

  239. Saravanan N, Karthikeyan M (2018) Study of single chamber and double chamber efficiency and losses of wastewater treatment. Int Res J Eng Technol 5:1225–1230

    Google Scholar 

  240. Aelterman P, Rabaey K, Clauwaert P, Verstraete W (2006) Microbial fuel cells for wastewater treatment. Water Sci Technol 54:9–15

    Article  CAS  PubMed  Google Scholar 

  241. Choi J, Ahn Y (2013) Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater. J Environ Manage 130:146–152

    Article  CAS  PubMed  Google Scholar 

  242. Ou S, Kashima H, Aaron DS, Regan JM, Mench MM (2016) Multi-variable mathematical models for the air-cathode microbial fuel cell system. J Power Sources 314:49–57

    Article  CAS  Google Scholar 

  243. Wu LN, Liang DW, Xu YY, Liu T, Peng YZ, Zhang J (2016) A robust and cost-effective integrated process for nitrogen and bio-refractory organics removal from landfill leachate via short-cut nitrification, anaerobic ammonium oxidation in tandem with electrochemical oxidation. Biores Technol 212:296–301

    Article  CAS  Google Scholar 

  244. Greenman J, Gálvez A, Giusti L, Ieropoulos I (2009) Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme Microb Technol 44:112–119

    Article  CAS  Google Scholar 

  245. Sun J, Hu Y, Bi Z, Cao Y (2009) Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. J Power Sources 187:471–479

    Article  CAS  Google Scholar 

  246. Doddamani KR, Mise SR (2014) Generation of electricity using sugar mill waste water by microbial fuel cell. Int J Eng Sci Res Technol 3:241–245

    Google Scholar 

  247. Tremouli A, Martinos M, Bebelis S, Lyberatos G (2016) Performance assessment of a four-air cathode single-chamber microbial fuel cell under conditions of synthetic and municipal wastewater treatments. J Appl Electrochem 46:515–525

    Article  CAS  Google Scholar 

  248. Amanze C, Zheng X, Man M, Yu Z, Ai C, Wu X, Xiao S, Xia M, Yu R, Wu X, Shen L (2022) Recovery of heavy metals from industrial wastewater using bioelectrochemical system inoculated with novel Castellaniella species. Environ Res 205:112467

    Article  CAS  PubMed  Google Scholar 

  249. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  CAS  PubMed  Google Scholar 

  250. Behera M, Jana PS, More TT, Ghangrekar MM (2010) Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry 79:228–233

    Article  CAS  PubMed  Google Scholar 

  251. Asensio Y, Montes IB, Fernandez-Marchante CM, Lobato J, Cañizares P, Rodrigo MA (2017) Selection of cheap electrodes for two-compartment microbial fuel cells. J Electroanal Chem 785:235–240

    Article  CAS  Google Scholar 

  252. Kondaveeti S, Lee J, Kakarla R, Kim HS, Min B (2014) Low-cost separators for enhanced power production and field application of microbial fuel cells (MFCs). Electrochim Acta 132:434–440

    Article  CAS  Google Scholar 

  253. Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675–1686

    Article  CAS  PubMed  Google Scholar 

  254. Rodrigo MA, Cañizares P, García H, Linares JJ, Lobato J (2009) Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Biores Technol 100:4704–4710

    Article  CAS  Google Scholar 

  255. Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Biores Technol 100:3518–3525

    Article  CAS  Google Scholar 

  256. Li Y, Lu A, Ding H, Jin S, Yan Y, Wang C, Zen C, Wang X (2009) Cr (VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Commun 11:1496–1499

    Article  CAS  Google Scholar 

  257. Hidayat AR, Widyanto AR, Asranudin A, Ediati R, Sulistiono DO, Putro HS, Sugiarso D, Prasetyoko D, Purnomo AS, Bahruji H, Ali BT (2022) Recent development of double chamber microbial fuel cell for hexavalent chromium waste removal. J Environ Chem Eng 10:107505

    Article  CAS  Google Scholar 

  258. Jadhav DA, Das I, Ghangrekar MM, Pant D (2020) Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. Journal of Water Process Engineering 38:101566

    Article  Google Scholar 

  259. Kim T, Yeo J, Yang Y, Kang S, Paek Y, Kwon JK, Jang JK (2019) Boosting voltage without electrochemical degradation using energy-harvesting circuits and power management system-coupled multiple microbial fuel cells. J Power Sources 410:171–178

    Article  Google Scholar 

  260. Suganya P, Divyanavamani J, Prahadheeshwar CM (2020) Comprehensive analysis on microbial fuel cell and harvesting techniques. Solid State Technol 63:968–978

    Google Scholar 

  261. Zhuang L, Yuan Y, Wang Y, Zhou S (2012) Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater. Biores Technol 123:406–412

    Article  CAS  Google Scholar 

  262. Gálvez A, Greenman J, Ieropoulos I (2009) Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Biores Technol 100:5085–5091

    Article  Google Scholar 

  263. Baeza JA, Martínez-Miró À, Guerrero J, Ruiz Y, Guisasola A (2017) Bioelectrochemical hydrogen production from urban wastewater on a pilot scale. J Power Sources 356:500–509

    Article  CAS  Google Scholar 

  264. Guo K, Prévoteau A, Rabaey K (2017) A novel tubular microbial electrolysis cell for high rate hydrogen production. J Power Sources 356:484–490

    Article  CAS  Google Scholar 

  265. Mukherjee A, Patel V, Shah MT, Jadhav DA, Munshi NS, Chendake AD, Pant D (2022) Effective power management system in stacked microbial fuel cells for onsite applications. J Power Sources 517:230684

    Article  CAS  Google Scholar 

  266. Zamora P, Georgieva T, Ter Heijne A, Sleutels TH, Jeremiasse AW, Saakes M, Buisman CJ, Kuntke P (2017) Ammonia recovery from urine in a scaled-up microbial electrolysis cell. J Power Sources 356:491–499

    Article  CAS  Google Scholar 

  267. Flimban SG, Kim T, Ismail IM, Oh SE (2018) Overview of microbial fuel cell (MFC) recent advancement from fundamentals to applications: MFC designs, major elements, and scalability. Preprints. 2018100763. https://doi.org/10.20944/preprints201810.0763.

  268. Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167:11–17

    Article  CAS  Google Scholar 

  269. Gurung A, Kim J, Jung SP, Jeon BH, Yang JE, Oh SE (2012) Effects of substrate concentrations on performance of serially connected microbial fuel cells (MFCs) operated in a continuous mode. Biotechnol Lett 34:1833–1839

    Article  PubMed  Google Scholar 

  270. Tan IA, Selvanathan JR, Abdullah MO, Abdul Wahab N, Kanakaraju D (2021) Effect of different mediators on bio-energy generation and palm oil mill effluent treatment in an air-cathode microbial fuel cell-adsorption system. Defect and Diffusion Forum. Trans Tech Publ 411:67–78

    Google Scholar 

  271. Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochem 39:1007–1012

    Article  CAS  Google Scholar 

  272. Hashemi J, Samimi A (2012) Steady state electric power generation in up-flow microbial fuel cell using the estimated time span method for bacteria growth domestic wastewater. Biomass Bioenerg 45:65–76

    Article  CAS  Google Scholar 

  273. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262–5267

    Article  CAS  PubMed  Google Scholar 

  274. Marassi RJ, Queiroz LG, Silva DC, da Silva FT, Silva GC, de Paiva TC (2020) Performance and toxicity assessment of an up-flow tubular microbial fuel cell during long-term operation with high-strength dairy wastewater. J Clean Prod 259:120882

    Article  CAS  Google Scholar 

  275. Ebrahimi A, Sivakumar M, McLauchlan C, Ansari A, Vishwanathan AS (2021) A critical review of the symbiotic relationship between constructed wetland and microbial fuel cell for enhancing pollutant removal and energy generation. J Environ Chem Eng 9(1):105011. https://doi.org/10.1016/j.jece.2020.105011

    Article  CAS  Google Scholar 

  276. Jayashree C, Sweta S, Arulazhagan P, Yeom IT, Iqbal MI, Rajesh Banu J (2015) Electricity generation from retting wastewater consisting of recalcitrant compounds using continuous upflow microbial fuel cell. Biotechnol Bioprocess Eng 20:753–759

    Article  CAS  Google Scholar 

  277. Wang Y, Xu A, Cui T, Zhang J, Yu H, Han W, Shen J, Li J, Sun X, Wang L (2020) Construction and application of a 1-liter upflow-stacked microbial desalination cell. Chemosphere 248:126028

    Article  CAS  PubMed  Google Scholar 

  278. Holmes DE, Bond DR, O’neil RA, Reimers CE, Tender LR, Lovley DR (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecol 48:178–190

    Article  CAS  Google Scholar 

  279. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory fe (iii) and mn (iv) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  PubMed  Google Scholar 

  280. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe (III) reduction on early Earth. Nature 395:65–67

    Article  CAS  PubMed  Google Scholar 

  281. Karube I, Ikemoto H, Kajiwara K, Tamiya E, Matsuoka H (1986) Photochemical energy conversion using immobilized blue-green algae. J Biotechnol 4:73–80

    Article  CAS  Google Scholar 

  282. Jung S, Regan JM (2007) Comparison of anode, bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77:393–402

    Article  CAS  PubMed  Google Scholar 

  283. Ren Z, Steinberg LM, Regan JM (2008) Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 58:617–622

    Article  CAS  PubMed  Google Scholar 

  284. Biffinger JC, Fitzgerald LA, Ray R, Little BJ, Lizewski SE, Petersen ER, Ringeisen BR, Sanders WC, Sheehan PE, Pietron JJ, Baldwin JW (2011) The utility of Shewanella japonica for microbial fuel cells. Bioresour Technol 102(1):290–297

    Article  CAS  PubMed  Google Scholar 

  285. Sayed ET, Tsujiguchi T, Nakagawa N (2012) Catalytic activity of baker’s yeast in a mediator-less microbial fuel cell. Bioelectrochemistry 86:97–101

    Article  CAS  PubMed  Google Scholar 

  286. Inglesby AE, Beatty DA, Fisher AC (2012) Rhodopseudomonas palustris purple bacteria fed Arthrospira maxima cyanobacteria: demonstration of application in microbial fuel cells. RSC Adv 2:4829–4838

    Article  CAS  Google Scholar 

  287. Wang CT, Huang RY, Lee YC, Zhang CD (2013) Electrode material of carbon nanotube/polyaniline carbon paper applied in microbial fuel cells. J Clean Energy Technol 1(3):206–210

    Article  CAS  Google Scholar 

  288. Lai CY, Wu CH, Meng CT, Lin CW (2017) Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode Appl. Energy 188:392–398

    CAS  Google Scholar 

  289. Sumisha A, Ashar J, Asok A, Karthick S, Haribabu K (2019) Reduction of copper and generation of energy in double chamber microbial fuel cell using Shewanella putrefaciens. Sep Sci Technol 275:1–9

    Google Scholar 

  290. Subha C, Kavitha S, Abisheka S, Tamilarasan K, Arulazhagan P, Banu JR (2019) Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell. Fuel 251:224–232

    Article  CAS  Google Scholar 

  291. Priya AD, Deva S, Shalini P, Setty YP (2020) Antimony-tin based intermetallics supported on reduced graphene oxide as anode and MnO2@rGO as cathode electrode for the study of microbial fuel cell performance Renew. Energy 150:156–166

    Google Scholar 

  292. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30:145–152

    Article  CAS  Google Scholar 

  293. Ma M, Cao L, Ying X, Deng Z (2012) Study on the performance of photosynthetic microbial fuel cells powered by synechocystis PCC-6803. Kezaisheng Nengyuan/Renew Energy Resour 30:42–46

    CAS  Google Scholar 

  294. Leung DH, Lim YS, Uma K, Pan GT, Lin JH, Chong S, Yang TC (2021) Engineering S. oneidensis for performance improvement of microbial fuel cell—a mini review. Appl Biochem Biotechnol 193:1170–1186

    Article  CAS  PubMed  Google Scholar 

  295. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604

    Article  CAS  PubMed  Google Scholar 

  296. Bergel A, Féron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904

    Article  CAS  Google Scholar 

  297. Zhang E, Xu W, Diao G, Shuang C (2006) Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. J Power Sources 161:820–825

    Article  CAS  Google Scholar 

  298. Prasad D, Sivaram TK, Berchmans S, Yegnaraman V (2006) Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent. J Power Sources 160:991–996

    Article  CAS  Google Scholar 

  299. Jung SP, Yoon MH, Lee SM, Oh SE, Kang H, Yang JK (2014) Power generation and anode bacterial community compositions of sediment fuel cells differing in anode materials and carbon sources. Int J Electrochem Sci 9:315–326

    Google Scholar 

  300. Oh SE, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70:162–169

    Article  CAS  PubMed  Google Scholar 

  301. Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  302. Zhao G, Ma F, Wei L, Chua H, Chang CC, Zhang XJ (2012) Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Waste Manage 32:1651–1658

    Article  CAS  Google Scholar 

  303. Tanaka K, Tamamushi R, Ogawa T (1985) Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. Journal of Chemical Technology and Biotechnology Biotechnology 35:191–197

    Article  Google Scholar 

  304. Yagishita T, Sawayama S, Tsukahara KI, Ogi T (1998) Performance of photosynthetic electrochemical cells using immobilized Anabaena variabilis M-3 in discharge/culture cycles. J Ferment Bioeng 85:546–549

    Article  CAS  Google Scholar 

  305. Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21:259–264

    Article  CAS  PubMed  Google Scholar 

  306. Ma D, Jiang ZH, Lay CH, Zhou D (2016) Electricity generation from swine wastewater in microbial fuel cell: Hydraulic reaction time effect. Int J Hydrogen Energy 41:21820–21826

    Article  CAS  Google Scholar 

  307. Maity JP, Hou CP, Majumder D, Bundschuh J, Kulp TR, Chen CY, Chuang LT, Chen CN, Jean JS, Yang TC, Chen CC (2014) The production of biofuel and bioelectricity associated with wastewater treatment by green algae. Energy 78:94–103

    Article  CAS  Google Scholar 

  308. Ng FL, Jaafar MM, Phang SM, Chan Z, Salleh NA, Azmi SZ, Yunus K, Fisher AC, Periasamy V (2014) Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms. Sci Rep 4:1–7

    Article  CAS  Google Scholar 

  309. Xu C, Poon K, Choi MM, Wang R (2015) Using live algae at the anode of a microbial fuel cell to generate electricity. Environ Sci Pollut Res 22:15621–15635

    Article  CAS  Google Scholar 

  310. Back JH, Kim MS, Cho H, Chang IS, Lee J, Kim KS, Kim BH, Park YI, Han YS (2004) Construction of bacterial artificial chromosome library from electrochemical microorganisms. FEMS Microbiol Lett 238:65–70

    Article  CAS  PubMed  Google Scholar 

  311. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  PubMed  Google Scholar 

  312. Aghababaie M, Farhadian M, Jeihanipour A, Biria D (2015) Effective factors on the performance of microbial fuel cells in wastewater treatment – a review. Environ Technol Rev 4:71–89

    Article  CAS  Google Scholar 

  313. Arkatkar AS, Mungray AK, Sharma P (2019) Effect of microbial growth on internal resistances in MFC: a case study: Proceedings of ICIIF 2018. Advances in Intelligent Systems and Computing. In book: Innovations in Infrastructure pp.469–479. https://doi.org/10.1007/978-981-13-1966-2_42

  314. Wang VB, Du J, Chen X, Alexander W, Thomas AW, Kirchhofer ND, Garner LE, Maw MT, Poh WH, Hinks J, Wuertz S, Kjelleberg S, Zhang Q, Loo SCJ, Bazan GC (2013) Improving charge collection in Escherichia coli–carbon electrode devices with conjugated oligoelectrolytes. Phys Chem Chem Phys 15:5867–5872

    Article  CAS  PubMed  Google Scholar 

  315. Garner LE, Juhyun Park J, Dyar SM, Chworos A, Sumner JA, Bazan GC (2010) Modification of the optoelectronic properties of membranes via insertion of amphiphilic phenylenevinylene oligoelectrolytes. J Am Chem Soc 132:10042–10052. https://doi.org/10.1021/ja1016156

    Article  CAS  PubMed  Google Scholar 

  316. Wang VB, Natalia Yantara N, Koh TM, Kjelleberg S, Zhang Q, Guillermo C, Bazan GC, Loo SCJ, Mathews N (2014) Uncovering alternate charge transfer mechanisms in Escherichia coli chemically functionalized with conjugated oligoelectrolytes. Chem Commun 50:8223–8226

    Article  CAS  Google Scholar 

  317. Cui-e Zhao C, Chen J, Ding Y, Wang VB, Bao B, Kjelleberg S, Cao B, Loo CJ, Wang L, Huang W, Zhang Q (2015) Chemically functionalized conjugated oligoelectrolyte nanoparticles for enhancement of current generation in microbial fuel cells. ACS Appl Mater Interfaces 7:14501–14505. https://doi.org/10.1021/acsami.5b03990

    Article  CAS  PubMed  Google Scholar 

  318. Song RB, Wu Y, Lin ZQ, Xie J, Tan CH, Loo JSC, Cao B, Zhang JR, Zhu JJ, Zhang Q (2017) Living and conducting: coating individual bacterial cells with in situ formed polypyrrole. Angew Chem Int Ed Engl 56:10516–10520. https://doi.org/10.1002/anie.201704729

    Article  CAS  PubMed  Google Scholar 

  319. Guo D, Wei HF, Song RB, Fu J, Lu X, Jelinek R, Min Q, Zhang JR, Zhang Q, Zhu JJ (2019) N, S-doped carbon dots as dual-functional modifiers to boost bio-electricity generation of individually-modified bacterial cells. Nano Energy 63:103875. https://doi.org/10.1016/j.nanoen/103875

    Article  CAS  Google Scholar 

  320. Feng C, Li J, Qin D, Chen L, Zhao F, Chen S, Hu H, Yu CP (2014) Characterization of exoelectrogenic bacteria Enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS ONE 9:e113379

    Article  PubMed  PubMed Central  Google Scholar 

  321. Ishii SI, Shimoyama T, Hotta Y, Watanabe K (2008) Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiol 8:1–2

    Article  Google Scholar 

  322. Jiang YB, Zhong WH, Han C, Deng H (2016) Characterization of electricity generated by soil in microbial fuel cells and the isolation of soil source exoelectrogenic bacteria. Front Microbiol 7:1776

    Article  PubMed  PubMed Central  Google Scholar 

  323. Logan BE, Murano C, Scott K, Gray ND, Head IM (2004) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952

    Article  Google Scholar 

  324. Nwagu KE, Ekpo IA, Ekaluo BU, Ubi GM, Elemba MO, Victor UC (2019) Optimization and molecular characterization of exoelectrogenic isolates for enhanced microbial fuel cell performance. Microbiol Biotechnol Lett 47:621–629

    Article  CAS  Google Scholar 

  325. Xiao N, Selvaganapathy PR, Wu R, Huang JJ (2020) Influence of wastewater microbial community on the performance of miniaturized microbial fuel cell biosensor. Biores Technol 302:122777

    Article  CAS  Google Scholar 

  326. Wang J, Ren K, Zhu Y, Huang J, Liu S (2022) Review of recent advances in microbial fuel cells: preparation, operation, and application. Biotech 11:44. https://doi.org/10.3390/biotech11040044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Christwardana M, Frattini D, Accardo G, Yoon SP, Kwon Y (2018) Optimization of glucose concentration and glucose/yeast ratio in yeast microbial fuel cell using response surface methodology approach. J Power Sources 402:402–412

    Article  CAS  Google Scholar 

  328. Ajunwa OM, Odeniyi OA, Garuba EO, Marsili E, Onilude AA (2021) Influence of enhanced electrogenicity on anodic biofilm and bioelectricity production by a novel microbial consortium. Process Biochem 104:27–38

    Article  CAS  Google Scholar 

  329. Li X, Zheng R, Zhang X, Liu Z, Zhu R, Zhang X, Gao D (2019) A novel exoelectrogen from microbial fuel cell: bioremediation of marine petroleum hydrocarbon pollutants. J Environ Manage 235:70–76

    Article  CAS  PubMed  Google Scholar 

  330. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  CAS  PubMed  Google Scholar 

  331. Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    Article  PubMed  Google Scholar 

  332. Catal T, Xu S, Li K, Bermek H, Liu H (2008) Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectron 24:849–854

    Article  CAS  Google Scholar 

  333. Sun J, Hu YY, Bi Z, Cao YQ (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Biores Technol 100:3185–3192

    Article  CAS  Google Scholar 

  334. Wen Q, Wu Y, Cao D, Zhao L, Sun Q (2009) Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Biores Technol 100:4171–4175

    Article  CAS  Google Scholar 

  335. Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880

    Article  CAS  PubMed  Google Scholar 

  336. Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75:3673–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Zuo Y, Maness PC, Logan BE (2006) Electricity production from steam-exploded corn stover biomass. Energy Fuels 20:1716–1722

    Article  CAS  Google Scholar 

  338. Pham H, Boon N, Marzorati M, Verstraete W (2009) Enhanced removal of 1, 2-dichloroethane by anodophilic microbial consortia. Water Res 43:2936–2946

    Article  CAS  PubMed  Google Scholar 

  339. Scott K, Murano C (2007) A study of a microbial fuel cell battery using manure sludge waste. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 82:809–817

    Article  CAS  Google Scholar 

  340. Zhang T, Zeng Y, Chen S, Ai X, Yang H (2007) Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochem Commun 9:349–353

    Article  CAS  Google Scholar 

  341. Rahimnejad M, Ghoreyshi AA, Najafpour G, Jafary T (2011) Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl Energy 88:3999–4004

    Article  CAS  Google Scholar 

  342. Deng Q, Li X, Zuo J, Ling A, Logan BE (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources 195:1130–1135

    Article  CAS  Google Scholar 

  343. Mohan SV, Saravanan R, Raghavulu SV, Mohanakrishna G, Sarma PN (2008) Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Biores Technol 99:596–603

    Article  Google Scholar 

  344. Liu Z, Liu J, Zhang S, Su Z (2009) Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon-and protein-rich substrates. Biochem Eng J 45:185–191

    Article  CAS  Google Scholar 

  345. Sharma P, Talekar GV, Mutnuri S (2021) Demonstration of energy and nutrient recovery from urine by field-scale microbial fuel cell system. Process Biochem 101:89–98

    Article  CAS  Google Scholar 

  346. Lu N, Zhou SG, Zhuang L, Zhang JT, Ni JR (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Engg J 43:246–251

    Article  CAS  Google Scholar 

  347. Cercado-Quezada B, Delia ML, Bergel A (2010) Testing various food-industry wastes for electricity production in microbial fuel cell. Biores Technol 101:2748–2754

    Article  CAS  Google Scholar 

  348. Antonopoulou G, Stamatelatou K, Bebelis S, Lyberatos G (2010) Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem Eng J 50:10–15

    Article  CAS  Google Scholar 

  349. Gregoire KP, Becker JG (2012) Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity. Biores Technol 119:208–215

    Article  CAS  Google Scholar 

  350. Gezginci M, Uysal Y (2014) Electricity generation using different substrates and their concentrations in Microbial fuel cell. J Environ Prot Ecol 15:1744–1750

    CAS  Google Scholar 

  351. Yoshimura Y, Nakashima K, Kato M, Inoue K, Okazaki F, Soyama H, Kawasaki S (2018) Electricity Generation from Rice Bran by a Microbial Fuel Cell and the Influence of Hydrodynamic Cavitation Pretreatment. ACS Omega 3:15267–15271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Ullah Z, Zeshan S (2019) Effect of substrate type and concentration on the performance of a double chamber microbial fuel cell. Water Sci Technol 81(7):1336–1344

    Article  Google Scholar 

  353. Mateo S, Cañizares P, Rodrigo MA, Fernandez-Morales FJ (2018) Driving force behind electrochemical performance of microbial fuel cells fed with different substrates. Chemosphere 207:313–319

    Article  CAS  PubMed  Google Scholar 

  354. Makhtar M, Tajarudin HA (2020) Electricity generation using membrane-less microbial fuel cell powered by sludge supplemented with lignocellulosic waste. Int J Energy Res 44:3260–3265

    Article  Google Scholar 

  355. Jung SP, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-007-1162-y

    Article  PubMed  Google Scholar 

  356. Jung SP, Yoon MH, Lee SM, Oh SE, Kang H, Yang JK (2014) Power generation and anode bacterial community compositions of sediment fuel cells differing in anode materials and carbon sources. Int J Electrochem Sci 9:315–326

    Google Scholar 

  357. Pandit S, Savla N, Sonawane JM, Sani AM, Gupta PK, Abhilasha Singh Mathuriya AS, Rai AK, Jadhav DA, Jung SP, Prasad R (2022) Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells. Recent Adv: Fermentation 7:169–202

    Google Scholar 

  358. Pandit S, Savla N, Jung SP (2020) Recent advancements in scaling up microbial fuel cells. In: Integrated Microbial Fuel Cells for Wastewater Treatment. Butterworth-Heinemann, pp 349–368

  359. Savla N, Pandit S, Khanna N, Singh A, Mathuriya JSP (2020) Microbially powered electrochemical systems coupled with membrane-based technology for sustainable desalination and efficient wastewater treatment. J Korean Soc Environ Eng 42:360–380

    Article  Google Scholar 

  360. Son S, Kim Y, Jung SP (2021) Recent trends and prospects of microbial fuel cell technology for energy positive wastewater treatment plants treating organic waste resources. J Korean Soc Environ Eng 43:623–653

    Article  Google Scholar 

  361. Chai H, Choi Y, Jung SP (2020) Trends of microbial electrochemical technologies for nitrogen removal in wastewater treatment. J Korean Soc Water Waste Water 34:345–356

    Article  Google Scholar 

  362. Koo B, Jung SP (2022) Trends and perspectives of microbial electrolysis cell technology for ultimate green hydrogen production. J Korean Soc Environ Eng 44:383–396

    Article  Google Scholar 

  363. Son S, Jung SP (2022) Trends and prospects of sediment microbial fuel cells as sustainable aquatic ecosystem remediation technology. J Korean Soc Environ Eng 44:468–492

    Article  Google Scholar 

  364. Mahmoud RH, Gomaa OM, Hassan RY (2022) Bio-electrochemical frameworks governing microbial fuel cell performance: technical bottlenecks and proposed solutions. RSC Adv 12:5749–5764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Adekunle A, Rickwood C, Tartakovsky B (2021) On-line monitoring of water quality with a floating microbial fuel cell biosensor: field test results. Ecotoxicology 30:851–862

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Prashanthi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prashanthi, R. A review on microbial fuel cell and green energy. Ionics 29, 1667–1697 (2023). https://doi.org/10.1007/s11581-023-04956-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04956-6

Keywords

Navigation