Skip to main content
Log in

Thiophene-2-carbonitrile: a bifunctional electrolyte additive to improve the performance of lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Thiophene-2-carbonitrile (CT) is used as an electrolyte additive to improve the cycle performance of Li/LiNi0.5Mn1.5O4 (LNMO) cells. The effects of CT on the electrode interface and cycling performance of Li/LNMO cells are studied by electrochemical methods such as charge–discharge measurements, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and other characterization methods. Results show that CT can be oxidized before the electrolyte, forming a polythiophene protective film on the electrode surface, which improves the interphase stability of the electrode/electrolyte. The Li|1.0 M LiPF6-EC/EMC/DMC (1:1:1, v/v/v) |LNMO cell with 0.1 wt% CT shows a capacity retention of 91.2% after 300 cycles at a charge–discharge rate of 1 C between 3.5 and 4.95 V. The addition of thiophene-2-carbonitrile can significantly improve the cycle performance of Li/LiNi0.5Mn1.5O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hubble D, Brown DE, Zhao YZ, Fang C, Lau J, Mccloskey BD, Liu G (2022) Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ Sci 15:550–578. https://doi.org/10.1039/D1EE01789F

    Article  CAS  Google Scholar 

  2. Liu DD, Xiong XH, Liang QW, Wu XW, Fu HK (2021) An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte. Chem Commun 57:9232–9235. https://doi.org/10.1039/D1CC03676A

    Article  CAS  Google Scholar 

  3. Fan XL, Wang CS (2021) High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem Soc Rev 50:10486–10566. https://doi.org/10.1039/D1CS00450F

    Article  CAS  PubMed  Google Scholar 

  4. Tan CL, Cui LS, Li Y, Qin XJ, Li Y, Pan QC, Zheng FH, Wang HQ, Li QY (2021) Stabilized cathode interphase for enhancing electrochemical performance of LiNi0.5Mn1.5O4-based lithium-ion battery via cis-1,2,3,6-tetrahydrophthalic anhydride. ACS Appl Mater Interfaces 13:18314–18323. https://doi.org/10.1021/acsami.1c01979

    Article  CAS  PubMed  Google Scholar 

  5. Wu XM, Chen S, Mai FR, Zhao JH, Li CA, Liu W (2013) Effect of crystallization route on the properties of LiMn2O4 thin films prepared by spin coating. J Solid State Electrochem 17:707–711. https://doi.org/10.1007/s10008-012-1920-3

    Article  CAS  Google Scholar 

  6. Xiang YH, Jiang YL, Liu SQ, Wu JH, Liu ZX, Zhu L, Xiong LZ, He ZQ, Wu XW (2020) Improved electrochemical performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials for lithium ion batteries synthesized by ionic-liquid-assisted hydrothermal method. Front Chem 8:729. https://doi.org/10.3389/fchem.2020.00729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhong MM, Guan JD, Feng QJ, Wu XW, Xiao ZB, Zhang W, Tong S, Zhou N, Gong DX (2018) Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries. Carbon 128:86–96. https://doi.org/10.1016/j.carbon.2017.11.084

    Article  CAS  Google Scholar 

  8. Wu XT, Yin CS, Zhang MF, Xie YQ, Hu JJ, Long RL, Wu XM, Wu XW (2023) The intercalation cathode of MOFs-driven vanadium-based composite embedded in N-doped carbon for aqueous zinc ion batteries. Chem Eng J 452:139. https://doi.org/10.1016/j.cej.2022.139573

    Article  CAS  Google Scholar 

  9. Madinabeitia I, Rikarte J, Baraldi G, Fernández-Carretero FJ, Garbayo I, García-Luis A, Muñoz-Márquez MÁ (2022) Growth parameters and diffusion barriers for functional high-voltage thin-film batteries based on spinel LiNi0.5Mn1.5O4 cathodes. ACS Appl Mater Interfaces 14:2720–2730. https://doi.org/10.1021/acsami.1c18247

    Article  CAS  PubMed  Google Scholar 

  10. Tian T, Lu L-L, Yin Y-C, Tan Y-H, Zhang T-W, Li F, Yao H-B (2022) Trace doping of multiple elements enables stable cycling of high areal capacity LiNi0.5Mn1.5O4 cathode. Small 18:2106898. https://doi.org/10.1002/smll.202106898

    Article  CAS  Google Scholar 

  11. Bi K, Zhao SX, Huang C, Nan CW (2018) Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O. J Power Sources 389:240–248. https://doi.org/10.1016/j.jpowsour.2018.03.071

    Article  CAS  Google Scholar 

  12. Feng YH, Xu H, Zhang Y, Li CL, Zhao DN, Zhao QP, Mao LP, Zhang HM, Li SY (2019) Effects of LiBF4 concentration in carbonate-based electrolyte on the stability of high-voltage LiNi0.5Mn1.5O4 cathode. Ionics 25:3623–3631. https://doi.org/10.1007/s11581-019-02960-3

    Article  CAS  Google Scholar 

  13. Qiu YJ, Lu DS, Gai YY, Cai YP (2022) Adiponitrile (ADN): a stabilizer for the LiNi0.8Co0.1Mn0.1O2 (NCM811) electrode/electrolyte interface of a graphite/NCM811 Li-ion cell. ACS Appl Mater Interfaces 14:11398–11407. https://doi.org/10.1021/acsami.1c23335

    Article  CAS  PubMed  Google Scholar 

  14. Lee KS, Sun YK, Noh J, Song KS, Kim DW (2009) Improvement of high voltage cycling performance and thermal stability of lithium–ion cells by use of a thiophene additive. Electrochem Commun 11:1900–1903. https://doi.org/10.1016/j.elecom.2009.08.012

    Article  CAS  Google Scholar 

  15. Xia L, Xia YG, Liu ZP (2015) Thiophene derivatives as novel functional additives for high-voltage LiCoO2 operations in lithium ion batteries. Electrochim Acta 151:429–436. https://doi.org/10.1016/j.electacta.2014.11.062

    Article  CAS  Google Scholar 

  16. Tu WQ, Xia P, Li JH, Zeng LZ, Xu MQ, Xing LD, Zhang LQ, Yu L, Fan WZ, Li WS (2016) Terthiophene as electrolyte additive for stabilizing lithium nickel manganese oxide cathode for high energy density lithium-ion batteries. Electrochim Acta 208:251–259. https://doi.org/10.1016/j.electacta.2016.05.029

    Article  CAS  Google Scholar 

  17. Han SY, Liu Y, Zhang H, Fan CJ, Fan WZ, Yu L, Du XY (2020) Succinonitrile as a high-voltage additive in the electrolyte of LiNi0.5Co0.2Mn0.3O2/graphite full batteries. Surf Interface Anal 52:364–373. https://doi.org/10.1002/sia.6744

    Article  CAS  Google Scholar 

  18. Wang XS, Zheng XW, Liao YH, Huang QM, Xing LD, Xu MQ, Li WS (2017) Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive. J Power Sources 338:108–116. https://doi.org/10.1016/j.jpowsour.2016.10.103

    Article  CAS  Google Scholar 

  19. Wang L, Ma YL, Li Q, Zhou ZX, Cheng XQ, Zuo PJ, Du CY, Gao YZ, Yin GP (2017) 1,3,6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode. J Power Sources 361:227–236. https://doi.org/10.1016/j.jpowsour.2017.06.075

    Article  CAS  Google Scholar 

  20. Duan BY, Hong B, Li J, Qin ZM, Jiang F, Lai YQ (2018) 1, 3, 5-Pentanetricarbonitrile additive for improving high voltage stability of lithium cobalt oxide cells. Electrochim Acta 286:86–91. https://doi.org/10.1016/j.electacta.2018.08.041

    Article  CAS  Google Scholar 

  21. Ji YJ, Zhang ZR, Gao M, Li Y, Mcdonald MJ, Yang Y (2015) Electrochemical behavior of suberonitrile as a high-potential electrolyte additive and Co-solvent for Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material. J Electrochem Soc 162:A774–A780. https://doi.org/10.1149/2.1001504jes

    Article  CAS  Google Scholar 

  22. Lee SH, Hwang JY, Park SJ, Park GT, Sun YK (2019) Adiponitrile (C6H8N2): a new Bi-functional additive for high-performance Li-metal batteries. Adv Funct Mater 29:1902496. https://doi.org/10.1002/adfm.201902496

    Article  CAS  Google Scholar 

  23. Chen JW, Vatamanu J, Xing LD, Borodin O, Chen HY, Guan XC, Liu X, Xu K, Li WS (2020) Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes. Adv Eengry Mater 10:1902654. https://doi.org/10.1002/aenm.201902654

    Article  CAS  Google Scholar 

  24. Wang J, Zhao DN, Cong YY, Zhang NS, Wang P, Fu XL, Cui XL (2021) Analyzing the mechanism of functional groups in phosphate additives on the interface of LiNi0.8Co0.15Al0.05O2 cathode materials. ACS Appl Mater Interfaces 13:16939–16951. https://doi.org/10.1021/acsami.0c21535

    Article  CAS  PubMed  Google Scholar 

  25. Wang P, Cui XL, Zhao DN, Yan D, Ding H, Dong H, Wang J, Wu SM, Li SY (2022) Effects of soluble products decomposed from chelato-borate additives on formation of solid electrolyte interface layers. J Power Sources 535:231451. https://doi.org/10.1016/j.jpowsour.2022.231451

    Article  CAS  Google Scholar 

  26. Wang P, Yan D, Wang CY, Ding H, Dong H, Wang J, Wu SM, Cui XL, Li CL, Zhao DN, Li SY (2022) Study of the formation and evolution of solid electrolyte interface via in-situ electrochemical impedance spectroscopy. Appl Surf Sci 596:153572. https://doi.org/10.1016/j.apsusc.2022.153572

    Article  CAS  Google Scholar 

  27. Wang J, Dong H, Wang P, Fu XL, Zhang NS, Zhao DN, Li SY, Cui XL (2022) Adjusting the solvation structure with tris(trimethylsilyl)borate additive to improve the performance of LNCM half cells. J Energy Chem 67:55–64. https://doi.org/10.1016/j.jechem.2021.09.022

    Article  CAS  Google Scholar 

  28. Zhang DF, Liu M, Ma JB, Yang K, Chen Z, Li KK, Zhang C, Wei YP, Zhou M, Wang P, He YB, Lv W, Yang QH, Kang FY, He YB (2022) Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries. Nat Commun 13:6966. https://doi.org/10.1038/s41467-022-34717-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen C, Liang QW, Chen ZX, Zhu WY, Wang ZJ, Li Y, Wu XW, Xiong XH (2021) Phenoxy radical-induced formation of dual-layered protection film for high-rate and dendrite-free lithium-metal anodes. Angew Chem Int Ed 60:26718–26724. https://doi.org/10.1002/anie.202110441

    Article  CAS  Google Scholar 

  30. Zhang QK, Wang K, Wang XS, Zhong YT, Liu MZ, Liu X, Xu K, Fan WZ, Yu L, Li WS (2019) Lithium bis(oxalate)borate reinforces the interphase on Li-metal anodes. ACS Appl Mater Interfaces 11:20854–20863. https://doi.org/10.1021/acsami.9b04898

    Article  CAS  PubMed  Google Scholar 

  31. Jiang S, Xu X, Yin JY, Wu HH, Zhu XQ, Gao YF (2022) Multifunctional electrolyte additive for Bi-electrode interphase regulation and electrolyte stabilization in Li/LiNi0.8Co0.1Mn0.1O2 batteries. ACS Appl Mater Interfaces 14:38758–38768. https://doi.org/10.1021/acsami.2c09285

    Article  CAS  PubMed  Google Scholar 

  32. Cheng FY, Zhang XY, Wei P, Sun SX, Xu Y, Li Q, Fang C, Han JT, Huang YH (2022) Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Sci Bull 67:2225–2234. https://doi.org/10.1016/j.scib.2022.10.007

    Article  CAS  Google Scholar 

  33. Jiang B, Li JR, Luo B, Yan QZ, Li H, Liu LH, Chu LH, Li YF, Zhang QB, Li MC (2021) LiPO2F2 electrolyte additive for high-performance Li-rich cathode material. J Energy Chem 60:564–571. https://doi.org/10.1016/j.jechem.2021.01.024

    Article  CAS  Google Scholar 

  34. Zhu YM, Luo XY, Zhi HZ, Liao YH, Xing LD, Xu MQ, Liu X, Xu K, Li WS (2018) Diethyl(thiophen-2-ylmethyl)phosphonate: a novel multifunctional electrolyte additive for high voltage batteries. J Mater Chem A 6:10990–11004. https://doi.org/10.1039/C8TA01236A

    Article  CAS  Google Scholar 

  35. Chen HY, Chen JW, Zhang WG, Xie QM, Che YX, Wang HR, Xing LD, Xu K, Li WS (2020) Enhanced cycling stability of high-voltage lithium metal batteries with a trifunctional electrolyte additive. J Mater Chem A 8:22054–22064. https://doi.org/10.1039/D0TA07438A

    Article  CAS  Google Scholar 

  36. Shang HM, Zhou HX, Gao JJ, Zhang H, Li TH, Qiao YJ, Niu WC, Qu MZ, Xie ZW, Peng GC (2021) Improving the cyclic stability of LiNi0.5Mn1.5O4 cathode by modifying the interface film with 8-hydroxyquinoline. ChemistrySelect 6:3988–3994. https://doi.org/10.1002/slct.202100754

    Article  CAS  Google Scholar 

  37. Liu FY, Zhang Z, Yu ZY, Fan XM, Yi MY, Bai MH, Song Y, Mao QY, Hong B, Zhang ZA, Lai YQ (2022) Bifunctional nitrile-borate based electrolyte additive enables excellent electrochemical stability of lithium metal batteries with single-crystal Ni-rich cathode at 4.7 V. Chem Eng J 434:134745. https://doi.org/10.1016/j.cej.2022.134745

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianming Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Wu, X., Wu, X. et al. Thiophene-2-carbonitrile: a bifunctional electrolyte additive to improve the performance of lithium-ion batteries. Ionics 29, 1813–1821 (2023). https://doi.org/10.1007/s11581-023-04939-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04939-7

Keywords

Navigation