Skip to main content
Log in

Aggregation behavior of sodium dioctyl sulfosuccinate in water-contained choline chloride-ethylene glycol deep eutectic solvent and its effects on electrochemical behavior of copper ions

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Deep eutectic solvents (DESs) are attractive due to their advantages as solvents and electrolytes. Self-aggregation of surfactants would affect physico-chemical properties of DESs and thus electrochemical behavior of electroactive species in DESs. Aggregation behavior of sodium dioctyl sulfosuccinate (AOT) in choline chloride-ethylene glycol mixture containing 4 wt.% water (ethaline-4% H2O) was evaluated by surface-tension measurement. And surfactant effects on electrochemical behavior of copper ions in ethaline-4% H2O electrolyte were investigated by viscosity and ionic conductivity measurements, electrochemical experiments, and morphology analysis. The results show that critical micelle concentration value is 5.32 mM, and viscosity of ethaline-4% H2O increases upon increase of AOT concentration, while ionic conductivity decreases. Two redox couples relating to Cu(II)/Cu(I) and Cu(I)/Cu(0) from cyclic voltammograms were observed at both GCE and Pt electrodes. Using cyclic voltammograms of copper ions at Pt, diffusion coefficients and rate constants of Cu(II) were calculated and found to decrease when AOT concentration increases from 0 to 20 mM. Nucleation and growth processes are fitted well with instantaneous nucleation mode regardless of AOT concentrations from chronoamperometric data of Cu(I)/Cu(0) at GCE. Furthermore, scanning electronic microscopy analysis indicates that aggregation of surfactant AOT near critical micelle concentration plays important role in copper morphology control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 9:70–71

    Article  Google Scholar 

  2. Zhang QH, Vigier KD, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Yu D, Chen W, Fu L, Mu T (2019) Water absorption by deep eutectic solvents. Phys Chem Chem Phys 21:2601–2610

    Article  CAS  PubMed  Google Scholar 

  4. Hammond OS, Bowron DT, Edler KJ (2017) The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew Chem Int Ed 56:9782–9785

    Article  CAS  Google Scholar 

  5. Shi J, Sun T, Bao J, Zheng S, Du H, Li L, Yuan X, Ma T, Tao Z (2021) “Water-in-deep eutectic solvent” electrolytes for high-performance aqueous Zn-Ion batteries. Adv Funct Mater 31:2102035

    Article  CAS  Google Scholar 

  6. Zhu F, Rx D, Jiang Qh (2022) Effects of water on electrochemical behavior of ZnCl2 and FeCl3 in deep eutectic solvent composed of choline chloride and urea. Russ J Electrochem 58:617–625

    Article  CAS  Google Scholar 

  7. Ma C, Laaksonen A, Liu C, Lu X, Ji X (2018) The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem Soc Rev 47:8685–8720

    Article  CAS  PubMed  Google Scholar 

  8. Protsenko VS, Bobrova LS, Danilov FI (2017) Physicochemical properties of ionic liquid mixtures containing choline chloride, chromium (III) chloride and water: effects of temperature and water content. Ionics 23:637–643

    Article  CAS  Google Scholar 

  9. Fryars S, Limanton E, Gauffre F, Paquin L, Lagrost C, Hapiot P (2018) Diffusion of redox active molecules in deep eutectic solvents. J Electroanal Chem 819:214–219

    Article  CAS  Google Scholar 

  10. Xu J, Ma Q, Su H, Qiao F, Leung P, Shah A, Xu Q (2020) Redox characteristics of iron ions in different deep eutectic solvents. Ionics 26:483–492

    Article  CAS  Google Scholar 

  11. Xu Q, Zhao TS, Wei L, Zhang C, Zhou XL (2015) Electrochemical characteristics and transport properties of Fe(II)/Fe(III) redox couple in a non-aqueous reline deep eutectic solvent. Electrochim Acta 154:462–467

    Article  CAS  Google Scholar 

  12. Bu J, Ru J, Hua Y, Wang Z, Zhang Y, Geng X, Zhang W (2021) Electrochemical behavior of Sb(III)/Sb during the preparation of Sb particles in deep eutectic solvent. Ionics 27:3119–3127

    Article  CAS  Google Scholar 

  13. Sebastián P, Gómez E, Climent V, Feliu JM (2017) Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: new insights. Electrochem Commun 78:51–55

    Article  Google Scholar 

  14. Vieira L, Schennach R, Gollas B (2016) The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents. Electrochim Acta 197:344–352

    Article  CAS  Google Scholar 

  15. Abbott AP, Barron JC, Frisch G, Gurman S, Ryder KS, Fernando Silva A (2011) Double layer effects on metal nucleation in deep eutectic solvents. Phys Chem Chem Phys 13:10224–10231

    Article  CAS  PubMed  Google Scholar 

  16. Pal M, Rai R, Yadav A, Khanna R, Baker GA, Pandey S (2014) Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent. Langmuir 30:13191–13198

    Article  CAS  PubMed  Google Scholar 

  17. Arnold T, Jackson AJ, Sanchez-Fernandez A, Magnone D, Terry AE, Edler KJ (2015) Surfactant behavior of sodium dodecylsulfate in deep eutectic solvent choline chloride/urea. Langmuir 31:12894–12902

    Article  CAS  PubMed  Google Scholar 

  18. Pal M, Singh RK, Pandey S (2015) Evidence of self-aggregation of cationic surfactants in a choline chloride+glycerol deep eutectic solvent. ChemPhysChem 16:2538–2542

    Article  CAS  PubMed  Google Scholar 

  19. Komal SG, Singh G, Kang TS (2018) Aggregation behavior of sodium dioctyl sulfosuccinate in deep eutectic solvents and their mixtures with water: an account of solvent’s polarity, cohesiveness, and solvent structure. ACS Omega 3:13387–13398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rublova Y, Amirulloeva N, Protsenko V, Danilov F (2019) Surface activity of sodium dodecylsulfate at the interface "solution based on a deep eutectic solvent/air". Chem Chem 184–189

  21. Banjare RK, Banjare MK, Behera K, Pandey S, Ghosh KK (2020) Micellization behavior of conventional cationic surfactants within glycerol-based deep eutectic solvent. ACS Omega 5:19350–19362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu L, Yan Z, Zhang J, Peng X, Mo X, Wang A, Chen L (2019) Surfactant aggregates within deep eutectic solvent-assisted synthesis of hierarchical ZIF-8 with tunable porosity and enhanced catalytic activity. J Mater Sci 54:11009–11023

    Article  CAS  Google Scholar 

  23. Lu Y-S, Pan W-Y, Hung T-C, Hsieh Y-T (2020) Electrodeposition of silver in a ternary deep eutectic solvent and the electrochemical sensing ability of the Ag-modified electrode for nitrofurazone. Langmuir 36:11358–11365

    Article  CAS  PubMed  Google Scholar 

  24. Hsieh Y-T, Liu Y-R (2018) Micelle structure in a deep eutectic solvent for the electrochemical preparation of nanomaterials. Langmuir 34:10270–10275

    Article  CAS  PubMed  Google Scholar 

  25. Abbott AP, El Ttaib K, Frisch G, McKenzie KJ, Ryder KS (2009) Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys Chem Chem Phys 11:4269–4277

    Article  CAS  PubMed  Google Scholar 

  26. Sebastián P, Vallés E, Gómez E (2014) Copper electrodeposition in a deep eutectic solvent. First stages analysis considering Cu(I) stabilization in chloride media. Electrochim Acta 123:285–295

    Article  Google Scholar 

  27. Tan Z, Liu S, Wu J, Nan Z, Yang F, Zhan D, Yan J, Mao B (2022) Copper deposition on Au(111) in a deep eutectic solvent: an in situ STM study. ChemElectroChem 9:e202101412

    Article  CAS  Google Scholar 

  28. Gomes A, da Silva Pereira MI (2006) Pulsed electrodeposition of Zn in the presence of surfactants. Electrochim Acta 51:1342–1350

    Article  CAS  Google Scholar 

  29. Dong H, Wang Y, Tao F, Wang L (2012) Electrochemical fabrication of shape-controlled copper hierarchical structures assisted by surfactants. J Nanomater 2012:901842

    Article  Google Scholar 

  30. Luo B, Li X, Li X, Xue L, Li S, Li X (2013) Copper nanocubes and nanostructured cuprous oxide prepared by surfactant-assisted electrochemical deposition. CrystEngComm 15:5654–5659

    Article  CAS  Google Scholar 

  31. Lukaczynska M, Mernissi Cherigui EA, Ceglia A, Van Den Bergh K, De Strycker J, Terryn H, Ustarroz J (2019) Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents. Electrochim Acta 319:690–704

    Article  CAS  Google Scholar 

  32. Protsenko VS, Bobrova LS, Kityk AA, Danilov FI (2020) Kinetics of Cr(III) ions discharge in solutions based on a deep eutectic solvent (ethaline): effect of water addition. J Electroanal Chem 864:114086

    Article  CAS  Google Scholar 

  33. Valverde PE, Green TA, Roy S (2020) Effect of water on the electrodeposition of copper from a deep eutectic solvent. J Appl Electrochem 50:699–712

    Article  CAS  Google Scholar 

  34. Phuong TDV, Phi T-L, Phi BH, Van Hieu N, Tang Nguyen S, Le Manh T (2021) Electrochemical behavior and electronucleation of copper nanoparticles from CuCl2·2H2O using a choline chloride-urea eutectic mixture. J Nanomater 2021:9619256

    Article  Google Scholar 

  35. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    Article  CAS  PubMed  Google Scholar 

  36. Abbott AP, Harris RC, Ryder KS (2007) Application of hole theory to define ionic liquids by their transport properties. J Phys Chem B 111:4910–4913

    Article  CAS  PubMed  Google Scholar 

  37. Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR (2021) Deep eutectic solvents: a review of fundamentals and applications. Chem Rev 121:1232–1285

    Article  CAS  PubMed  Google Scholar 

  38. Vukmirovic MB, Adzic RR, Akolkar R (2020) Copper electrodeposition from deep eutectic solvents—voltammetric studies providing insights into the role of substrate: platinum vs glassy carbon. J Phys Chem B 124:5465–5475

    Article  CAS  PubMed  Google Scholar 

  39. Chen P-Y, Sun IW (1999) Electrochemical study of copper in a basic 1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt. Electrochim Acta 45:441–450

    Article  CAS  Google Scholar 

  40. Bard B, Faulkner L (2001) Electrochemical methods: fundamentals and applications, 2nd edn. NewYork, Wiley

    Google Scholar 

  41. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    Article  CAS  Google Scholar 

  42. Sai Jyotheender K, Punith Kumar MK, Srivastava C (2021) Influence of surfactant polarity on the evolution of micro-texture, grain boundary constitution and corrosion behavior of electrodeposited Zn coatings. Surf Coat Tech 423:127594

    Article  CAS  Google Scholar 

  43. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879–889

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 21962019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 457 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Deng, R. & Li, S. Aggregation behavior of sodium dioctyl sulfosuccinate in water-contained choline chloride-ethylene glycol deep eutectic solvent and its effects on electrochemical behavior of copper ions. Ionics 28, 5643–5653 (2022). https://doi.org/10.1007/s11581-022-04776-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04776-0

Keywords

Navigation