Skip to main content

Advertisement

Log in

Enhanced electrochemical performance of mesoporous spherical SnS2/porous carbon composite prepared by dual-solvent hydrothermal method for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to solve the shortcomings of volume expansion and poor cycle performance of SnS2 as anode for lithium-ion batteries, we prepared SnS2/porous carbon (PC) composite by a dual-solvent hydrothermal method. By changing the solvent, the SnS2/PC is consisted of a special mesoporous microsphere structure, and PC is used as an additive in the synthesis process of SnS2. In the prepared dual-solvent SnS2/PC composite, the crystal orientation of SnS2 is not unidirectional as a sheet-like structure in a single solvent, but intertwined to form spherical SnS2 particles, and the PC is uniformly attached to the SnS2 particles. Compared with pure SnS2, the dual-solvent SnS2/PC composite has a larger specific capacity (783.2 mAh/g at 0.1 A/g) and long cycle stability (596.5 mAh/g at 1 A/g), with a high capacity retention of 92% from 100th cycle to 1000th cycle. This excellent electrochemical performance is mainly attributed to the existence of PC, which not only prevents the aggregation of SnS2 particles, but also reduces the volume change of SnS2 particles during the charge–discharge cycle. In addition, PC can also improve the conductivity of SnS2 particles. The improvement in cyclic stability and electronic conductivity of SnS2 is of great significance for realizing high-performance lithium-ion batteries. Our present study sheds new light on constructing high-performance electrodes for electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. He Y, Xiang K, Zhou W, Zhu Y, Chen X, Chen H (2018) Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries. Chem Eng J 353:666–678. https://doi.org/10.1016/j.cej.2018.07.165

    Article  CAS  Google Scholar 

  2. Hu Z, He Q, Liu Z, Liu X, Qin M, Wen B, Shi W, Zhao Y, Li Q, Mai L (2020) Facile formation of tetragonal-Nb2O5 microspheres for high-rate and stable lithium storage with high areal specific capacity. Sci Bull 65:1154–1162. https://doi.org/10.1016/j.scib.2020.04.011

    Article  CAS  Google Scholar 

  3. Liu K, Wang JA, Yang J, Zhao D, Chen P, Man J, Yu X, Wen Z, Sun J (2021) Interstitial and substitutional V5+-doped TiNb2O7 microspheres: a novel doping way to achieve high-performance electrodes. Chem Eng J 407:127190. https://doi.org/10.1016/j.cej.2020.127190

  4. Liu K, Wang J, Zheng H, Sun X, Yang Z, Man J, Wang X, Sun J (2022) Direct synthesis of tin spheres/nitrogen-doped porous carbon composite by self-formed template method for enhanced lithium storage. J Mater Sci Technol 104:88–97

    Article  Google Scholar 

  5. Bai Z, Yang Y, Zhang D, Wang Y, Guo Y, Yan H, Chu PK, Luo Y (2021) Carbon-encapsulated nanosphere-assembled MoS2 nanosheets with large interlayer distance for flexible lithium-ion batteries. J Solid State Electrochem 25:1657–1665. https://doi.org/10.1007/s10008-021-04936-8

    Article  CAS  Google Scholar 

  6. Zheng J, He C, Li X, Wang K, Wang T, Zhang R, Tang B, Rui Y (2021) CoS2–MnS@Carbon nanoparticles derived from metal–organic framework as a promising anode for lithium-ion batteries. J Alloys Compd 854:157315. https://doi.org/10.1016/j.jallcom.2020.157315

    Article  CAS  Google Scholar 

  7. Gao S, Chen G, Dall’Agnese Y, Wei Y, Gao Z, Gao Y (2018) Flexible MnS–carbon fiber hybrids for lithium-ion and sodium-ion energy storage. Chem-Eur J 24:13535–13539. https://doi.org/10.1002/chem.201801979

    Article  PubMed  CAS  Google Scholar 

  8. Liu XJ, Xu ZZ, Ahn HJ, Lyu SK, Ahn IS (2012) Electrochemical characteristics of cathode materials NiS2 and Fe-doped NiS2 synthesized by mechanical alloying for lithium-ion batteries. Powder Technol 229:24–29. https://doi.org/10.1016/j.powtec.2012.05.035

    Article  CAS  Google Scholar 

  9. Luo B, Yan F, Wang B, Zhou J, Song H, Zhi L (2012) Two dimensional graphene–SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ Sci 5:5226–5230. https://doi.org/10.1039/c1ee02800f

    Article  CAS  Google Scholar 

  10. Shi X, Yang Z, Liu Y, Tang Y, Liu Y, Gao S, Yang Y, Chen X, Zhong Y, Wu Z, Guo X, Zhong B (2020) Three-dimensional SnS2 nanoarrays with enhanced lithium-ion storage properties. ChemElectroChem 7:4484–4491. https://doi.org/10.1002/celc.202001175

    Article  CAS  Google Scholar 

  11. Balogun MS, Qiu W, Jian J, Huang Y, Luo Y, Yang H, Liang C, Lu X, Tong Y (2015) Vanadium nitride nanowire supported SnS2 nanosheets with high reversible specific capacity as anode material for lithium ion batteries. ACS Appl Mater Interfaces 7:23205–23215. https://doi.org/10.1021/acsami.5b07044

    Article  PubMed  CAS  Google Scholar 

  12. Kim HS, Chung YH, Kang SH, Sung Y-E (2009) Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochim Acta 54:3606–3610. https://doi.org/10.1016/j.electacta.2009.01.030

    Article  CAS  Google Scholar 

  13. Zhang Y, Ma Z, Liu D, Dou S, Ma J, Zhang M, Guo Z, Chen R, Wang S (2017) p-Type SnO thin layers on n-type SnS2 nanosheets with enriched surface defects and embedded charge transfer for lithium ion batteries. J Mater Chem A 5:512–518. https://doi.org/10.1039/c6ta09748k

    Article  CAS  Google Scholar 

  14. Zhang H, Lv X, Tian W, Hu Z, Ma K, Tan S, Ji J (2021) One-pot fabrication of N, S co-doped carbon with 3D hierarchically porous frameworks and high electron/ion transfer rate for lithium-ion batteries. Chem Eng Sci 234:116453. https://doi.org/10.1016/j.ces.2021.116453.

  15. Yin J, Cao H, Zhou Z, Zhang J, Qu M (2012) SnS2@reduced graphene oxide nanocomposites as anode materials with high specific capacity for rechargeable lithium ion batteries. J Mater Chem 22:23963. https://doi.org/10.1039/c2jm35137d

  16. Li R, Miao C, Yu L, Mou H, Zhang M, Xiao W (2020) Enhanced electrochemical performance of flower-like SnS2/NC@GO composite anodes for lithium-ion batteries. Solid State Ionics 348:115288. https://doi.org/10.1016/j.ssi.2020.115288

    Article  CAS  Google Scholar 

  17. Tang H, Qi X, Han W, Ren L, Liu Y, Wang X, Zhong J (2015) SnS2 nanoplates embedded in 3D interconnected graphene network as anode material with superior lithium storage performance. Appl Surf Sci 355:7–13. https://doi.org/10.1016/j.apsusc.2015.07.091

    Article  CAS  Google Scholar 

  18. Zhang M, Miao C, Fang R, Li R, Mou H, Xiao W (2020) Enhanced lithium storage performance of petaloid SnS2/NC composite anodes via facile hydrothermal and in situ N-doped carbon coating processes. Ionics 26:3333–3341. https://doi.org/10.1007/s11581-020-03525-5

    Article  CAS  Google Scholar 

  19. Chen X, Huang Y, Zhang K, Feng XS, Wang M (2017) Synthesis and high-performance of carbonaceous polypyrrole nanotubes coated with SnS2 nanosheets anode materials for lithium ion batteries. Chem Eng J 330:470–479. https://doi.org/10.1016/j.cej.2017.07.180

    Article  CAS  Google Scholar 

  20. Hao Y, Wang S, Shao Y, Wu Y, Miao S (2020) High-energy density Li-Ion capacitor with layered SnS2/reduced graphene oxide anode and BCN nanosheet cathode. Adv Energy Mater 10:1–10. https://doi.org/10.1002/aenm.201902836

    Article  CAS  Google Scholar 

  21. Yin L, Chai S, Huang J, Kong X, Wang J, Bai P (2017) Influence of solvent on the structure and electrochemical performances of Sn-based anode for lithium-ion battery. Ceram Int 43:12667–12674. https://doi.org/10.1016/j.ceramint.2017.06.148

    Article  CAS  Google Scholar 

  22. Devaraju MK, Yin S, Sato T (2009) Morphology control of cerium oxide particles synthesized via a supercritical solvothermal method. ACS Appl Mater Interfaces 1:2694–2698. https://doi.org/10.1021/am900574m

    Article  PubMed  CAS  Google Scholar 

  23. Vaquero F, Navarro RM, Fierro JLG (2017) Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method. Appl Catal B 203:753–767. https://doi.org/10.1016/j.apcatb.2016.10.073

    Article  CAS  Google Scholar 

  24. Jin S, Sun X, Cai S, Guo J, Fan A, Zhang N, Wu H, Zheng C (2020) SnS2 quantum dots uniformly anchored on dispersed S-doped graphene as high-rate anodes for sodium-ion batteries. Ceram Int 46:14416–14424. https://doi.org/10.1016/j.ceramint.2020.02.237

    Article  CAS  Google Scholar 

  25. Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C (2013) In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. J Power Sources 237:178–186. https://doi.org/10.1016/j.jpowsour.2013.03.048

    Article  CAS  Google Scholar 

  26. Wang Q, Nie Y-X, He B, Xing L-L, Xue X-Y (2014) SnS2–graphene nanocomposites as anodes of lithium-ion batteries. Solid State Sci 31:81–84. https://doi.org/10.1016/j.solidstatesciences.2014.03.001

    Article  CAS  Google Scholar 

  27. Sun H, Ahmad M, Luo J, Shi Y, Shen W, Zhu J (2014) SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries. Mater Res Bull 49:319–324. https://doi.org/10.1016/j.materresbull.2013.09.005

    Article  CAS  Google Scholar 

  28. Chao J, Zhang X, Xing S, Fan Q, Yang J, Zhao L, Li X (2016) Hierarchical three-dimensional porous SnS2/PCarbon cloth anode for high-performance lithium ion batteries. Mater Sci Eng B 210:24–28. https://doi.org/10.1016/j.mseb.2016.03.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cultivation Program for the Excellent Doctoral Dissertation of Dalian Maritime University (2022YBPY010). The authors would like to thank Shiyanjia Lab (https://www.shiyanjia.com) for the XPS test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncai Sun.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, H., Liu, K., Zhou, Y. et al. Enhanced electrochemical performance of mesoporous spherical SnS2/porous carbon composite prepared by dual-solvent hydrothermal method for lithium-ion batteries. Ionics 28, 4997–5004 (2022). https://doi.org/10.1007/s11581-022-04762-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04762-6

Keywords

Navigation