Skip to main content

Advertisement

Log in

Polypyrrole-pen ink/polydopamine electrode for flexible all-in-one supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Flexible supercapacitors are recently of extensive interest for flexible electronic devices. Cost and ionic diffusion efficiency between interface of electrode and electrolyte are two key factors that affect their practical application. Here, we report an effective polypyrrole-pen ink/polydopamine (PPy-ink/PDA) film electrode fabricated by in-situ polymerization method. The contribution of diffusion-dominated and surface-dominated processes in charge energy storage process of PPy-ink/PDA film electrode is discussed. Moreover, based on polyvinyl alcohol/polyethylene glycol (PVA/PEG) electrolyte, a flexible all-in-one solid supercapacitor is constructed. Due to the interfacial reaction improved by PDA, the obtained device delivers a high energy density of 12.6 µWh/cm2 at a power density of 80 µW/cm2. In addition, the facile fabrication method of the electrode and low cost of commercial pen ink make it an excellent candidate for flexible electronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mo F, Li Q, Liang G, Zhao Y, Wang D, Huang Y, Wei J, Zhi C (2021) A self-healing crease-free supramolecular all-polymer supercapacitor. Adv Sci 8:2100072. https://doi.org/10.1002/advs.202100072

    Article  CAS  Google Scholar 

  2. Railanmaa A, Lehtimaki S, Keskinen J, Lupo D (2019) Non-toxic printed supercapacitors operating in sub-zero conditions. Sci Rep 9:14059. https://doi.org/10.1038/s41598-019-50570-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nan J, Zhang G, Zhu T, Wang Z, Wang L, Wang H, Chu F, Wang C, Tang C (2020) A highly elastic and fatigue-resistant natural protein-reinforced hydrogel electrolyte for reversible-compressible quasi-solid-state supercapacitors. Adv Sci 7:2000587. https://doi.org/10.1002/advs.202000587

    Article  CAS  Google Scholar 

  4. Pan Z, Yang J, Li L, Gao X, Kang L, Zhang Y, Zhang Q, Kou Z, Zhang T, Wei L, Yao Y, Wang J (2020) All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Stor Mater 25:124–130. https://doi.org/10.1016/j.ensm.2019.10.023

    Article  Google Scholar 

  5. Gao X, Hu Q, Sun K, Peng H, Xie X, Hamouda HA, Ma G (2021) A novel all-in-one integrated flexible supercapacitor based on self-healing hydrogel electrolyte. J Alloys Compd 888:161554. https://doi.org/10.1016/j.jallcom.2021.161554

    Article  CAS  Google Scholar 

  6. Purty B, Choudhary RB, Biswas A, Udayabhanu G (2019) Temperature dependent supercapacitive performance of NH3 modified TiO2 decorated PPy nanohybrids in various electrolyte systems. Synth Met 249:1–13. https://doi.org/10.1016/j.synthmet.2019.01.012

    Article  CAS  Google Scholar 

  7. Yang C, Zhang P, Nautiyal A, Li S, Liu N, Yin J, Deng K, Zhang X (2019) Tunable three-dimensional nanostructured conductive polymer hydrogels for energy-storage applications. ACS Appl Mater Interfaces 11:4258–4267. https://doi.org/10.1021/acsami.8b19180

    Article  CAS  PubMed  Google Scholar 

  8. Xing R, Xia Y, Huang R, Qi W, Su R, He Z (2020) Three-dimensional printing of black phosphorous/polypyrrole electrode for energy storage using thermoresponsive ink. Chem Commun 56:3115–3118. https://doi.org/10.1039/c9cc08605f

    Article  CAS  Google Scholar 

  9. Dong S, Xie Z, Fang Y, Zhu K, Gao Y, Wang G, Yan J, Cheng K, Ye K, Cao D (2019) Polydopamine-modified reduced graphene oxides as a capable electrode for high-performance supercapacitor. Chemistryselect 4:2711–2715. https://doi.org/10.1002/slct.201900242

    Article  CAS  Google Scholar 

  10. Zheng Y, Lu S, Xu W, He G, Cheng Y, Yu T, Zhang Y (2018) The fabrication of graphene/polydopamine/nickel foam composite material with excellent electrochemical performance as supercapacitor electrode. J Solid State Chem 258:401–409. https://doi.org/10.1016/j.jssc.2017.11.006

    Article  CAS  Google Scholar 

  11. Zhang ZJ, Song QZ, He WX, Liu P, Xiao YH, Liang JY, Chen XY (2019) Dual surface modification of carbon materials by polydopamine and phosphomolybdic acid for supercapacitor application. Dalton Trans 48:17321–17330. https://doi.org/10.1039/c9dt03831k

    Article  CAS  PubMed  Google Scholar 

  12. Dhibar S, Roy A, Malik S (2019) Nanocomposites of polypyrrole/graphene nanoplatelets/single walled carbon nanotubes for flexible solid-state symmetric supercapacitor. Eur Polym J 120:109203. https://doi.org/10.1016/j.eurpolymj.2019.08.030

    Article  CAS  Google Scholar 

  13. Mariappan CR, Gajraj V, Gade S, Kumar A, Dsoke S, Indris S, Ehrenberg H, Prakash GV, Jose R (2019) Synthesis and electrochemical properties of rGO/polypyrrole/ferrites nanocomposites obtained via a hydrothermal route for hybrid aqueous supercapacitors. J Electroanal Chem 845:72–83. https://doi.org/10.1016/j.jelechem.2019.05.031

    Article  CAS  Google Scholar 

  14. Liu C, Ren QQ, Zhang SW, Yin BS, Que LF, Zhao L, Sui XL, Yu FD, Li X, Gu DM, Wang ZB (2019) High energy and power lithium-ion capacitors based on Mn3O4/3D-graphene as anode and activated polyaniline-derived carbon nanorods as cathode. Chem Eng J 370:1485–1492. https://doi.org/10.1016/j.cej.2019.04.044

    Article  CAS  Google Scholar 

  15. Wu H, La M, Li J, Han Y, Feng Y, Peng Q, Hao C (2019) Preparation and electrochemical properties of MnO2/PANI-CNTs composites materials. Compos Interfaces 26:659–677. https://doi.org/10.1080/09276440.2018.1526592

    Article  CAS  Google Scholar 

  16. Prakash NG, Dhananjaya M, Narayana AL, Maseed H, Srikanth VVSS, Hussain OM (2019) Improved electrochemical performance of rGO-wrapped MoO3 nanocomposite for supercapacitors. Appl Phys A: Mater Sci Process 125:488. https://doi.org/10.1007/s00339-019-2779-2

    Article  CAS  Google Scholar 

  17. Tiwari P, Jaiswal J, Chandra R (2019) Hierarchal growth of MoS2@CNT heterostructure for all solid state symmetric supercapacitor: insights into the surface science and storage mechanism. Electrochim Acta 324:134767. https://doi.org/10.1016/j.electacta.2019.134767

    Article  CAS  Google Scholar 

  18. Feng Y, Li J, Tian R, Yao J (2021) Writing ink-promoted synthesis of electrodes with high energy storage performance: a review. J Energy Chem 53:433–440. https://doi.org/10.1016/j.jechem.2020.05.031

    Article  CAS  Google Scholar 

  19. Lv P, Song L, Li Y, Pang H, Liu W (2021) Hybrid ternary rice paper/polypyrrole ink/pen ink nanocomposites as components of flexible supercapacitors. Int J Hydrogen Energy 46:13219–13229. https://doi.org/10.1016/j.ijhydene.2021.01.111

    Article  CAS  Google Scholar 

  20. Gao L, Surjadi JU, Cao K, Zhang H, Li P, Xu S, Jiang C, Song J, Sun D, Lu Y (2017) Flexible fiber-shaped supercapacitor based on nickel cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl Mater Interfaces 9:5409–5418. https://doi.org/10.1021/acsami.6b16101

    Article  CAS  PubMed  Google Scholar 

  21. Guo L, Ma WB, Wang Y, Song XZ, Ma J, Han XD, Tao XY, Guo LT, Fan HL, Liu ZS, Zhu YB, Wei XY (2020) A chemically crosslinked hydrogel electrolyte based all-in-one flexible supercapacitor with superior performance. J Alloys Compd 843:155895. https://doi.org/10.1016/j.jallcom.2020.155895

    Article  CAS  Google Scholar 

  22. Hsu FH, Wu TM (2018) Facile synthesis of polypyrrole/carbon-coated MoO3 nanoparticle/graphene nanoribbon nanocomposite with high-capacitance applied in supercapacitor electrode. J Mater Sci: Mater Electron 29:382–391. https://doi.org/10.1007/s10854-017-7927-x

    Article  CAS  Google Scholar 

  23. Guo Y, Zheng K, Wan P (2018) A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 14:1704497. https://doi.org/10.1002/smll.201704497

    Article  CAS  Google Scholar 

  24. Liu L, Tian Q, Yao W, Li M, Li Y, Wu W (2018) All-printed ultraflexible and stretchable asymmetric in-plane solid-state supercapacitors (ASCs) for wearable electronics. J Power Sources 397:59–67

    Article  CAS  Google Scholar 

  25. Liu Q, Qiu J, Yang C, Zang L, Zhang G, Sakai E (2021) High-performance PVA/PEDOT:PSS hydrogel electrode for all-gel-state flexible supercapacitors. Adv Mater Technol 6:2000919. https://doi.org/10.1002/admt.202000919

    Article  CAS  Google Scholar 

  26. Cao XJ, Zeng HY, Yi MY, Zou KM, Xu S (2019) Preparation of NiAl double hydroxide@polypyrrole materials for high-performance supercapacitors. J Polym Sci, Part B: Polym Phys 57:1653–1662. https://doi.org/10.1002/polb.24896

    Article  CAS  Google Scholar 

  27. Liu FW, Xie LY, Wang L, Chen W, Wei W, Chen X, Luo SJ, Dong L, Dai QL, Huang Y, Wang L (2020) Hierarchical porous RGO/PEDOT/PANI hybrid for planar/linear supercapacitor with outstanding flexible and stability. Nano-Micro Lett 12(1):17. https://doi.org/10.1007/s40820-019-0342-5

    Article  CAS  Google Scholar 

  28. Li Y, Shang X, Song C, Chen J, Li Y, Huang M, Meng F (2020) Bimetallic MnCo alloy nanoparticles decorated boron-doped carbon nanotubes as an active and durable electrode for supercapacitor. Microporous Mesoporous Mater 309:110535. https://doi.org/10.1016/j.micromeso.2020.110535

    Article  CAS  Google Scholar 

  29. Li C, Fu Q, Zhao K, Wang Y, Tang H, Li H, Jiang H, Chen L (2018) Nitrogen and phosphorous dual-doped graphene aerogel with rapid capacitive response for sodium-ion batteries. Carbon 139:1117–1125. https://doi.org/10.1016/j.carbon.2018.06.035

    Article  CAS  Google Scholar 

  30. Suresh BS, Mohammad TS, Karnan M, Moorthy M, Sathish M (2020) Enhancement in the specific energy of B-doped graphene using redox additive electrolytes. Chemistryselect 5:9825–9833. https://doi.org/10.1002/slct.202002548

    Article  CAS  Google Scholar 

  31. Yin BS, Zhang SW, Ke K, Wang ZB (2019) Biology-inspired polydopamine-assisted strategy for high-performance supercapacitor. Chem Eng J 375:122056. https://doi.org/10.1016/j.cej.2019.122056

    Article  CAS  Google Scholar 

  32. Zhang MY, Song Y, Guo D, Yang D, Sun XQ, Liu XX (2019) Strongly coupled polypyrrole/molybdenum oxide hybrid films via electrochemical layer-by-layer assembly for pseudocapacitors. J Mater Chem A 7:9815–9821. https://doi.org/10.1039/c9ta00705a

    Article  CAS  Google Scholar 

  33. Akhtar A, Mishra S, Saha SK (2020) Charge transport mechanism in reduced graphene oxide/polypyrrole based ultrahigh energy density supercapacitor. J Mater Sci: Mater Electron 31:11637–11645. https://doi.org/10.1007/s10854-020-03714-y

    Article  CAS  Google Scholar 

  34. Zeng R, Deng HR, Xiao YB, Huang J, Yuan K, Chen YW (2018) Cross-linked graphene/carbon nanotube networks with polydopamine “glue” for flexible supercapacitors. Composites Communications 10:73–80. https://doi.org/10.1016/j.coco.2018.07.002

    Article  Google Scholar 

  35. Yadav PK, Sharma RM (2020) Classification of fiber tip pens using attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy in tandem with chemometrics. Vib Spectrosc 108:103054. https://doi.org/10.1016/j.vibspec.2020.103054

    Article  CAS  Google Scholar 

  36. Liu Y, Xie LY, Zhang W, Dai ZW, Wei W, Luo SJ, Chen X, Chen W, Rao F, Wang L, Huang Y (2019) A conjugated system of PEDOT:PSS induced self-doped PANI for flexible Zinc-ion batteries with enhanced capacity and cyclability. ACS Appl Mater Interfaces 11:30943–30952. https://doi.org/10.1021/acsami.9b09802

    Article  CAS  PubMed  Google Scholar 

  37. Huang Y, Zhu MS, Meng WJ, Fu YQ, Wang ZF, Huang Y, Pei ZX, Zhi CY (2015) Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv 5:3981–33989. https://doi.org/10.1039/C5RA02868J

    Article  CAS  Google Scholar 

  38. Lv P, Meng YY, Song LX, Pang H, Liu WQ (2021) A self-supported electrode for supercapacitors based on nanocellulose/multi-walled carbon nanotubes/polypyrrole composite. RSC Advances 11:1109–1114. https://doi.org/10.1039/d0ra08040c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pourfarzad H, Badrnezhad R, Ghaemmaghami M, Saremi M (2021) In situ synthesis of C3N4/PPy/MnO2 nanocomposite as a high performance active material for asymmetric supercapacitor. Ionics 27:4057–4067. https://doi.org/10.1007/s11581-021-04132-8

    Article  CAS  Google Scholar 

  40. Liu Y, Dai Z, Zhang W et al (2021) Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 15:9065–9075. https://doi.org/10.1021/acsnano.1c02215

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Li W, Chang X, Chen H, Zheng X, Bai J, Ren Z (2020) MoSe2 nanoflakes-decorated vertically aligned carbon nanotube film on nickel foam as a binder-free supercapacitor electrode with high rate capability. J Colloid Interface Sci 562:483–492. https://doi.org/10.1016/j.jcis.2019.11.089

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Q, Li Y, Zhu J, Lan L, Li C, Mao J, Wang F, Zhang Z, Wang L (2021) Ultra-low temperature flexible supercapacitor based on hierarchically structured pristine polypyrrole membranes. Chem Eng J 420:129712. https://doi.org/10.1016/j.cej.2021.129712

    Article  CAS  Google Scholar 

  43. Wang QY, Li YY, Zhao JY, Zhang C, Luo X, Shao J, Zhong M, Ye ZH, Feng PD, Liu XL, Li K, Zhao WW (2021) A universal strategy for ultra-flexible inorganic all-solid-state supercapacitors. J Alloys Compd 852:156613. https://doi.org/10.1016/j.jallcom.2020.156613

    Article  CAS  Google Scholar 

  44. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA, Pham DT, Lee JH, Kim SW, Lee YH (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7:5940–5947. https://doi.org/10.1021/nn4016345

    Article  CAS  PubMed  Google Scholar 

  45. Yang J, Yu X, Sun X, Kang Q, Zhu L, Qin G, Zhou A, Sun G, Chen Q (2020) Polyaniline-decorated supramolecular hydrogel with tough, fatigue-resistant, and self-healable performances for all-in-one flexible supercapacitors. ACS Appl Mater Interfaces 12:9736–9745. https://doi.org/10.1021/acsami.9b20573

    Article  CAS  PubMed  Google Scholar 

  46. Wang N, Han G, Xiao Y, Li Y, Song H, Zhang Y (2018) Polypyrrole/graphene oxide deposited on two metalized surfaces of porous polypropylene films as all-in-one flexible supercapacitors. Electrochim Acta 270:490–500. https://doi.org/10.1016/j.electacta.2018.03.090

    Article  CAS  Google Scholar 

  47. Li L, Lou Z, Han W, Chen D, Jiang K, Shen GZ (2017) Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv Mater Technol 2:1600282. https://doi.org/10.1002/admt.20160028

    Article  Google Scholar 

Download references

Funding

This work was supported by Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY17B060012 and LY21F050004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Xin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Q., Hu, D., Yan, W. et al. Polypyrrole-pen ink/polydopamine electrode for flexible all-in-one supercapacitor. Ionics 28, 5599–5608 (2022). https://doi.org/10.1007/s11581-022-04759-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04759-1

Keywords

Navigation