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Abstract
The need of quick testing of nicotine (NIC) is vital because of its hurtful impacts on human. NIC detection has been success-
fully developed using a novel sensitive simple electrochemical sensor. The sensor system is based on modifying a carbon 
paste electrode (CPE) using Ni and Cu nanoparticles to develop the new nickel/copper nanoparticle–modified carbon paste 
electrode (NCNMCPE) with low-cost and simple procedure. The sensor showed excellent electrocatalytic activity for NIC 
oxidation in phosphate buffer solution (pH 7.0) at a lower voltage of 1.3 V, with a linear response from 6.0 to 1000.0 µM. The 
detection limit (LOD) was estimated to be 0.14 nM. The sensing performance of the NCNMCPE for the electro-oxidation 
of NIC was examined utilizing cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spec-
troscopy (EIS). Scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX) techniques were used to 
achieve surface characteristics.
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Introduction

Nicotine (3-(1-methyl-2-pyrrolidinyl) pyridine) is a sort of 
addictive chemical (alkaloid) derived from tobacco leaves, 
which is primarily employed in the production of cigarettes 
[1]. NIC use through tobacco products is dangerous to both 
active and passive smokers and can result in diseases such as 
cardiovascular, pulmonary, and central nervous system prob-
lems as well as cancer [2–6]. In the realms of medicine, toxi-
cology, and the tobacco industry, determining of NIC is crit-
ical. However, traditional analytical procedures such as gas 
chromatography [7], high-performance liquid chromatog-
raphy [8, 9], and spectrophotometry [10] can be employed 
to quantify NIC. These procedures have some drawbacks 
such as the fact that they take longer time and involve com-
plex sample preparation stages, expensive gear, and highly 
skilled staff [11]. Electrochemical detection is an alternative 
technology with practical advantages such as high sensitiv-
ity, selectivity, cost-effectiveness, quick reaction, and eas-
ier electrode fabrication process [12–14]. Electrochemical 

biosensors based on carbon electrodes for analytical and 
sensing purposes have attracted great attention. These mate-
rials present noticeable electroanalytical properties both 
for the direct detection of electroactive species and being 
functionally tailored to develop specific and sensitive elec-
trochemical sensors and biosensors. Carbon paste electrode 
(CPE) is one of the most popular carbon electrodes due to its 
low background current, wide anodic potential range, ease of 
fabrication, and low-cost preparation [15]. Recently, a few 
investigations have been conducted on the detection of NIC 
utilizing CPEs modified with nanomaterial particles such as 
cerium nanoparticles [16], nano-TiO2 [17], and multi-wall 
carbon nanotubes [18]. M.A. Ameer et al. [19] developed a 
highly sensitive NIC detection method using a sensor based 
on Ag nanoparticle–modified carbon paste electrode. M. 
Shehata et al. [17] developed a modified carbon paste sen-
sor with TiO2 nanoparticles for NIC detection in urine sam-
ples with good sensitivity. E. Molaakbari et al. [20] found 
that carbon paste electrode modified with ZnO nanoparticles 
and 3-(4′-amino-3′-hydroxy-biphenyl-4-yl)-acrylic acid gave 
accurate detection of norepinephrine, tyrosine, and NIC in 
mixtures without substantial interferences. Recently, the use 
of copper nanoparticles as an inhibitor [21] and in fuel cells 
[22], catalysis [23], and electrochemical sensors [24] has 
gained importance because of its increased efficiency due to 
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increased surface to volume ratio. Nanostructured materials 
possess unique mechanical, electronic, physical, chemical, 
and physiochemical properties due to their high surface area 
which in turn increases the active centers [25, 26]. Nickel 
nanoparticles “Ni-NPs” have received great interest to use 
in electrochemical sensing because of their excellent elec-
trocatalytic activity for oxidation of many compounds. Sev-
eral researches have been reported for utilizing Ni-NPs in 
electrochemical applications such as glucose [27], amino 
acids [28], DNA [29], and myoglobin [30] sensors. In this 
study, a sensitive electrochemical technique using Ni/Cu-
NP-modified carbon paste electrode (NCNMCPE) has been 
developed. The oxidation response of NIC at NCNMCPE 
was used as the indicator. The results show that this method 
is simple and very sensitive in detecting NIC without the use 
of expensive and complicated instruments.

Experimental

Reagent and chemicals

NIC standard samples (99%) were provided by the Egyptian 
Eastern Company for Smoking and were utilized without 
prior purification. NIC stock solutions of about 1.62 g L−1 
were freshly prepared in water and maintained in a dark 
container because the compound is light sensitive. The 
standard NIC solutions were prepared using a supporting 
electrolyte, namely phosphate buffer solutions of pH 7.0 
(Na2HPO4.7H2O + NaH2PO4.H2O). pH values were adjusted 
using 0.2 M NaOH and 0.2 M HCl. Analytical grade chemi-
cals and triple-distilled water were used to make all of the 
solutions. All experiments were repeated twice or three 
times at room temperature and gave reproducible results.

Preparation of various electrodes

A CPE with a diameter of 3 mm was prepared by mixing 
drops of paraffin oil with (0.5 g) graphite powder and the 
mixture was blended thoroughly to acquire a uniform paste 
[31]. The resulting mixture was utilized to fill into a Teflon 
tube and pushed tightly. The CPE was polished with ultrafine 
emery paper until it was completely smooth.

1-	 The Cu nanoparticle–modified CPE was obtained by 
electrodeposition onto the bare CPE at a fixed potential 
0.17 V for 50 s from 0.1 M H2SO4 solution containing 
0.02 M CuSO4 [32].

2-	 The Ni nanoparticle–modified CPE Ni nanoparticles 
were electrodeposited on CPE surface by immersing the 
clean CPE into 5 ml NiSO4 (0.1 M) and 20 ml sodium–
potassium tartrate (C4H4KNaO6) (0.5 M). The deposi-

tion condition was made by utilizing a current density 
0.24 mA cm−2 for 5 min.

3-	 For simultaneous deposition of both Cu and Ni nano-
particles over CPE, the clean CPE was dipped into 
2.5 ml NiSO4 (0.1 M), 2.5 ml CuSO4 (0.1 M), and 20 ml 
sodium–potassium tartrate (C4H4KNaO6) (0.5 M). The 
deposition conditions were formed by using a current 
density of 0.24 mA cm−2 for 12 min [33]. The electrode 
was left to completely dry in air to obtain NCNMCPE.

Cell and apparatus

A three-electrode cell of 25 ml volume enclosing a plati-
num rod as a counter electrode (CE), saturated calomel 
electrode (SCE) as a reference electrode (RE), and NCN-
MCPE as the working electrode (WE) was utilized. Cyclic 
voltammetry (CV), chronoamperometry (CA), and electro-
chemical impedance spectroscopy (EIS) measurements are 
performed by SP-150 potentiostat supplied with EC-Lab® 
software package. EIS measurements are performed in the 
frequency range of 1.0 mHz to 100 kHz with a 10-mV ac 
amplitude. EC-Lab® software is used to analyze and fit the 
experimental spectra using the best equivalent circuit model. 
For pH readings, a microprocessor digital pH meter (Hanna 
Instruments, Italy) is employed. SEM measurements are 
performed using SEM Model Quanta 250 FEG (field emis-
sion gun) coupled to an EDX Unit (energy-dispersive X-ray 
analyses) (FEI business, Netherlands).

Analysis of urine

Standard NIC from the Egyptian Eastern Company was 
mixed in urine to make a stock solution (diluted 400 times 
using 100 ml of phosphate buffer pH 7.0). NIC standard 
samples were used for the additions. Standard additions of 
urine were prepared in the voltammetric cell from a solu-
tion containing NIC in 23 ml of phosphate buffer pH 7.0 
and assessed under the same conditions as the calibration 
graph [16].

Analysis of cigarette samples

The cigarettes were taken out of their rolling papers and 
dried for 30 min in a 40 °C oven. A total of 0.1 g of tobacco 
was recovered from a mixture of 10 cigarettes obtained from 
two packs of the same brand and put to 10 ml water and 
then, the contents of the vial were sonicated for 3 h in an 
ultrasonic water bath and filtered. The filtrate was mixed 
with the phosphate buffer (pH 7.0) in the appropriate volume 
(100 ml) and analyzed under the identical conditions as the 
calibration graph [34].
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Results and discussion

Characterization of the various electrode 
morphologies

The SEM picture of bare CPE (Fig. 1D) was as expected, 
showing rather uniform surface owing to the high compat-
ibility of the paraffin oil with graphite particles and the 
formation of a compact, tight, and homogenous paste. The 
surface of the modified electrode was significantly differ-
ent, exhibiting additional crystalline shapes of well-elec-
trodeposited Ni nanoparticles over the CPE to give the new 
NNMCPE in Fig. 1C. In the same manner, a colony of Cu 
nanoparticles electrodeposited over the carbon paste lay-
ers formed the modified CNMCPE as displayed in Fig. 1B. 

Figure 1A shows the SEM image of the Ni-Cu nanopar-
ticle–modified carbon paste electrode (NCNMCPE). The 
electrode surface revealed agglomeration of Cu nanopar-
ticles at various places throughout the CPE surface which 
are grouped as nanosheets to form coralline-structure mor-
phology and uniform distribution over a vast surface area 
and cover in between its layers the Ni nanoparticles as rep-
resented in the inset of Fig. 1. The high surface energy and 
surface tension of Cu-NPs cause them to aggregate together 
[35]. The existence of both Cu and Ni-NPs was confirmed 
by EDX data of the NCNMCPE surface as shown in Fig. 1E, 
indicating that Ni nanoparticles were coated on the CPE 
surface by the layers of Cu-NPs according to their peaks 
and its corresponding quantitative weight percent, which 
were 55.78% for oxygen, 18.31% for carbon, 16.99% for Ni, 
6.91% for Cu, and 1.98% for K.

Fig. 1   A SEM image of Ni/
Cu-NP-modified carbon paste 
electrode; inset shows the 
electrode morphology at higher 
magnification. B Electrodepos-
ited Cu nanoparticles on CPE. 
C Electrodeposited Ni nanopar-
ticles on CPE. D SEM image 
for bare CPE. E EDX spectra of 
the NCNMCPE surface
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Electrochemistry of NIC

Using the CV approach, the interaction of 1.0 × 10−3 M 
NIC with various modified electrodes (CNMCPE, NNM-
CPE, and NCNMCPE) and unmodified bare electrode 
(BCPE) was investigated. At a scan rate of 50 mV/s, Fig. 2 
reveals the four CVs of the BCPE and modified electrodes 
using phosphate buffer solution (pH = 7.0). NIC oxidized 
at the surface of the different modified electrodes at a 
potential of around + 1.3 V during anodic scanning, result-
ing in numerous and high oxidation peak currents due to 
improved electrocatalytic oxidation of NIC on modified 
electrodes. Running CVs in the same condition with BE 
presented very poor catalytic activity toward NIC. The 
response of CNMCPE to NIC was obviously around 46 
µA and improved the detection of NIC nearly 4.5 times 
higher than that of BCPE, showing that CPE has been 
effectively improved by Cu-NPs as shown in Fig. 2. On 
using NNMCPE, its response to NIC was higher by about 
6.0 times than that of BCPE, ensuring the enhancement 
of NIC detection through modifying CPE with Ni-NPs. 
The simultaneous electrodeposition of both Ni-NPs and 
Cu-NPs to produce NCNMCPE showed high efficiency 
toward the oxidation of NIC compared with the BCPE, 
which nearly reached to about 14.0 times higher than the 
oxidation peak of NIC over the BCPE. The existence of 
numerous catalytic centers on the Ni-NPs and Cu-NPs 
structure as well as topological defects on the electrode 
surface may explain the improved electrocatalytic activ-
ity of NIC on NCNMCPE [18, 36, 37]. During a cathodic 
scan, no voltammetric peak was seen that corresponded 
to the reduction of NIC. As a result, the irreversible NIC 
electrode oxidation at NCNMCPE has been confirmed.

Optimization of detection test conditions

Effect of pH

Cyclic voltammetry (CV) technique was evaluated to esti-
mate the impact of pH using phosphate buffer solution (pH 
2.0–9.0) at BE and NCNMCPE (Fig. 3). The effect of pH 
on the peak current and the peak potential for the oxidation 
of NIC is demonstrated in Fig. 3 (insets (A) and (B), respec-
tively). As the pH increased, the anodic peak potentials 
moved negatively, indicating that the electrocatalytic oxi-
dation of NIC was a pH-dependent reaction including proton 
participation in the electrode reaction [38, 39]. As can be 
observed, the produced complex’s peak current increased 
somewhat as pH go from 2.0 to 5.0. The peak current’s high-
est intensity was at pH = 7.0 and it gradually declined up 
to pH 9.0. Consequently, the pH 7.0 value was utilized as 
the ideal pH in all of the preceding investigations. NIC is 
a diacidic weak base with pKa1 = 8.02 and pKa2 = 3.12. At 
pH 7.0–8.0 (near to pKa1), the monoprotonated form pre-
dominated while the deprotonated form predominated at pH 
2.0–2.7. Accordingly, the pH value of the detecting system 
influences NIC response enabling the predictable perfor-
mance of a proton-dependent approach with an irreversible 
chemical reaction [40, 41].

Effect of scan rate and electroactive area calculation

The influence of scan rate on the anodic peak current of 
1.0 × 10−3 M NIC was investigated using the cyclic vol-
tammetry technique (Fig. 4). As shown in the inset of 
Fig. 4, the relationship between anodic peak current (Ipa) 
and the square root of the scan rate v1/2 (v ranging from 

Fig. 2   CVs of NIC at bare CPE, NNMCPE, CNMCPE, and NCNM-
CPE using phosphate buffer (pH 7.0) at a scan rate of 50 mV/s
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Fig. 3   CVs of NIC in different pH values using NCNMCPE at a scan 
rate of 50 mV/s. Inset: (A) Variation of anodic peak current with pH 
at bare CPE and NCNMCPE. (B) Variation of anodic peak potential 
with pH at NCNMCPE
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50 to 200 mV s−1) yielded a straight line, implying that 
the NIC oxidation process is a diffusion-controlled mass 
transfer process for NIC on the NCNMCPE [42, 43]. Fur-
thermore, increasing the scan rate causes the NIC peak 
potentials to shift to the positive direction without any 
cathodic peak current, demonstrating reaction irrevers-
ibility [28]. The Randles–Sevcik Eq. (1) was also used to 
explore the active surface area of the NCNMCPE and the 
diffusion coefficient D of NIC [44–46].

(1) For a given concentration of K4[Fe(CN)6], the active 
surface area of the modified electrode was determined, 
where Ip is the peak current (A), n is the number of elec-
trons transferred, v is the scan rate (V s−1), D is the diffu-
sion coefficient, A is the electrode area, and C is the con-
centration of K4[Fe(CN)6]. For 1.0 mmol L−1 K4[Fe(CN)6] 
in 0.10 mol L−1 KCl electrolyte with n = 1 and D = 7.6106 
cm2 s−1 [47], the bare surface area is 0.0706 cm2, and the 
NCMCPE electroactive surface area is 0.181 cm2.

(2) Based on the Randles–Sevcik equation, the diffusion 
coefficient Dapp for NIC in phosphate buffer (pH 7.0) was 
derived from the relationship between anodic peak current 
Ip (A) and square root of scan rate v1/2 (Fig. 4 inset).

In this equation, Ipa is the maximum current (A), n is 
the number of electrons transferred in the redox event, 
C0 is the analyte concentration (1 × 10−6 mol cm−3), A is 
the electroactive area of the electrode which previously 

(1)Ip = 2.69 × 10
5
n
3∕2

A D
1∕2

v

1

2C

(2)Ip = 0.4463 nFAC
0 (nFvD∕RT)

1

2

calculated (0.181 cm2), D is the electroactive species dif-
fusion coefficient (cm2 s−1), ν is the scan rate in V s−1, F 
is Faraday constant in C mol−1, T is the temperature in K, 
and R is the gas constant in J mol−1 K−1. Thus, the appar-
ent diffusion coefficient, Dapp, of NIC was found to be 
1.692 × 10−5cm2 s−1.

Chronoamperometry

The chronoamperometric measurements of NIC (Fig. 5) 
were done at a constant potential (+ 1300 mV vs. SCE) using 
NCNMCPE in phosphate buffer (pH = 7.0) containing dif-
ferent NIC concentrations. Using the Cottrell equation [48], 
the diffusion coefficient can be calculated

where i = current, in A, n = number of electrons, F = Faraday 
constant, 96,485 C/mol, A = electrode area in cm2, c0 = bulk 
analyte concentration in mol/cm3, D = species diffusion coef-
ficient in cm2/s, and t = time in s.

The slope derived from the relationship between the 
anodic peak current and t−1/2 (inset) equals nFAco (D/π) 1/2; 
hence, the diffusion coefficient of NIC was determined to be 
2.782 × 10−5 cm2s−1 using the Cottrell equation. As a result, 
the diffusion coefficient values derived using chronoampero-
metric data are equivalent to the diffusion coefficient values 
computed using CV measurements. This demonstrates that 
the analyte species undergoes a diffusion-controlled redox 
reaction.
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Fig. 4   Effect of changing the scan rate from 50 to 200 mV/s on the 
anodic peak response of NIC. Inset: Relation between anodic peak 
current and the square root of the scan rate

Fig. 5   Chronoamperograms obtained at NCNMCPE in phosphate 
buffer (pH 7.0) using different concentrations of NIC (20, 80, 200, 
600, 800, and 1000 μM). Insets: (A) plot of I vs. t.−1/2 obtained from 
chronoamperogram of 1000  μM. (B) Calibration curve for different 
concentrations of NIC at a fixed time of 1 s. Error bars represent the 
standard deviations of three repetitive tests
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The calibration curve is shown as a linear relationship 
between different NIC concentrations (20 to 1000 M) and 
the current at a given time (1 s) in Fig. 5 inset (B) [49]. 
Ip(A) = 0.034 C + 9.74, with a correlation coefficient of 
0.994, was the linear equation. The steady-state oxidation 
current increases as NIC concentration rises [50].

Effect of repeated CVs

CVs of 1.0 × 10−3 M NIC in phosphate buffer (pH 7.0) were 
repeated in different time intervals (Fig. 6), with the peak 
current value decreasing (inset) from the first scan to the 
remaining scans. This might be owing to oxidation product 

adsorption as an adsorbed coating on the NCNMCPE sur-
face, which deactivates the sensor and lowers its electro-
active surface area [51]. NCNMCPE’s repeatability and 
precision investigations are carried out by repeating the 
measurements five times, yielding a relative standard devia-
tion (RSD) of 1.58% for the first anodic scan. To achieve 
novel sensitivity and reproducibility, a first anodic peak 
current must be recorded for all the analysis in the coming 
studies.

EIS measurements

Impedance plots for the bare and NCNMCPE electrodes are 
given as Nyquist plots (Fig. 7 inset). At both high and low 
frequencies, a semicircle represents a charge transfer resist-
ance whereas a small line as a spike represents a diffusion 
process. A one-time constant model with Rs (solution resist-
ance), RCT (charge transfer resistance), Zw (Warburg imped-
ance), and CPE (constant phase element of capacitance) 
[52] is the best model that fits the experiments (Fig. 8). This 
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Fig. 6   Effect of repeated CVs for 1.0  mM NIC in phosphate buffer 
(pH 7.0) using NCNMCPE, at a scan rate of 50  mV/s. Inset: Rela-
tion between stirring time in minutes and the anodic peak current of 
1.0 mM NIC

Fig. 7   Nyquist plots of NIC 
in different pH values using 
NCNMCPE at peak potential. 
Inset: Nyquist plots of NIC at 
bare CPE and NCNMCPE using 
phosphate buffer (pH 7.0), at 
peak potential

Fig. 8   The equivalent circuit used in the fitting experiments of the 
EIS
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similar circuit model was used to simulate the data. RCT 
is due to the semicircle at high frequency (charge transfer 
resistance) while ZW is related to the small linear region 
at low frequency (diffusion process) [16, 53]. To account 
for surface non-ideality and heterogeneity, a constant phase 
element (CPE) [52] was developed with the impedance 
ZCPE = [C (jω)α] −1, where α is due to the surface inhomo-
geneity (− 1 ≤ α ≤ 1), j is the imaginary number (j2 =  − 1), 
ω = 2πf (rad s−1), and f (Hz) is the frequency. As a result, 
both charge transfer and diffusion play a role in the reaction 
mechanism [54]. The fitting is performed using EC-Lab® 
software provided with SP-150 workstation. The NCNM-
CPE electrode has a higher CPE (14.2 µF cm−2) and War-
burg impedance (1440 Ω cm2 s−1/2) and lower charge transfer 
resistance (1713 Ω cm2), suggesting a greater conductivity 
compared to the bare electrode with CPE = 2.1 µF cm−2, 
W = 325 Ω cm2 s−1/2, and RCT = 8059 Ω cm2. As a result, 
both charge transfer and diffusion play a role in the reac-
tion mechanism [54]. Furthermore, Nyquist plots (Fig. 7) 
of NIC in different pH values were measured using NCNM-
CPE at peak potential vs. SCE and gave the same order of 
pH as the CV results. The impedance value decreases in the 
same order as the current increases suggesting an increase 
in the conductivity. This shows that pH 7.0 has the lowest 
impedance value with smallest semicircle diameter when 
compared to the bare electrode (inset) and the maximum 
conductivity as obtained from CV results with highest cur-
rent [17]. The best fitting values for the impedance data of 
each pH value for the NCNMCPE are listed in Table 1.

Calibration curve and detection limit

Figure  9 illustrates differential pulse voltammograms 
(DPVs) for the effect of varying NIC concentrations (6.0 
to 1000 µM) in phosphate buffer (pH 7.0) at a scan rate 
of 10.0 mV/s utilizing NCNMCPE. Figure 9 (inset) depicts 
a linear relationship using the equation: Ip(µA) = 0.0208 
C + 19.650. According to the IUPAC recommendation, the 
limits of detection (LOD) and quantification (LOQ) were 
determined [17, 55] to be 1.44 × 10−8 M and 4.8 × 10−7 M, 
respectively.

Comparisons of the results for NIC detection obtained 
by several methods are shown in Table 2. Compared with 
several current techniques for the assay of NIC, the NCN-
MCP sensor has some advantages, obtaining higher specific 
selectivity with excellent stability and cheap reagents. The 
instruments of the NCNMCP sensor are simpler and cheaper 
than those of HPLC, GC, SPE, and spectrometry. The results 
are fairly satisfactory and the background causes no signifi-
cant effects.

Sample analysis

Application of NCNMCPE sensor in urine

Figure 10 shows the calibration plot obtained from DPV for 
the use of the NCNMCPE sensor on actual samples such as 
urine, which showed a straight line across the concentration 
range of 1 × 10−8 M to 8 × 10−7 M. The NIC concentration 
in urine samples was determined using the calibration curve 
equation Ipa (A) = 0.0231 C + 8.9041. LOD = 7.4 × 10−7 M 
and LOQ = 2.46 × 10−6 M were also estimated. Table 3 
shows the precision and accuracy of the suggested technique 
for NIC detection in urine samples for four different concen-
trations on the calibration curve that are repeated five times, 
with the recovery ranging from 98.0 to 100.4.

Analysis of real cigarette brand samples

Two products from distinct cigarette brands (L&M and Marl-
boro) were evaluated for a practical application to ensure that 
the proposed method was validated with real samples [38]. The 
NIC content of the tobacco sample was determined by adding 

Table 1   Electrochemical impedance fitting parameters

Rs, the solution resistance; Zw, Warburg impedance; CPE, constant 
phase element; α, correlation coefficients; RCT, charge transfer resist-
ance

PH Rs/Ω cm2 Zw/KΩ cm2 
s−1/2

CPE/μF cm−2 Α RCT KΩ cm2

2 156.3 0.28 5.2 0.853 7.42
5 136.2 0.59 6.8 0.872 5.81
7 129.5 1.44 14.2 0.75 1.73
9 122.7 1.56 13.7 0.71 3.58

Fig. 9   Differential pulse voltammograms for successive addition of 
NIC in phosphate buffer (pH 7.0) using NCNMCPE at step poten-
tial of 4.0  mV, modulation amplitude of 25.0  mV, and scan rate 
10.0 mV/s. Inset: Calibration curve of NIC using NCNMCPE. Error 
bars represent the standard deviations of three repetitive tests
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the proper volume of standard NIC solution produced in sup-
porting electrolyte to the NIC content previously prepared. 
Because NIC quantities may be quantitatively recovered by 
the suggested method, the recovery data confirm the accuracy 
of the voltammetric detection of NIC in tobacco which is rep-
resented in Table 4.

Interference study reproducibility and long‑term 
stability of NCNMCPE

Because of the low concentrations of other minor alkaloids 
(0.2–0.5% of total alkaloids), they cannot affect the accu-
racy of NIC detection at the sensitivity level of voltammetric 
measurements; thus, the interference of alkaloids which may 
be present in tobacco was not performed in this study.

To determine the influence of interfering compounds on 
NIC detection by NCNMCPE, a constant concentration of 
NIC (500 µM) was spiked with similar and two-fold concen-
trations of the NIC biomarker “cotinine.” Cotinine is struc-
turally similar to NIC and its usage with NIC would deter-
mine the selectivity of the investigated sensor perfectly. By 
using the same experimental conditions, CV measurements 
were performed and the obtained recovery data between 99.3 
and 100% ensures the high sensor selectivity to NIC.

To verify the reproducibility of NCNMCPE in terms of 
RSD, 5 sequential voltammetric determinations for 50 μM of 
NIC were performed without obvious alteration in NIC peak 
current with an RSD of 1.7%, which ensures the precision 
of the electrode under study. The long-term stability of the 
introduced method was assessed by keeping the NCNMCPE 

Table 2   Comparison of the 
proposed method with other 
methods and electrodes for the 
determination of NIC

Method Calibration range (M) Detection limit (M) Reference

HPLC 6.8 × 10−6–3.4 × 10−5 6.2 × 10−7 [56]
SPE Up to 1.2 × 10−6 1.2 × 10−8 [57]
CE 8.1 × 10−6–8.1 × 10−5 3.8 × 10−7 [58]
Spectrometry Up to 7.4 × 10−5 [59]
Flow injection 0–5.8 × 10−2 6.2 × 10−7 [60]
Pencil graphite electrode 7.0 × 10−6–1.07 × 10−4 2.0 × 10−6 [34]
CNMCP sensor 4.0 × 10−6–5.0 × 10−4 0.94 × 10−9 [16]
NCNMCP sensor 6.0 × 10−6–1.0 × 10−3 0.14 × 10−9 This work

Fig. 10   Calibration curve of 
NIC in urine
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Table 3   Precision and accuracy of the NMCPE sensor for NIC detec-
tion in a urine sample

a Mean for five determinations

(NIC) 
taken × 10−6 M

(NIC) foundeda 
(M) × 10−6

Recovery RSD %

10 9.8 98.0 4.1
40 40.3 100.8 1.3
120 120.5 100.4 3.2
200 200.8 100.4 1.7
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in a refrigerator (4 °C) for 7 days. Then, a single voltam-
metric measurement for NIC was performed, disclosing a 
current response at 95% of the value measured directly after 
fresh preparation, denoting good storage constancy of the 
electrode.

Conclusions

New NCNMCPE sensor based on deposition of Ni and Cu-
NPs on the surface of CPE has been presented and experi-
mentally tested for the selective detection of NIC. The 
experimental results demonstrate that NCNMCPE sensor 
exhibits good performances for the electrochemical deter-
mination of NIC, indicating that Ni nanoparticles improved 
the sensitivity of NIC. The detection limit for NIC was found 
to be 0.14 nM. Real sample analysis was also carried out 
successfully in urine and tobacco sample using a newly pre-
pared sensor, which detected NIC with great accuracy. We 
believe that this methodology may be useful for a simple and 
effective electrochemical sensor for NIC detection.
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