Skip to main content
Log in

Recent advances in protonconducting electrolytes for solid oxide fuel cells

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The performance characteristics of solid oxide fuel cells operating at intermediate temperatures depend largely on the tailored properties of the electrolyte used in making these cells. The extensive properties like conductivity and stability have a direct correlation with the defect chemistry of the electrolyte material. Proton conductors are gaining momentum as plausible electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFC). The replacement of electrolytes which conduct oxide ion (O\(^{2-}\)) by proton ion (H\(^{+}\)) largely enhances the performance in addition to decrease of cost of operation. But tailoring the oxide electrolytes for both high proton conductivity and chemical stability is a challenging task as they are antagonistic properties. This review discusses in detail the various electrolyte structures exhibiting proton conduction and also studies the effect of various dopants which alters the conductivity and stability of proton-conducting electrolytes for IT-SOFC. This review elaborates the mechanism of proton conduction in various oxides thereby providing a correlation between the structural and mechanistic features of the solid electrolytes. This review envisages to study the properties of proton-conducting electrolytes and aims to propose a framework that correlates the synthesis and properties of tailored electrolytes to the overall performance of the IT-SOFC for commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Afif A, Zaini J, Rahman SMH, Eriksson S, Islam MA, Azad AK (2019) Scheelite type Sr1-xBaxWO4 (x= 0.1, 0.2, 0.3) for possible application in solid oxide fuel cell electrolytes. Sci Rep 9(1):1–10

    Article  CAS  Google Scholar 

  2. Lin J-Y, Shao L, Si F-Z, Fu X-Z, Luo J-L (2018) Multiple-doped barium cerate proton-conducting electrolytes for chemical-energy cogeneration in solid oxide fuel cells. Int J Hydrog Energy 43(42):19704–19710

    Article  CAS  Google Scholar 

  3. Malavasi L, Fisher CA, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 39(11):4370–4387

    Article  CAS  PubMed  Google Scholar 

  4. Zhao C, Jia X, Shu K, Yu C, Wallace GG, Wang C (2020) Conducting polymer composites for unconventional solid-state supercapacitors. J Mater Chem A 8(9):4677–4699

    Article  CAS  Google Scholar 

  5. Hossain S, Abdalla AM, Jamain SNB, Zaini JH, Azad AK (2017) A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew Sustain Energy Rev 79:750–764

    Article  CAS  Google Scholar 

  6. Kannan R, Singh K, Gill S, Fürstenhaupt T, Thangadurai V (2013) Chemically stable proton conducting doped BaCeO3-no more fear to SOFC wastes. Sci Rep 3(1):1–5

    Article  Google Scholar 

  7. Guo T, Dong X, Shirolkar MM, Song X, Wang M, Zhang L, Li M, Wang H (2014) Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells. ACS Appl Mater Interfac 6(18):16131–16139

    Article  CAS  Google Scholar 

  8. Sun C, Xie Z, Xia C, Li H, Chen L (2006) Investigations of mesoporous CeO2-Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochem Commun 8(5):833–838

    Article  CAS  Google Scholar 

  9. Chen Y, Zhang Y, Lin Y, Yang Z, Su D, Han M, Chen F (2014) Direct-methane solid oxide fuel cells with hierarchically porous Ni-based anode deposited with nanocatalyst layer. Nano Energy 10:1–9

    Article  CAS  Google Scholar 

  10. Choi S, Yoo S, Kim J, Park S, Jun A, Sengodan S, Kim J, Shin J, Jeong HY, Choi Y et al (2013) Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-x FexO5+δ. Sci Rep 3(1):1–6

    Article  Google Scholar 

  11. Fabbri E, Bi L, Pergolesi D, Traversa E (2012) Towards the next generation of solid oxide fuel cells operating below 600 0c with chemically stable proton-conducting electrolytes. Adv Mater 24(2):195–208

    Article  CAS  PubMed  Google Scholar 

  12. Zhou X-D, Pederson LR, Templeton JW, Stevenson JW (2009) Electrochemical performance and stability of the cathode for solid oxide fuel cells: I. Cross validation of polarization measurements by impedance spectroscopy and current-potential sweep. J Electrochem Soc 157(2):B220

    Article  CAS  Google Scholar 

  13. Medvedev D, Brouzgou A, Demin A, Tsiakaras P (2017) Proton-conducting electrolytes for solid oxide fuel cell applications. In: Advances in medium and high temperature solid oxide fuel cell technology. Springer, pp 77–118

  14. Kim J, Sengodan S, Kim S, Kwon O, Bu Y, Kim G (2019) Proton conducting oxides: a review of materials and applications for renewable energy conversion and storage. Renew Sustain Energy Rev 109:606–618

    Article  CAS  Google Scholar 

  15. Shahid M, Tiwari P, Basu S (2019) Performance comparison of Ni ex-soluted and impregnated La-and Y-doped Sr titanates as anode for solid oxide fuel cell. Ionics 25(1):171–180

    Article  CAS  Google Scholar 

  16. Shahid M, He C, Sankarasubramanian S, Ramani V, Basu S (2020) Enhanced methane electrooxidation by ceria and nickel oxide impregnated perovskite anodes in solid oxide fuel cells. Int J Hydrog Energy 45(19):11287–11296

    Article  CAS  Google Scholar 

  17. Shahid M, Sankarasubramanian S, He C, Ramani VK, Basu S (2021) Ex-solution kinetics of nickel-ceria-doped strontium titanate perovskites. Ionics 27(6):2527–2536

    Article  CAS  Google Scholar 

  18. Sun W, Shi Z, Liu M, Bi L, Liu W (2014) An easily sintered, chemically stable, barium zirconate-based proton conductor for high-performance proton-conducting solid oxide fuel cells. Adv Func Mater 24(36):5695–5702

    Article  CAS  Google Scholar 

  19. Yu S, Wang Z, Yang L, Liu J, Guan R, Xiao Y, He T (2021) Enhancing the sinterability and electrical properties of BaZr0.1Ce0.7Y0.2O3-δ proton-conducting ceramic electrolyte. J Am Ceram Soc 104(1):329–342

    Article  CAS  Google Scholar 

  20. Irshad M, ul Ain Q, Siraj K, Raza R, Tabish AN, Rafique M, Idrees R, Khan F, Majeed S, Ahsan M (2020) Evaluation of BaZr0.8X0.2 (X= Y, Gd, Sm) proton conducting electrolytes sintered at low temperature for IT-SOFC synthesized by cost effective combustion method. J Alloy Compd 815:152389

    Article  CAS  Google Scholar 

  21. Zhang M, Wang D, Miao L, Jin Z, Dong K, Liu W (2021) A series of alkali metal elements doped La2Ce2O7 electrolytes for solid oxide fuel cells. Electrochem Commun 126:107026

    Article  CAS  Google Scholar 

  22. Han D, Kojima K, Majima M, Uda T (2014) Synthesis and conductivity measurement of lanthanum zirconate doped with rare earth dopants. J Electrochem Soc 161(10):F977

    Article  CAS  Google Scholar 

  23. Lin B, Wang S, Liu X, Meng G (2009) Stable proton-conducting Ca-doped LaNbO4 thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing. J Alloy Compd 478(1–2):355–357

    Article  CAS  Google Scholar 

  24. Dzierzgowski K, Wachowski S, Gazda M, Mielewczyk-Gryń A (2019) Terbium substituted lanthanum orthoniobate: electrical and structural properties. Curr Comput-Aided Drug Des 9(2):91

    Google Scholar 

  25. Kreuer K-D (2003) Proton-conducting oxides. Annu Rev Mater Res 33(1):333–359

    Article  CAS  Google Scholar 

  26. Zhu Z, Liu B, Shen J, Lou Y, Ji Y (2016) La2ce2o7: a promising proton ceramic conductor in hydrogen economy. J Alloy Compd 659:232–239

    Article  CAS  Google Scholar 

  27. Tao Z, Fu M, et al (2021) A mini-review of carbon resistant anode materials for solid oxide fuel cells. Sust Energy Fuels 5(21): 5240–5430

  28. Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39(11):4355–4369

    Article  CAS  PubMed  Google Scholar 

  29. Rashid NLRM, Samat AA, Jais AA, Somalu MR, Muchtar A, Baharuddin NA, Isahak WNRW (2019) Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell. Ceram Int 45(6):6605–6615

    Article  CAS  Google Scholar 

  30. Wang W, Medvedev D, Shao Z (2018) Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells. Adv Func Mater 28(48):1802592

    Article  CAS  Google Scholar 

  31. Bi L, Traversa E (2014) Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications. J Mater Res 29(1):1–15

    Article  CAS  Google Scholar 

  32. Tao Z, Xu X, Bi L (2021) Density functional theory calculations for cathode materials of proton-conducting solid oxide fuel cells: a mini-review. Electrochem Commun 129:107072

    Article  CAS  Google Scholar 

  33. Fabbri E, Oh T-K, Licoccia S, Traversa E, Wachsman ED (2008) Mixed protonic/electronic conductor cathodes for intermediate temperature SOFCs based on proton conducting electrolytes. J Electrochem Soc 156(1):B38

    Article  CAS  Google Scholar 

  34. Wang H, Wang X, Meng B, Tan X, Loh KS, Sunarso J, Liu S (2018) Perovskite-based mixed protonic-electronic conducting membranes for hydrogen separation: recent status and advances. J Ind Eng Chem 60:297–306

    Article  CAS  Google Scholar 

  35. Zhou C, Sunarso J, Song Y, Dai J, Zhang J, Gu B, Zhou W, Shao Z (2019) New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. J Mater Chem A 7(21):13265–13274

    Article  CAS  Google Scholar 

  36. Souza ECCD, Muccillo R (2010) Properties and applications of perovskite proton conductors. Mater Res 13:385–394

    Article  Google Scholar 

  37. Radenahmad N, Afif A, Petra PI, Rahman SM, Eriksson S-G, Azad AK (2016) Proton-conducting electrolytes for direct methanol and direct urea fuel cells-a state-of-the-art review. Renew Sustain Energy Rev 57:1347–1358

    Article  CAS  Google Scholar 

  38. Cherry M, Islam M, Gale J, Catlow C (1995) Computational studies of proton migration in perovskite oxides. Solid State Ionics 77:207–209

    Article  CAS  Google Scholar 

  39. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276

    Article  CAS  Google Scholar 

  40. Danilov N, Lyagaeva J, Vdovin G, Medvedev D, Demin A, Tsiakaras P (2017) Electrochemical approach for analyzing electrolyte transport properties and their effect on protonic ceramic fuel cell performance. ACS Appl Mater Interfac 9(32):26874–26884

    Article  CAS  Google Scholar 

  41. Inada R, Kimura K, Kusakabe K, Tojo T, Sakurai Y (2014) Synthesis and lithium-ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering. Solid State Ionics 261:95–99

    Article  CAS  Google Scholar 

  42. Andersson AK, Selbach SM, Knee CS, Grande T (2014) Chemical expansion due to hydration of proton-conducting perovskite oxide ceramics. J Am Ceram Soc 97(8):2654–2661

    Article  CAS  Google Scholar 

  43. Karlsson M, Matic A, Zanghellini E, Ahmed I (2010) Temperature-dependent infrared spectroscopy of proton-conducting hydrated perovskite BaInxZr1-xO3-x/2 (x= 0.10- 0.75). J Phys Chem C 114(13):6177–6181

    Article  CAS  Google Scholar 

  44. Poetzsch D, Merkle R, Maier J (2015) Proton uptake in the H+-SOFC cathode material Ba0.5Sr0.5Fe0.8Zn0.2O3-δ: transition from hydration to hydrogenation with increasing oxygen partial pressure. Faraday Discuss 182:129–143

    Article  CAS  PubMed  Google Scholar 

  45. Coors WG (2011) Co-ionic conduction in protonic ceramics of the solid solution. BaCexZryxY1-yO3-δ part II: co-ionic conduction, Advances in Ceramics-Synthesis and Characterization, Processing and Specific Applications 501–521

  46. Knight K (2001) Structural phase transitions, oxygen vacancy ordering and protonation in doped La2Zr2O7 results from time-of-flight neutron powder diffraction investigations. Solid State Ionics 145(1–4):275–294

    Article  CAS  Google Scholar 

  47. Penwell W (2014) Doped perovskite materials for solid oxide fuel cell (SOFC) anodes and electrochemical oxygen sensors, Ph.D. thesis, Université d’Ottawa/University of Ottawa

  48. Fu Y-P, Weng C-S (2014) Effect of rare-earth ions doped in BaCeO3 on chemical stability, mechanical properties, and conductivity properties. Ceram Int 40(7):10793–10802

    Article  CAS  Google Scholar 

  49. Genet F, Loridant S, Ritter C, Lucazeau G (1999) Phase transitions in BaCeO3: neutron diffraction and Raman studies. J Phys Chem Solids 60(12):2009–2021

    Article  CAS  Google Scholar 

  50. Bonanos N, Knight K, Ellis B (1995) Perovskite solid electrolytes: structure, transport properties and fuel cell applications. Solid State Ionics 79:161–170

    Article  CAS  Google Scholar 

  51. Ranløv J, Lebech B, Nielsen K (1995) Neutron diffraction investigation of the atomic defect structure of Y-doped SrCeO 3, a high-temperature protonic conductor. J Mater Chem 5(5):743–747

    Article  Google Scholar 

  52. Ranløv J, Nielsen K (1994) Crystal structure of the high-temperature protonic conductor SrCeO3 J Mater Chem 4(6):867–868

    Article  Google Scholar 

  53. Shlichta PJ (1988) A crystallographic search program for oxygen-conducting electrolytes. Solid State Ionics 28:480–487

    Article  Google Scholar 

  54. Tuller HL (1992) Mixed ionic-electronic conduction in a number of fluorite and pyrochlore compounds. Solid State Ionics 52(1–3):135–146

    Article  CAS  Google Scholar 

  55. Gu Y-J, Liu Z-G, Ouyang J-H, Zhou Y, Yan F-Y (2012) Synthesis, structure and electrical conductivity of BaZr1-xDyxO3-δ ceramics. Electrochim Acta 75:332–338

    Article  CAS  Google Scholar 

  56. Liu X-M, Liu Z-G, Ouyang J-H, Gu Y-J, Xiang J, Yan F-Y (2012) Structure and electrical conductivity of BaCe0.7In0.1A0.2O3-δ (A=Gd, Y) ceramics. Electrochim Acta 59:464–469

    Article  CAS  Google Scholar 

  57. Wang W, Liu J, Li Y, Wang H, Zhang F, Ma G (2010) Microstructures and proton conduction behaviors of Dy-doped BaCeO3 ceramics at intermediate temperature. Solid State Ionics 181(15–16):667–671

    Article  CAS  Google Scholar 

  58. Miyazaki K, Ding Y, Muroyama H, Matsui T, Eguchi K (2019) La0.6Sr0.4Co0.2Fe0.8O3-\delta-Ba(Ce,Co,Y)O3-\delta composite cathodes for proton-conducting ceramic fuel cells. Electrochemistry, 19–00039

  59. Melnik J, Luo J, Chuang K, Sanger A (2008) Stability and electric conductivity of barium cerate perovskites co-doped with praseodymium. Open Fuels Energy Sci J 1(1):7–10

    Article  CAS  Google Scholar 

  60. Ranran P, Yan W, Lizhai Y, Zongqiang M (2006) Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics 177(3–4):389–393

    Article  CAS  Google Scholar 

  61. Xie K, Yan R, Liu X (2009) The chemical stability and conductivity of BaCe0.9-xYxSn0.1O3-δ solid proton conductor for SOFC. J Alloy Compd 479(1–2):L36–L39

    Article  CAS  Google Scholar 

  62. Xie K, Yan R, Xu X, Liu X, Meng G (2009) The chemical stability and conductivity of BaC0.9-xYxNb0.1O3-δ proton-conductive electrolyte for SOFC. Mater Res Bull 44(7):1474–1480

    Article  CAS  Google Scholar 

  63. Bi L, Zhang S, Fang S, Tao Z, Peng R, Liu W (2008) A novel anode supported BaCe0.7Ta0.1Y0.2O3-δ electrolyte membrane for proton-conducting solid oxide fuel cell. Electrochem Commun 10(10):1598–1601

    Article  CAS  Google Scholar 

  64. Münch W, Kreuer K, Adams S, Seifert G, Maier J (1999) The relation between crystal structure and the formation and mobility of protonic charge carriers in perovskite-type oxides: a case study of Y-doped BaCeO3 and SrCeO3 Phase Transitions 68(3):567–586

    Article  Google Scholar 

  65. Sun W, Zhu Z, Shi Z, Liu W (2013) Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3-δ for solid oxide fuel cells. J Power Sources 229:95–101

    Article  CAS  Google Scholar 

  66. Bi L, Da’as EH, Shafi SP (2017) Proton-conducting solid oxide fuel cell (SOFC) with Y-dopedBaZrO3 electrolyte. Electrochem Commun 80:20–23

    Article  CAS  Google Scholar 

  67. Bi L, Shafi SP, Da’as EH, Traversa E (2018) Tailoring the cathode-electrolyte interface with nanoparticles for boosting the solid oxide fuel cell performance of chemically stable proton-conducting electrolytes. Small 14(32):1801231

    Article  CAS  Google Scholar 

  68. Daas EH, Bi L, Boulfrad S, Traversa E (2018) Nanostructuring the electronic conducting La0.8Sr0.2MnO3- δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600 c. Sci China Mater 61(1):57–64

    Article  CAS  Google Scholar 

  69. Bae K, Jang DY, Choi HJ, Kim D, Hong J, Kim B-K, Lee J-H, Son J-W, Shim JH (2017) Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat Commun 8(1):1–9

    Article  CAS  Google Scholar 

  70. Yu Y, Yu L, Shao K, Li Y, Maliutina K, Yuan W, Wu W, Fan L (2020) BaZr0.1Co0.4Fe0.4Y0.1O3 composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells. Ceram Int 46(8):11811–11818

    Article  CAS  Google Scholar 

  71. Tao S, Irvine JT (2007) Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325 C. J Solid State Chem 180(12):3493–3503

    Article  CAS  Google Scholar 

  72. Gilardi E, Fabbri E, Bi L, Rupp JL, Lippert T, Pergolesi D, Traversa E (2017) Effect of dopant-host ionic radii mismatch on acceptor-doped barium zirconate microstructure and proton conductivity. J Phys Chem C 121(18):9739–9747

    Article  CAS  Google Scholar 

  73. Murphy R, Zhou Y, Zhang L, Soule L, Zhang W, Chen Y, Liu M (2020) A new family of proton-conducting electrolytes for reversible solid oxide cells: BaHfxCe0.8-xY0.1Yb0.1O3-δ Adv Func Mater 30(35):2002265

    Article  CAS  Google Scholar 

  74. Dudek M, Lis B, Lach R, Daugėla S, Šalkus T, Kežionis A, Mosiałek M, Sitarz M, Rapacz-Kmita A, Grzywacz P (2020) Samples of Ba1-xSrxCe0.9Y0.1 O3-\delta, 0< x< 0.1, with improved chemical stability in CO2-H2-H2 gas-involving atmospheres as potential electrolytes for a proton ceramic fuel cell. Materials 13(8):1874

    Article  CAS  PubMed Central  Google Scholar 

  75. Loureiro FJ, Nasani N, Reddy GS, Munirathnam N, Fagg DP (2019) A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for protonic ceramic fuel cells. J Power Sources 438:226991

    Article  CAS  Google Scholar 

  76. Wang B, Bi L, Zhao X (2018) Exploring the role of NiO as a sintering aid in BaZr0.1Ce0.7Y0.2O3-δ electrolyte for proton-conducting solid oxide fuel cells. J Power Sources 399:207–214

    Article  CAS  Google Scholar 

  77. Tong J, Clark D, Bernau L, Sanders M, O’Hayre R (2010) Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics. J Mater Chem 20(30):6333–6341

    Article  CAS  Google Scholar 

  78. Nikodemski S, Tong J, Duan C, O’Hayre R (2016) Ionic transport modification in proton conducting BaCe0.6Zr0.3Y0.1O3-δ with transition metal oxide dopants. Solid State Ionics 294:37–42

    Article  CAS  Google Scholar 

  79. Gorbova E, Maragou V, Medvedev D, Demin A, Tsiakaras P (2008) Influence of sintering additives of transition metals on the properties of gadolinium-doped barium cerate. Solid State Ionics 179(21–26):887–890

    Article  CAS  Google Scholar 

  80. Li J, Wang C, Wang X, Bi L (2020) Sintering aids for proton-conducting oxides-a double-edged sword? A mini review. Electrochem Commun 112:106672

    Article  CAS  Google Scholar 

  81. Wu Y, Li K, Yang Y, Song W, Ma Z, Chen H, Ou X, Zhao L, Khan M, Ling Y (2020) Investigation of Fe-substituted in BaZr0.8Y0.2O3-δ proton conducting oxides as cathode materials for protonic ceramics fuel cells. J Alloy Compd 814:152220

    Article  CAS  Google Scholar 

  82. Wang D, Xia Y, Lv H, Miao L, Bi L, Liu W (2020) PrBaCo2-xTaxO5+ δ based composite materials as cathodes for proton-conducting solid oxide fuel cells with high CO2 resistance. Int J Hydrog Energy 45(55):31017–31026

    Article  CAS  Google Scholar 

  83. Danilov N, Lyagaeva J, Vdovin G, Medvedev D (2019) Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes. Appl Energy 237:924–934

    Article  CAS  Google Scholar 

  84. Hossain S, Abdalla AM, Zaini JH, Savaniu CD, Irvine JT, Azad AK (2017) Highly dense and novel proton conducting materials for SOFC electrolyte. Int J Hydrog Energy 42(44):27308–27322

    Article  CAS  Google Scholar 

  85. Wu S, Xu X, Li X, Bi L (2021) High-performance proton-conducting solid oxide fuel cells using the first-generation Sr-doped LaMnO3 cathode tailored with Zn ions. Sci China Mater, 1–8

  86. Xu X, Xu Y, Ma J, Yin Y, Fronzi M, Wang X, Bi L (2021) Tailoring electronic structure of perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J Power Sources 489:229486

    Article  CAS  Google Scholar 

  87. Zhang L, Yin Y, Xu Y, Yu S, Bi L (2022) Tailoring sr2fe1. 5mo0. 5o6- δ with SC as a new single-phase cathode for proton-conducting solid oxide fuel cells. Sci China Mater, 1–10

  88. Wang B, Liu X, Bi L, Zhao X (2019) Fabrication of high-performance proton-conducting electrolytes from microwave prepared ultrafine powders for solid oxide fuel cells. J Power Sources 412:664–669

    Article  CAS  Google Scholar 

  89. Yin Y, Yu S, Dai H, Bi L (2022) Triggering interfacial activity of the traditional La0.5Sr0.5MnO3 cathode with Co-doping for proton-conducting solid oxide fuel cells. J Mater Chem A 10(4):1726–1734

  90. Tarutin AP, Lyagaeva JG, Medvedev DA, Bi L, Yaremchenko AA (2021) Recent advances in layered Ln 2 NiO 4+ δ nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells. J Mater Chem A 9(1):154–195

    Article  CAS  Google Scholar 

  91. Tao Z, Fu M, Liu Y, Gao Y, Tong H, Hu W, Lei L, Bi L (2022) High-performing proton-conducting solid oxide fuel cells with triple-conducting cathode of Pr0. 5Ba0. 5 (Co0. 7Fe0. 3) O3-δ tailored with W. Int J Hydrog Energy 47(3):1947–1953

    Article  CAS  Google Scholar 

  92. Auckett JE, Lopez-Odriozola L, Clark SJ, Evans IR (2021) Exploring the nature of the fergusonite-scheelite phase transition and ionic conductivity enhancement by Mo 6+ doping in LnNbO4 J Mater Chem A 9(7):4091–4102

    Article  CAS  Google Scholar 

  93. David W (1983) The high-temperature paraelastic structure of LnNbO4 Mater Res Bull 18(6):749–756

    Article  CAS  Google Scholar 

  94. Jian L, Wayman C (1997) Monoclinic-to-tetragonal phase transformation in a ceramic rare-earth orthoniobate, LnNbO4 J Am Ceram Soc 80(3):803–806

    Article  CAS  Google Scholar 

  95. Sarin P, Hughes RW, Lowry DR, Apostolov ZD, Kriven WM (2014) High-temperature properties and ferroelastic phase transitions in rare-earth niobates (LnNbO4). J Am Ceram Soc 97(10):3307–3319

    Article  CAS  Google Scholar 

  96. Cao Y, Tan Y, Yan D, Chi B, Pu J, Jian L (2015) Electrical conductivity of Zn-doped high temperature proton conductor LaNbO4. Solid State Ionics 278:152–156

    Article  CAS  Google Scholar 

  97. Cao Y, Chi B, Pu J, Jian L (2014) Effect of Ce and Yb co-doping on conductivity of LaNbO4 J Eur Ceram Soc 34(8):1981–1988

    Article  CAS  Google Scholar 

  98. Li C, Bayliss RD, Skinner SJ (2014) Crystal structure and potential interstitial oxide ion conductivity of LnNbO4 and LnNb0.92W0.08O4.04 (Ln= La, Pr, Nd). Solid State Ionics 262:530–535

    Article  CAS  Google Scholar 

  99. Slouka C, Kainz T, Navickas E, Walch G, Hutter H, Reichmann K, Fleig J (2016) The effect of acceptor and donor doping on oxygen vacancy concentrations in lead zirconate titanate (PZT). Materials 9(11):945

    Article  PubMed Central  CAS  Google Scholar 

  100. Huang H, Feng X, Zhu W, Zhang Y, Wen T-L, Tang TB (2003) Oxide ion conduction in La-doped PbWO4 single crystals. J Phys: Condens Matter 15(33):5689

    CAS  Google Scholar 

  101. Thangadurai V, Knittlmayer C, Weppner W (2004) Metathetic room temperature preparation and characterization of scheelite-type ABO4 (A= Ca, Sr, Ba, Pb; B= Mo, W) powders. Mater Sci Eng B 106(3):228–233

    Article  CAS  Google Scholar 

  102. Van Dijk M, De Vries K, Burggraaf A (1983) Oxygen ion and mixed conductivity in compounds with the fluorite and pyrochlore structure. Solid State Ionics 9:913–919

    Article  Google Scholar 

  103. Korf SJ, Koopmans HJ, Lippens BC, Burggraaf AJ, Gellings PJ (1987) Electrical and catalytic properties of some oxides with the fluorite or pyrochlore structure. co oxidation on some compounds derived from Gd2Zr2O7. J Chem Soc 83(5):1485–1491

    Article  CAS  Google Scholar 

  104. Labrincha J, Frade J, Marques F (1997) Protonic conduction in La2Zr2O7-based pyrochlore materials. Solid State Ionics 99(1–2):33–40

    Article  CAS  Google Scholar 

  105. Islam Q, Nag S, Basu RN (2013) Study of electrical conductivity of Ca-substituted La2Zr2O7 Mater Res Bull 48(9):3103–3107

    Article  CAS  Google Scholar 

  106. Minervini L, Grimes RW, Sickafus KE (2000) Disorder in pyrochlore oxides. J Am Ceram Soc 83(8):1873–1878

    Article  CAS  Google Scholar 

  107. Wilde P, Catlow C (1998) Defects and diffusion in pyrochlore structured oxides. Solid State Ionics 112(3–4):173–183

    Article  CAS  Google Scholar 

  108. Sickafus KE, Grimes RW, Valdez JA, Cleave A, Tang M, Ishimaru M, Corish SM, Stanek CR, Uberuaga BP (2007) Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat Mater 6(3):217–223

    Article  CAS  PubMed  Google Scholar 

  109. Ewing RC, Weber WJ, Lian J (2004) Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and minor actinides. J Appl Phys 95(11):5949–5971

    Article  CAS  Google Scholar 

  110. Li Y, Kowalski PM, Beridze G, Birnie AR, Finkeldei S, Bosbach D (2015) Defect formation energies in A2B2O7 pyrochlores. Scripta Mater 107:18–21

    Article  CAS  Google Scholar 

  111. Besikiotis V, Ricote S, Jensen MH, Norby T, Haugsrud R (2012) Conductivity and hydration trends in disordered fluorite and pyrochlore oxides: a study on lanthanum cerate-zirconate based compounds. Solid State Ionics 229:26–32

    Article  CAS  Google Scholar 

  112. Reynolds E, Blanchard PE, Zhou Q, Kennedy BJ, Zhang Z, Jang L-Y (2012) Structural and spectroscopic studies of La2Zr2O7: disordered fluorite versus pyrochlore structure. Phys Rev B 85(13):132101

    Article  CAS  Google Scholar 

  113. Kalland L-E, Løken A, Bjørheim TS, Haugsrud R, Norby T (2020) Structure, hydration, and proton conductivity in 50% La and Nd doped CeO2-La2Ce2O7 and Nd2Ce2O7-and their solid solutions. Solid State Ionics 354:115401

    Article  CAS  Google Scholar 

  114. Hagiwara T, Kyo Z, Manabe A, Yamamura H, Nomura K (2009) Formation of c-type rare earth structures in the ce1-xndxo2-δ system: a factor in the decrease in oxide-ion conductivity. J Ceram Soc Jpn 117(1372):1306–1310

    Article  CAS  Google Scholar 

  115. Besikiotis V, Knee CS, Ahmed I, Haugsrud R, Norby T (2012) Crystal structure, hydration and ionic conductivity of the inherently oxygen-deficient La2Ce2O7. Solid State Ionics 228:1–7

    Article  CAS  Google Scholar 

  116. Sun W, Fang S, Yan L, Liu W (2012) Investigation on proton conductivity of La2Ce2O7 in wet atmosphere: dependence on water vapor partial pressure. Fuel Cells 12(3):457–463

    Article  CAS  Google Scholar 

  117. Tao Z, Bi L, Fang S, Liu W (2011) A stable La1. 95Ca0. 05Ce2O7- δ as the electrolyte for intermediate-temperature solid oxide fuel cells. J Power Sources 196(14):5840–5843

    Article  CAS  Google Scholar 

  118. Tu T, Zhang B, Liu J, Wu K, Peng K (2018) Synthesis and conductivity behaviour of Mo-doped La2Zr2O7 proton conductors. Electrochim Acta 283:1366–1374

    Article  CAS  Google Scholar 

  119. Tu T, Liu J, Peng K (2017) Preparation and performance of Na-doped La2Ce2O7 electrolytes for protonic ceramic fuel cells. Ceram Int 43(18):16384–16390

    Article  CAS  Google Scholar 

  120. Zhang B, Zhong Z, Tu T, Wu K, Peng K (2019) Acceptor-doped La1.9M0.1Ce2O7 (M= Nd, Sm, Dy, Y, In) proton ceramics and in-situ formed electron-blocking layer for solid oxide fuel cells applications. J Power Sources 412:631–639

    Article  CAS  Google Scholar 

  121. Wu Y, Gong Z, Hou J, Miao L, Tang H, Liu W (2019) An easily sintered and chemically stable La2-x MgxCe2O7-δ proton conductor for high-performance solid oxide fuel cells. Int J Hydrog Energy 44(26):13835–13842

    Article  CAS  Google Scholar 

  122. Fan H, Keane M, Li N, Tang D, Singh P, Han M (2014) Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3-δ-infiltrated YSZ oxygen electrode for reversible solid oxide fuel cells. Int J Hydrog Energy 39(26):14071–14078

    Article  CAS  Google Scholar 

  123. Yang Z, Guo M, Wang N, Ma C, Wang J, Han M (2017) A short review of cathode poisoning and corrosion in solid oxide fuel cell. Int J Hydrog Energy 42(39):24948–24959

    Article  CAS  Google Scholar 

  124. Sun Y, He S, Saunders M, Chen K, Shao Z et al (2021) A comparative study of surface segregation and interface of La0.6Sr0.4Co0.2Fe0.8O3-δ electrode on GDC and YSZ electrolytes of solid oxide fuel cells. Int J Hydrog Energy 46(2):2606–2616

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shahid.

Ethics declarations

Declarations

The author did not receive support from any organization for the reported work and the author has no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, M. Recent advances in protonconducting electrolytes for solid oxide fuel cells. Ionics 28, 3583–3601 (2022). https://doi.org/10.1007/s11581-022-04629-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04629-w

Keywords

Navigation