Skip to main content

Advertisement

Log in

Double layers combined with MXene and in situ grown NiAl-LDH arrays on nickel foam for enhanced asymmetric supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The application of layered double hydroxide (LDH) in energy fields has been limited to its low conductivity and easy agglomeration. In this paper, 3D nickel foam (NF) and transition metal carbide (Ti3C2Tx) layer were taken as the substrate to prepare the NiAl-LDH-based nanocomposites through an immersion and hydrothermal method. Due to the synergistic effect between two-dimensional MXene and LDH layers, the NiAl-LDH arrays on conductive substrate presented enhanced electrochemical performance. The results show that the specific capacity of NiAl-LDH/MXene double layers is 1600 F g−1 at 1 A g−1, which is superior to that of a simple NiAl-LDH layer grown on Ni foam (1203 F g−1). The specific capacity of NiAl-LDH/MXene still can maintain 78% after 3000 cycles at a current density of 10 A g−1. In addition, the energy density of asymmetric supercapacitor assembled with NiAl-LDH/MXene and active carbon is 27.6 Wh kg−1 at 255 W kg−1 power density. Therefore, the introduction of MXene interlayers in the composite propels the application prospect of LDH in energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saini H, Srinivasan N, Šedajová V, Majumder M, Dubal D P, Otyepka M, Zbořil R, Kurra N, Fischer R A, Jayaramulu K (2021) Emerging MXene@Metal–organic framework hybrids: design strategies toward versatile applications. ACS Nano

  2. Pourfarzad H, Shabani-Nooshabadi M, Ganjali MR, Kashani H (2019) Synthesis of Ni–Co-Fe layered double hydroxide and Fe2O3/graphene nanocomposites as actively materials for high electrochemical performance supercapacitors. Electrochim Acta 317:83–92

    Article  CAS  Google Scholar 

  3. Xie J, Li B, Peng H, Song Y, Zhao M, Chen X, Zhang Q, Huang J (2019) Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv Mater 31:1903813

    Article  CAS  Google Scholar 

  4. Li Y, Zhang J, Chen Q, Xia X, Chen M (2021) Emerging of heterostructure materials in energy storage: a review. Adv Mater 33:2100855

    Article  CAS  Google Scholar 

  5. Zhang Y, Xu J, Zheng Y, Zhang Y, Hu X, Xu T (2017) NiCo2S4@NiMoO4 Core-shell heterostructure nanotube arrays grown on ni foam as a binder-free electrode displayed high electrochemical performance with high capacity. Nanoscale Res Lett 12:412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Guo J, Zhao Y, Liu A, Ma T (2019) Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim Acta 305:164–174

    Article  CAS  Google Scholar 

  7. Hua X, Mao C-J, Chen J-S, Chen P-P, Zhang C-F (2019) Facile synthesis of new-type MnOOH/NiAl-layered double hydroxide nanocomposite for high-performance supercapacitor. J Alloys Compd 777:749–758

    Article  CAS  Google Scholar 

  8. Tanwar S, Arya A, Gaur A, Sharma A L (2021) Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. J. Phy.:Condens. Matter 33:303002

  9. Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24:934–942

    Article  CAS  Google Scholar 

  10. Zhang D, Cao J, Zhang X, Insin N, Liu R, Qin JQ (2020) NiMn layered double hydroxide nanosheets in-situ anchored on Ti3C2 MXene via chemical bonds for superior supercapacitors. ACS Appl Energy Mater 3:5949–5964

    Article  CAS  Google Scholar 

  11. Lan Y, Li M, Fan W, Deng Q, Zeng Z, Wang J, Deng S (2019) Functional molecules regulated and intercalated nickel-cobalt LDH nano-sheets on carbon fiber cloths as an advanced free-standing electrode for high-performance asymmetric supercapacitors. Electrochim. Acta 321:134708

  12. Kumar S, Saeed G, Zhu L, Hui K-N, Kim N-H, Lee J-H (2021) 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403:126352

  13. AbdelHamid AA, Yang X, Yang J, Chen X, Ying JY (2016) Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy 26:425–437

    Article  CAS  Google Scholar 

  14. Xu L, Zhang L, Cheng B, Yu J (2019) Rationally designed hierarchical NiCo2O4–C@Ni(OH)2 core-shell nanofibers for high performance supercapacitors Carbon 152:652–660

  15. Liu X, Hu H, Sun M, Wang Q, Bi H (2019) Preparation and superelectric properties of Ti3C2Tx/PPy composites. Elect Comp Mater 38:16–20

    Google Scholar 

  16. Li X, Ma Y, Shen P, Zhang C, Cao M, Xiao S, Yan J, Luo S, Gao Y (2020) An ultrahigh energy density flexible asymmetric microsupercapacitor based on Ti(3)C(2)T(x) and PPy/MnO(2) with wide voltage window. Adv. Mater. Tech. 5

  17. Shao M, Zhang R, Li Z, Wei M, Evans DG, Duan X (2015) Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chem Commun 51:15880–15893

    Article  CAS  Google Scholar 

  18. Xu J, He F, Gai S, Zhang S, Li L, Yang P (2014) Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance. Nanoscale 6:10887–10895

    Article  CAS  PubMed  Google Scholar 

  19. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155

    Article  CAS  PubMed  Google Scholar 

  20. Cai M, Fan X, Yan H, Li Y, Song S, Li W, Li H, Lu Z, Zhu M (2021) In situ assemble Ti3C2Tx MXene@MgAl-LDH heterostructure towards anticorrosion and antiwear application. Chem. Eng. J. 419

  21. Wang Z, Yang L, Zhou Y, Xu C, Yan M, Wu C (2021) NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption. ACS appl Mater interfaces 13:16713–16721

    Article  CAS  PubMed  Google Scholar 

  22. Li L, Hui K, Hui K, Xia Q, Fu J, Cho Y-R (2017) Facile synthesis of NiAl layered double hydroxide nanoplates for high-performance asymmetric supercapacitor. J Alloys Compd 721:803–812

    Article  CAS  Google Scholar 

  23. Cao J, Li J, Li L, Zhang Y, Cai D, Chen D, Han W (2019) Mn-doped Ni/Co LDH nanosheets grown on the natural N-dispersed PANI-derived porous carbon template for a flexible asymmetric supercapacitor. ACS Sustain Chem Eng 7:10699–10707

    Article  CAS  Google Scholar 

  24. Luo J, Wang C, Wang H, Hu X, Matios E, Lu X, Zhang W, Tao X, Li W (2018) Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv Funct Mater 29:1805946

    Article  CAS  Google Scholar 

  25. Zheng J, Pan X, Huang X, Xiong D, Shang Y, Li X, Wang N, Lau W-M, Yang H (2020) Integrated NiCo2-LDHs@MXene/rGO aerogel: componential and structural engineering towards enhanced performance stability of hybrid supercapacitor. Chem. Eng. J. 396:125197

  26. Cao J, Sun Z, Li J, Zhu Y, Yuan Z, Zhang Y, Li D, Wang L, Han W (2021) Microbe-assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano 15:3423–3433

    Article  CAS  PubMed  Google Scholar 

  27. Cao J, Wang L, Li D, Yuan Z, Xu H, Li J, Chen R, Shulga V, Shen G, Han W (2021) Ti3C2Tx MXene conductive layers supported bio-derived Fex-1Sex/MXene/carbonaceous nanoribbons for high-performance half/full sodium-ion and potassium-ion batteries. Adv. mater. 33: e2101535

  28. Yu X, Wang T, Yin W, Zhang Y (2019) Ti3C2 MXene nanoparticles modified metal oxide composites for enhanced photoelectrochemical water splitting. Int J Hydrog Energy 44:2704–2710

    Article  CAS  Google Scholar 

  29. Li H, Chen X, Zalnezhad E, Hui K-N, Hui K-S, Ko M-J (2020) 3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors. J Ind Eng Chem 82:309–316

    Article  CAS  Google Scholar 

  30. Cao J, Li J, Li D, Yuan Z, Zhang Y, Shulga V, Sun Z, Han W (2021) Strongly coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nanomicro Lett 13:113

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li C, Zhang D, Cao J, Yu P, Okhawilai M, Yi J, Qin J, Zhang X (2021) Ti3C2 MXene-encapsulated NiFe-LDH hybrid anode for high-performance lithium-ion batteries and capacitors. ACS Appl Energy Mater 4:7821–7828

    Article  CAS  Google Scholar 

  32. Zhang L, Wang J, Zhu J, Zhang X, Huib KS, Huic KN (2013) 3D porous layered double hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials. J Mater Chem A 1:9046

    Article  CAS  Google Scholar 

  33. Padmini M, Kiran SK, Lakshminarasimhan N, Sathish M, Elumalai P (2017) High-performance solid-state hybrid energy-storage device consisting of reduced graphene-oxide anchored with NiMn-layered double hydroxide. Electrochim Acta 236:359–370

    Article  CAS  Google Scholar 

  34. Zhang Y, Cao J, Yuan Z, Zhao L, Wang L, Han W (2021) Assembling Co3O4 nanoparticles into MXene with enhanced electrochemical performance for advanced asymmetric supercapacitors. J colloid interface sci 599:109–118

    Article  CAS  PubMed  Google Scholar 

  35. Li GN, Zhang XH, Qiu DT, Liu ZL et al (2019) Tuning Ni/Al ratio to enhance pseudocapacitive charge storage properties of nickel–aluminum layered double hydroxide. Adv Electron Mater 5:1900215

    Article  CAS  Google Scholar 

  36. Li Y, Kamdem P, Jin X-J (2020) In situ growth of chrysanthemum-like NiCo(2)S(4) on MXenes for high-performance supercapacitors and a non-enzymatic H(2)O(2)sensor. Dalton Trans 49:7807–7819

    Article  CAS  PubMed  Google Scholar 

  37. Hu M, Li Z, Zhang H, Hu T, Zhang C, Wu Z, Wang X (2015) Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance. Chem Commun 51:13531–13533

    Article  CAS  Google Scholar 

  38. Lu Y, Jiang B, Fang L, Ling F, Wu F, Hu B, Meng F, Niu K, Lin F, Zheng H (2017) An investigation of ultrathin nickel-iron layered double hydroxide nanosheets grown on nickel foam for high-performance supercapacitor electrodes. J Alloys Compd 714:63–70

    Article  CAS  Google Scholar 

  39. Zhou H, Wu F, Fang L, Hu J, Luo H, Guan T, Hu B, Zhou M (2020) Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor. Int J Hydrogen Energ 45:13080–13089

    Article  CAS  Google Scholar 

  40. Zhao S, Pan D, Liang Q, Zhou M, Yao C, Xu S, Li Z (2021) Ultrathin NiAl-layered double hydroxides grown on 2D Ti3C2Tx MXene to construct core-shell heterostructures for enhanced photocatalytic CO2 reduction. J Physical Chem C 125:10207–10218

    Article  CAS  Google Scholar 

  41. Cao J, Li L, Xi Y, Li J, Pan X, Chen D, Han W (2018) Core–shell structural PANI-derived carbon@Co–Ni LDH electrode for high-performance asymmetric supercapacitors. Sustain Energ Fuels 2:1350–1355

    Article  CAS  Google Scholar 

  42. Shao M, Ning F, Zhao J, Wei M, G. Evans D, Duan X, (2012) Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J Am Chem Soc 134:1071–1077

    Article  CAS  PubMed  Google Scholar 

  43. Chen X, Yuzhi H, Hui L, Bae S, Ang L, Wang Z, Hui KS, Hui KN, Nezhad EZ (2018) Electrodeposited nickel aluminum-layered double hydroxide on Co3O4 as binder-free electrode for supercapacitor. J Mater Sci-Mater Electron 30:2419–2430

    Article  CAS  Google Scholar 

  44. Zhang L, Yao H, Li Z, Sun P, Liu F, Dong C, Wang J, Li Z, Wu M, Zhang C, Zhao B (2017) Synthesis of delaminated layered double hydroxides and their assembly with graphene oxide for supercapacitor application. J Alloys Compd 711:31–41

    Article  CAS  Google Scholar 

  45. Meher SK, Justin P, Rao GR (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS appl Mater Interfaces 3:2063–2073

    Article  CAS  PubMed  Google Scholar 

  46. Cao J, Li J, Zhou L, Xi Y, Cao X, Zhang Y, Han W (2021) Tunable agglomeration of Co3O4 nanowires as the growing core for in-situ formation of Co2NiO4 assembled with polyaniline-derived carbonaceous fibers as the high-performance asymmetric supercapacitors. J. Alloy. Comp. 853:157210

  47. Zhang L, Hui KN, Hui KS, Lee H (2016) High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode. J Power Sources 318:76–85

    Article  CAS  Google Scholar 

  48. Hussain I, Hhssain T, Yang S, Chen Y, Zhou J, Ma X, Abbas N, Lamiel C, Zhang K (2021) Integration of CuO nanosheets to Zn-Ni-Co oxide nanowire arrays for energy storage applications. Chem. Eng. J. 413:127570.

  49. Hussain I, Sahoo S, Mohapatra D, Ahmad M, Iqbal S, Sufyan M, Gu SH, Qin N, Lamiel C, Zhang K (2022) Recent progress in trimetallic/ternary-metal oxides nanostructures: Misinterpretation/misconception of electrochemical data and devices. Appl. Mater. Today. 26:101297.

  50. Mai LQ, Minhas A, Tian X, Mulonda K, Zhao YL, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat commun 4:2923

    Article  PubMed  CAS  Google Scholar 

  51. Tan Z, Luo X, Wei T, Zhang F, Lv Y, Chen L, Shi Y (2020) In situ formation of NiAl-layered double hydroxide with a tunable interlayer spacing in a confined impinging jet microreactor. Energy Fuels 34:8939–8946

    Article  CAS  Google Scholar 

  52. Guo X, Liu H, Xue Y, Chen J, Wan X, Zhang J, Liu Y, Yuan A, Kong Q, Fan H (2019) NiAl layered double hydroxide flowers with ultrathin structure grown on 3D graphene for high-performance supercapacitors. Eur J Inorg Chem 2019:3719–3723

    Article  CAS  Google Scholar 

  53. Wang W, Zhang N, Shi Z, Ye Z, Gao Q, Zhi M, Hong Z (2018) Preparation of Ni-Al layered double hydroxide hollow microspheres for supercapacitor electrode. Chem Eng J 338:55–61

    Article  CAS  Google Scholar 

  54. Zhou H, Lu Y, Wu F, Fang L, Luo HJ, Zhang YX, Zhou M (2019) MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance. J Alloys Compd 802:259–268

    Article  CAS  Google Scholar 

  55. Wang X, Sumboja A, Lin M, Yan J, Lee PS (2012) Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4:7266–7272

    Article  CAS  PubMed  Google Scholar 

  56. Li L, Hui KS, Hui KN, Zhang T, Fu J, Cho Y-R (2018) High-performance solid-state flexible supercapacitor based on reduced graphene oxide/hierarchical core-shell Ag nanowire@NiAl layered double hydroxide film electrode. Chem Eng J 348:338–349

    Article  CAS  Google Scholar 

  57. Yang L, Zheng W, Zhang P, Chen J, Zhang W, Tian WB, Sun ZM (2019) Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochim Acta 300:349–356

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (NSFC 51872267, 51602289).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Shang or Jie Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1267 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Bian, Z., Ye, L. et al. Double layers combined with MXene and in situ grown NiAl-LDH arrays on nickel foam for enhanced asymmetric supercapacitors. Ionics 28, 2967–2977 (2022). https://doi.org/10.1007/s11581-022-04520-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04520-8

Keywords

Navigation