Skip to main content
Log in

Simple electrodeposition of a novel lanthanide-based porous tri-metallic metal–organic framework grown onto Ni-foam support as a novel binder-free electrode for supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel three mixed metal–organic framework (TM-MOF) containing lanthanum, gadolinium and thulium metals is prepared through a simple cathodic electrodeposition strategy onto nickel foam substrate. Various techniques are used to full characterization of the as-prepared TM-MOF product. The microscopic results revealed formation of the TM-MOF nanosheets uniformly grown onto porous Ni-foam. The synergistic effects of the La/Gd/Tm-lanthanide elements within the composition of TM-MOF electrode delivered a high specific capacity of 412 C/g at a current density of 1 A/g, high-rate capability of 52.9% (at 15 A/g), and an outstanding cycling stability of 94.2% after 6000 cycles. Based on the electrochemical findings, the hierarchical sheet-like morphology of the TM-MOF was rich in active redox sites and electrolyte ions diffusion pathways. All of these characters suggested that TM-MOF electrode could be promising candidate for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO, Osman AI, Farrell C, Al-Muhtaseb AAH, Awed AS, Ashour AH, Rooney DW (2021) Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ Chem Lett 19(1):375–439

    Article  CAS  Google Scholar 

  2. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50

    Article  CAS  Google Scholar 

  3. Li WS, Chang ML, Cheng HC (2020) Facile synthesis of CNTs/Co(OH)2 hybrid nanostructures for high-performance electrochemical supercapacitor. Chem Phys Lett 739:137003

    Article  CAS  Google Scholar 

  4. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25(4):1419–1445

    Article  CAS  Google Scholar 

  5. Barmi AAM, Aghazadeh M, Moosavian MA, Golikand AN (2020) Binder-free high-performance Fe3O4 fine particles in situ grown onto N-doped porous graphene layers co-embedded into porous substrate as supercapacitor electrode. J Mater Sci: Mater Electron 31(18):15198–15217

    CAS  Google Scholar 

  6. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Xamena FXL, Gascon J (2015) Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14(1):48–55

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Wang J, Ji X, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2020) Nickel/cobalt bimetallic metal-organic frameworks ultrathin nanosheets with enhanced performance for supercapacitors. J Alloys Comp 825:154069

    Article  CAS  Google Scholar 

  8. Hussain I, Lamiel C, Qin N, Gu S, Li Y, Wu S, Huang X, Zhang K (2022) Development of vertically aligned trimetallic Mg-Ni-Co oxide grass-like nanostructure for high-performance energy storage applications. J Colloid Interf Sci 582:782–792

    Article  CAS  Google Scholar 

  9. Hussain I, Mak T, Zhang K (2021) Boron-doped trimetallic Cu-Ni-Co oxide nanoneedles for supercapacitor application. ACS Appl Nano Mater 4:129–141

    Article  CAS  Google Scholar 

  10. Solgi M, Cheraghali R, Aghazadeh M (2021) Self-assembled Co(OH)2/functionalized MWNTs/porous graphene ternary binder-free hybrid for supercapacitors. J Mater Sci: Mater Electron 32(1):151–167

    CAS  Google Scholar 

  11. Hussain I, Iqbal S, Hussain T, Chen Y, Ahmad M, Sufyan Jave M, AlFantazi A, Zhang K (2021) An oriented Ni–Co-MOF anchored on solution-free 1D CuO: a p–n heterojunction for supercapacitive energy storage. J Mater Chem A 9:17790–17800

    Article  CAS  Google Scholar 

  12. Hussain I, Hussain T, Bilal Ahmed S, Kaewmaraya T, Ahmad M, Chen X, SufyanJaved M, Lamiel C, Zhang K (2021) Binder-free trimetallic phosphate nanosheets as an electrode: Theoretical and experimental investigation. J Power Sources 513:230556

    Article  CAS  Google Scholar 

  13. Hussain I, Sahoo S, Mohapatra D, Ahmad M, Iqbal S, SufyanJaved M, Gu S, Qin N, Lamiel C, Zhang K (2022) Recent progress in trimetallic/ternary-metal oxides nanostructures: Misinterpretation/ misconception of electrochemical data and devices. Appl Mater Today 26:101297

    Article  Google Scholar 

  14. Aghazadeh M, Foratirad H (2022) Electrochemical grown Ni, Zn-MOF and its derived hydroxide as battery-type electrodes for supercapacitors. Synth Met 285:117009

    Article  CAS  Google Scholar 

  15. Aghazadeh M, Forati-Rad H, Yavari K, Mohammadzadeh K (2021) On-pot fabrication of binder-free composite of iron oxide grown onto porous N-doped graphene layers with outstanding charge storage performance for supercapacitors. J Mater Sci: Mater Electron 32(10):13156–13176

    CAS  Google Scholar 

  16. Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J Energy Stor 21:632–646

    Article  Google Scholar 

  17. Wang DG, Liang Z, Gao S, Qu C, Zou R (2020) Metal-organic framework-based materials for hybrid supercapacitor application. Coord Chem Rev 404:213093

    Article  CAS  Google Scholar 

  18. Liu Y, Li G, Guo Y, Ying Y, Peng X (2017) Flexible and binder-free hierarchical porous carbon film for supercapacitor electrodes derived from MOFs/CNT. ACS Appl Mater Interf 9(16):14043–14050

    Article  CAS  Google Scholar 

  19. Du W, Bai YL, Xu J, Zhao H, Zhang L, Li X, Zhang J (2018) Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J Power Sources 402:281–295

    Article  CAS  Google Scholar 

  20. Ramachandran R, Zhao C, Luo D, Wang K, Wang F (2018) Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials. Electrochim Acta 267:170–180

    Article  CAS  Google Scholar 

  21. Dezfuli AS, Kohan E, Naderi HR, Salehi E (2019) Study of the supercapacitive activity of a Eu-MOF as an electrode material. New J Chem 43(23):9260–9264

    Article  Google Scholar 

  22. Liu QQ, Zhang SH, Yang J, Yue KF (2019) A water-stable La-MOF with high fluorescence sensing and supercapacitive performances. Analyst 144(15):4534–4544

    Article  CAS  PubMed  Google Scholar 

  23. Yu H, Xia H, Zhang J, He J, Guo S, Xu Q (2018) Fabrication of Fe-doped Co-MOF with mesoporous structure for the optimization of supercapacitor performances. Chin Chem Lett 29(6):834–836

    Article  CAS  Google Scholar 

  24. Rahmanifar MS, Hesari H, Noori A, Masoomi MY, Morsali A, Mousavi MF (2018) A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochim Acta 275:76–86

    Article  CAS  Google Scholar 

  25. Jiao Y, Pei J, Chen D, Yan C, Hu Y, Zhang Q, Chen G (2017) Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J Mater Chem A 5(3):1094–1102

    Article  CAS  Google Scholar 

  26. Wang E, Jiang S, Bu X (2020) One-pot electrochemical assembling of porous cobalt hydroxide/nitrogen-doped porous graphene onto Ni foam as a binder-free electrode for supercapacitor applications. J Energy Stor 32:101881

    Article  Google Scholar 

  27. Hussain I, Hussain T, Lamiel C, Zhang K (2020) Turning indium oxide into high-performing electrode materials via cation substitution strategy: Preserving single crystalline cubic structure of 2D nanoflakes towards energy storage devices. J Power Sour 480:228873

    Article  CAS  Google Scholar 

  28. Hussain I, Hussain T, Yang S, Chen Y, Zhou J, Ma X, Abbas N, Lamiel C, Zhang K (2020) Integration of CuO nanosheets to Zn-Ni-Co oxide nanowire arrays for energy storage applications. Chem Eng J 413:127570

    Article  CAS  Google Scholar 

  29. Xue Z, Jiang J, Ma MG, Li MF, Mu T (2017) Gadolinium-based metal–organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis. ACS Sustain Chem Eng 5(3):2623–2631

    Article  CAS  Google Scholar 

  30. Xia H, Zhang J, Yang Z, Guo S, Guo S, Xu Q (2017) 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-micro lett 9(4):1–11

    Article  CAS  Google Scholar 

  31. Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, Jana S (2018) Physical and structural characterization of biofield treated imidazole derivatives. Nat Prod Chem Res 3(5):1000187

    Google Scholar 

  32. Xu H, Cao CS, Kang XM, Zhao B (2016) Lanthanide-based metal–organic frameworks as luminescent probes. Dalton Trans 45(45):18003–18017

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Wan K, Subramanian P, Xu M, Luo J, Fransaer J (2020) Electrochemical deposition of metal–organic framework films and their applications. J Mater Chem A 8:7569–7587

    Article  CAS  Google Scholar 

  34. Campagnol N, Van Assche TRC, Li M, Stappers L, Dincă M, Denayer JFM, Binnemans K, De Vos DE, Fransaer J (2016) On the electrochemical deposition of metal–organic frameworks. J Mater Chem A 4:3914–3925

    Article  CAS  Google Scholar 

  35. Wang J, Zhong Q, Zeng Y, Cheng D, Xiong Y, Bu Y (2019) Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors. J Colloid Interf Sci 555:42–52

    Article  CAS  Google Scholar 

  36. Sarkar S, Howli P, Das B, Das NS, Samanta M, Das GC, Chattopadhyay KK (2017) Novel quaternary chalcogenide/reduced graphene oxide-based asymmetric supercapacitor with high energy density. ACS Appl Mater Interf 9(27):22652–22664

    Article  CAS  Google Scholar 

  37. Halder L, Das AK, Maitra A, Bera A, Paria S, Karan SK, Si SK, Ojha S, De A, Khatua BB (2020) A polypyrrole-adorned, self-supported, pseudocapacitive zinc vanadium oxide nanoflower and nitrogen-doped reduced graphene oxide-based asymmetric supercapacitor device for power density applications. New J Chem 44(3):1063–1075

    Article  CAS  Google Scholar 

  38. Ghosh S, De Adhikari A, Nath J, Nayak GC, Nayek HP (2019) Lanthanide (III) Metal-Organic Frameworks: Syntheses, Structures and Supercapacitor Application. Chem Select 4(36):10624–10631

    CAS  Google Scholar 

  39. Jafari H, Mohammadnezhad P, Khalaj Z, Naderi HR, Kohan E, Hosseini MRM, Dezfuli AS (2020) Terbium metal–organic frameworks as capable electrodes for supercapacitors. New J Chem 44(27):11615–11621

    Article  CAS  Google Scholar 

  40. He H, Wang G, Shen B, Wang Y, Lu Z, Guo S, Zhang J, Yang L, Jiang Q, Xiao Z (2020) Three isostructural Zn/Ni nitro-containing metal-organic frameworks for supercapacitor. J Solid State Chem 288:121375

    Article  CAS  Google Scholar 

  41. Zhang X, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2019) Self-supported 3D layered zinc/nickel metal-organic-framework with enhanced performance for supercapacitors. J Mater Sci: Mater Electron 30(19):18101–18110

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa Aghazadeh or Hamzeh Forati Rad.

Ethics declarations

Confilict of interest

The authors declare that thay have no confilct of interest about publication of this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, M., Rad, H. Simple electrodeposition of a novel lanthanide-based porous tri-metallic metal–organic framework grown onto Ni-foam support as a novel binder-free electrode for supercapacitors. Ionics 28, 2389–2396 (2022). https://doi.org/10.1007/s11581-022-04479-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04479-6

Keywords

Navigation